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1. Introduction

Differential equations and inclusions of fractional order have recently proved to be
valuable tools in the modeling of many phenomena in various fields of science and
engineering. Indeed we can find numerous applications in viscoelasticity, electrochemistry,
electromagnetism, and so forth. For details, including some applications and recent results,
see the monographs of Kilbas et al. [1], Kiryakova [2], Miller and Ross [3], Podlubny [4] and
Samko et al. [5], and the papers of Agarwal et al. [6], Diethelm et al. [7, 8], El-Sayed [9–11],
Gaul et al. [12], Glockle and Nonnenmacher [13], Lakshmikantham and Devi [14], Mainardi
[15], Metzler et al. [16], Momani et al. [17, 18], Podlubny et al. [19], Yu and Gao [20] and
the references therein. Some classes of evolution equations have been considered by El-Borai
[21, 22], Jaradat et al. [23] studied the existence and uniqueness of mild solutions for a class
of initial value problem for a semilinear integrodifferential equation involving the Caputo’s
fractional derivative.
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In this survey paper, we give existence results for various classes of initial value
problems for fractional semilinear functional differential equations and inclusions, both cases
of finite and infinite delay are considered. More precisely the paper is organized as follows.
In the second section we introduce notations, definitions, and preliminary facts that will be
used in the remainder of this paper. In the third section we will be concerned with semilinear
functional differential equations with finite as well infinite delay. In the forth section, we
consider semilinear functional differential equation of neutral type for the both cases of finite
and infinite delay. Section 5 is devoted to the study of functional differential inclusions, we
examine the case when the right-hand side is convex valued as well as nonconvex valued.
In Section 6, we will be concerned with perturbed functional differential equations and
inclusions. In the last section, we give some existence results of extremal solutions in ordered
Banach spaces.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. Let (E, ·) be a Banach space and J a compact real interval. C(J, E)
is the Banach space of all continuous functions from J into E with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}. (2.1)

For ψ ∈ C([−r, 0], E) the norm of ψ is defined by

‖ψ‖C = sup{|ψ(θ)|, θ ∈ [−r, 0]}. (2.2)

For φ ∈ C([−r, b], E) the norm of φ is defined by

‖φ‖D = sup{|φ(θ)|, θ ∈ [−r, b]}. (2.3)

B(E) denotes the Banach space of bounded linear operators from E into E,with norm

‖N‖B(E) = sup{|N(y)| : |y| = 1}. (2.4)

L1(J, E) denotes the Banach space of measurable functions y : J → E which are Bochner
integrable normed by

‖y‖L1 =
∫b
0
|y(t)|dt. (2.5)

Definition 2.1. A semigroup of class (C0) is a one parameter family T(t)t≥0 ⊂ B(E) satisfying
the conditions

(i) T(0) = I;

(ii) T(t)T(s) = T(t + s), for all t, s ≥ 0;
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(iii) the map t → T(t)(x) is strongly continuous, for each x ∈ E, that is,

lim
t→ 0

T(t)(x) = x, ∀x ∈ E. (2.6)

It is well known that the operator A generates a (C0) semigroup if A satisfies

(i) D(A) = E;

(ii) the Hille-Yosida condition, that is, there existsM ≥ 0 and ω ∈ R such that (ω,∞) ⊂
ρ(A), sup{(λ −ω)n|(λI −A)−n| : λ > ω, n ∈ N} ≤M,where ρ(A) is the resolvent set
of A and I is the identity operator in E.

For more details on strongly continuous operators, we refer the reader to the books of
Goldstein [24], Fattorini [25], and the papers of Travis and Webb [26, 27], and for properties
on semigroup theory we refer the interested reader to the books of Ahmed [28], Goldstein
[24], and Pazy [29].

In all our paper we adopt the following definitions of fractional primitive and
fractional derivative.

Definition 2.2 (see [4, 5]). The Riemann-Liouville fractional primitive of order α of a function
h : (0, b] → R of order α ∈ R

+ is defined by

Iα0h(t) =
1

Γ(α)

∫ t
0
(t − s)α−1h(s)ds, (2.7)

provided the right side is pointwise defined on (0, b], and where Γ is the gamma function.

For instance, Iα0 exists for all α > 0, when h ∈ C((0, b],R) ∩ L1((0, b],R); note also that
when h ∈ C([0, b],R), then Iα0h ∈ C([0, b],R) and moreover Iα0h(0) = 0.

Definition 2.3 (see [4, 5]). The Riemann-Liouville fractional derivative of order α ∈ (0, 1) of a
continuous function h : (0, b] → R is defined by

dαh(t)
dtα

=
1

Γ(1 − α)
d

dt

∫ t
0
(t − s)−αh(s)ds

=
d

dt
I1−α0 h(t).

(2.8)

Let (X, d) be a metric space. We use the notations

Pcl(X) = {Y ∈ P(X) : Y closed},
Pbd(X) = {Y ∈ P(X) : Y bounded},
Pcv(X) = {Y ∈ P(X) : Y convex},
Pcp(X) = {Y ∈ P(X) : Y compact}.

(2.9)
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ConsiderHd : P(X) × P(X) → R+
⋃{∞} given by

Hd(A,B) = max
{
sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}
, (2.10)

where d(A, b) = infa∈A d(a, b), d(a, B) = infb∈B d(a, b). Then (Pbd,cl(X),Hd) is a metric space
and (Pcl(X),Hd) is a generalized metric space (see [30]).

A multivalued map F : J → Pcl(X) is said to be measurable if, for each x ∈ X, the
function Y : J → R defined by

Y (t) = d(x, F(t)) = inf{d(x, z) : z ∈ F(t)} (2.11)

is measurable.

Definition 2.4. A measurable multivalued function F : J → Pbd,cl(X) is said to be integrably
bounded if there exists a functionw ∈ L1(J, R+) such that ‖v‖ ≤ w(t) a.e. t ∈ J for all v ∈ F(t).

Amultivaluedmap F : X → P(X) is convex (closed) valued if F(x) is convex (closed)
for all x ∈ X. F is bounded on bounded sets if F(B) =

⋃
x∈BF(x) is bounded in X for all

B ∈ Pbd(X), that is, supx∈B{sup{|y| : y ∈ F(x)}} <∞.
F is called upper semicontinuous (u.s.c. for short) on X if for each x0 ∈ X the set F(x0)

is nonempty, closed subset of X, and for each open set U of X containing F(x0), there exists
an open neighborhood V of x0 such that F(V) ⊆ U. F is said to be completely continuous
if F(B) is relatively compact for every B ∈ Pbd(X). If the multivalued map F is completely
continuous with nonempty compact valued, then F is u.s.c. if and only if F has closed graph,
that is, xn → x∗, yn → y∗, yn ∈ F(x∗) imply y∗ ∈ F(x∗).

Definition 2.5. A multivalued map β : J × C([−r, 0], E) → P(E) is said to be Carathéodory if

(i) t → β(t, x) is measurable for each x ∈ C([−r, 0], E),
(ii) x → β(t, x) is u.s.c. for almost all t ∈ J.

Furthermore, a Carathéodory map β is said to be L1-Carathéodory if

(iii) for each real number ρ > 0, there exists a function hρ ∈ L1(J, R+) such that

‖β(t, x)‖P(E) := sup{|v| : v ∈ β(t, x)} ≤ hρ(t), (2.12)

for a.e. t ∈ J, and for all |x| ≤ ρ.

Definition 2.6. A multivalued operator F : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(F(x), F(y)) ≤ γd(x, y), for each x, y ∈ X, (2.13)
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(b) contraction if and only if it is γ-Lipschitz with γ < 1,

(c) F has a fixed point if there exists x ∈ X such that x ∈ F(x).

The fixed point set of the multivalued operator F will be denoted by FixF.

For more details on multivalued maps and the proof of the known results cited in this
section we refer interested reader to the books of Deimling [31], Gorniewicz [32], and Hu
and Papageorgiou [33].

Essential for the main results of this paper, we state a generalization of Gronwall’s
lemma for singular kernels [34, Lemma 7.1.1].

Lemma 2.7. Let v,w : [0, b] → [0,∞) be continuous functions. If w(·) is nondecreasing and there
are constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a
∫ t
0

v(s)
(t − s)α ds, (2.14)

then there exists a constant k = k(α) such that

v(t) ≤ ω(t) + ka
∫ t
0

ω(s)
(t − s)α ds, (2.15)

for every t ∈ [0, b].

In the sequel, the following fixed point theorems will be used. The following fixed
point theorem for contraction multivalued maps is due to Covitz and Nadler [35].

Theorem 2.8. Let (X, d) be a complete metric space. If F : X → Pcl(X) is a contraction, then
FixF /=∅.

The nonlinear alternative of Leray-Schauder applied to completely continuous
operators [36].

Theorem 2.9. Let X be a Banach space, and C ⊂ X convex with 0 ∈ C. Let F : C → C be a
completely continuous operator. Then either

(a) F has a fixed point, or

(b) the set E = {x ∈ C : x = λF(x), 0 < λ < 1} is unbounded.

The following is the multivalued version of the previous theorem due to Martelli [37].

Theorem 2.10. Let T : X → Pcp, cv(X) be an upper semicontinuous and completely continuous
multivalued map. If the set

E = {u ∈ X : λu ∈ Tu for some λ > 1} (2.16)

is bounded, then T has a fixed point.
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To state existence results for perturbed differential equations and inclusions we
will use the following fixed point theorem of Krasnoselskii-Scheafer type of the sum of a
completely continuous operator and a contraction one due to Burton and Kirk [38].

Theorem 2.11. Let X be a Banach space, and A,B : X → X two operators satisfying

(i) A is a contraction;

(ii) B is completely continuous.

Then either

(a) the operator equation y = A(y) + B(y) has a solution, or
(b) the set E = {u ∈ X : u = λA(u/λ) + λB(u)} is unbounded for λ ∈ (0, 1).

Recently Dhage states the multivalued version of the previous theorem.

Theorem 2.12 (see [39, 40]). Let X be a Banach space, A : X → Pcl, cv, bd(X) and B : X →
Pcp, cv(X), two multivalued operators satisfying

(a) A is a contraction;

(b) B is completely continuous.

Then either

(i) The operator inclusion λx ∈ Ax + Bx has a solution for λ = 1, or

(ii) the set E = {u ∈ X | u ∈ λAu + λBu, 0 < λ < 1} is unbounded.
In the literature devoted to equations with finite delay, the phase space is much of

time the space of all continuous functions on [−r, 0], r > 0, endowed with the uniform norm
topology. When the delay is infinite, the notion of the phase space plays an important role in
the study of both qualitative and quantitative theory, a usual choice is a seminormed space B
introduced by Hale and Kato [41] and satisfying the following axioms.

(A1) There exist a positive constant H and functions K(·), M(·) : R
+ → R

+ with K
continuous andM locally bounded, such that for any a > 0, if x : (−∞, a] → E, x ∈
B, and x(·) is continuous on [0, a], then for every t ∈ [0, a] the following conditions
hold:

(i) xt is in B;
(ii) |x(t)| ≤ H‖xt‖B;
(iii) ‖xt‖B ≤ K(t) sup{|x(s)| : 0 ≤ s ≤ t} + M(t)‖x0‖B, and H, K, and M are

independent of x(·).
(A2) For the function x(·) in (A1), xt is a B-valued continuous function on [0, a].

(A3) The space B is complete.

Denote by

Kb = sup{K(t) : t ∈ J}, Mb = sup{M(t) : t ∈ J}. (2.17)

Hereafter are some examples of phase spaces. For other details we refer, for instance, to the
book by Hino et al. [42].
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Example 2.13. The spaces BC, BUC, C∞, and C0.
BC is the space of bounded continuous functions defined from (−∞, 0] to E;
BUC is the space of bounded uniformly continuous functions defined from (−∞, 0]

to E;

C∞ :=
{
φ ∈ BC : lim

θ→−∞
φ(θ) exist in E

}
; (2.18)

C0 :=
{
φ ∈ BC : lim

θ→−∞
φ(θ) = 0

}
, endowed with the uniform norm

‖φ‖ = {|φ(θ)| : θ ≤ 0}.
(2.19)

We have that the spaces BUC, C∞, and C0 satisfy conditions (A1)–(A3). BC satisfies
(A1), (A3) but (A2) is not satisfied.

Example 2.14. The spaces Cg, UCg, C
∞
g , and C

0
g .

Let g be a positive continuous function on (−∞, 0]. We define

Cg :=
{
φ ∈ C((−∞, 0], E) :

φ(θ)
g(θ)

is bounded on (−∞, 0]
}
;

C0
g :=

{
φ ∈ Cg : lim

θ→−∞
φ(θ)
g(θ)

= 0
}
, endowed with the uniform norm

‖φ‖ =
{ |φ(θ)|
g(θ)

: θ ≤ 0
}
.

(2.20)

We consider the following condition on the function g.

(g1) For all a > 0, sup0≤t≤a sup{(g(t + θ)/g(θ)) : −∞ < θ ≤ −t} <∞.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). They satisfy conditions (A1)

and (A3) if g1 holds.

Example 2.15. The space Cγ .
For any real constant γ , we define the functional space Cγ bys

Cγ :=
{
φ ∈ C((−∞, 0], E) : lim

θ→−∞
eγθφ(θ) exist in E

}
(2.21)

endowed with the following norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}. (2.22)

Then in the space Cγ the axioms (A1)–(A3) are satisfied.
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3. Semilinear Functional Differential Equations

3.1. Introduction

Functional differential and partial differential equations arise in many areas of applied
mathematics and such equations have received much attention in recent years. A good guide
to the literature for functional differential equations is the books by Hale [43] and Hale and
Verduyn Lunel [44], Kolmanovskii andMyshkis [45], andWu [46] and the references therein.

In a series of papers (see [47–50]), the authors considered some classes of initial
value problems for functional differential equations involving the Riemann-Liouville and
Caputo fractional derivatives of order 0 < α ≤ 1. In [51, 52] some classes of semilinear
functional differential equations involving the Riemann-Liouville have been considered. For
more details on the geometric and physical interpretation for fractional derivatives of both
the Riemann-Liouville and Caputo types see [53, 54].

In the following, we consider the semilinear functional differential equation of
fractional order of the form

Dαy(t) = Ay(t) + f
(
t, yt

)
, t ∈ J := [0, b], (3.1)

y(t) = φ(t), t ∈ [−r, 0], (3.2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J × C([−r, 0], E) → E
is a continuous function, A is a closed linear operator (possibly unbounded), φ : [−r, 0] → E
a given continuous function with φ(0) = 0, and (E, | · |) a real Banach space. For any function
y defined on [−r, b] and any t ∈ J we denote by yt the element of C([−r, 0], E) defined by

yt(θ) = y(t + θ), θ ∈ [−r, 0]. (3.3)

Here yt(·) represents the history of the state from time t − r, up to the present time t.
The reason for studying (3.1) is that it appears in mathematical models of

viscoelasticity [55], and in other fields of science [54, 56]. Equation (3.1) is equivalent to solve
an integral equation of convolution type. It is also of interest to explore the neighborhood of
the diffusion (α = 1). In this survey paper, we use the fractional derivative in the Riemann-
Liouville sense. The problems considered in the survey are subject to zero data, which in
this case, the Riemann-Liouville and Caputo fractional derivatives coincide. From a practical
point of view, in some mathematical models it is more appropriate to consider traditional
initial or boundary data. This is what we are considering in this survey.

In all our paper we suppose that the operator A : D(A) ⊂ E → E is the infinitesimal
generator of a (C0)-semigroup {T(t)}t≥0. Denote by

M = sup
{‖T(t)‖B(E) : t ∈ J}. (3.4)

Before stating our main results in this section for problem (3.1) and (3.2) we give the
definition of the mild solution.
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Definition 3.1 (see [23]). One says that a continuous function y : [−r, b] → E is amild solution
of problem (3.1) and (3.2) if y(t) = φ(t), t ∈ [−r, 0], and

y(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ J. (3.5)

3.2. Existence Results for Finite Delay

By using the Banach’s contraction principle, we get the following existence result for problem
(3.1) and (3.2).

Theorem 3.2. Let f : J × C([−r, 0], E) → E continuous. Assume the following.

(H1) There exists a nonnegative constant k such that

|f(t, u) − f(t, v)| ≤ k‖u − v‖C, for t ∈ J and every u, v ∈ C([−r, 0], E). (3.6)

Then there exists a unique mild solution of problem (3.1) and (3.2) on [−r, b].

Proof. Transform the IVP (3.1) and (3.2) into a fixed point problem. Consider the operator
F : C([−r, b], E) → C([−r, b], E) defined by

F(y)(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), t ∈ [−r, 0],
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ [0, b].

(3.7)

Let us define the iterates of operator F by

F1 = F, Fn+1 = F ◦ Fn. (3.8)

It will be sufficient to prove that Fn is a contraction operator for n sufficiently large. For every
y, z ∈ C([−r, b], E) we have

∣∣Fn(y)(t) − Fn(z)(t)
∣∣ ≤ (kM)n

Γ(nα + 1)
tnα‖y − z‖∞. (3.9)
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Indeed,

∣∣F(y)(t) − F(z)(t)∣∣ ≤ M

Γ(α)

∫ t
0
(t − s)α−1∣∣f(s, ys) − f(s, zs)∣∣ds

≤ kM

Γ(α)

∫ t
0
(t − s)α−1∥∥ys − zs∥∥Cds

≤ kM

Γ(α)

∫ t
0
‖y − z‖∞(t − s)α−1ds

=
kM

Γ(α + 1)
tα‖y − z‖∞.

(3.10)

Therefore (3.9) is proved for n = 1. Assuming by induction that (3.9) is valid for n, then

∣∣Fn+1(y)(t) − Fn+1(z)(t)
∣∣ ≤ kM

Γ(α)
(kM)n

Γ(nα + 1)
‖y − z‖∞

∫ t
0
(t − s)α−1snαds

=
(kM)n+1

Γ(α)Γ(nα + 1)
Γ(α)Γ(nα + 1)
Γ((n + 1)α + 1)

tα+nα‖y − z‖∞

=
(kM)n+1

Γ((n + 1)α + 1)
t(n+1)α‖y − z‖∞

(3.11)

and then (3.9) follows for n + 1.
Now, taking n sufficiently large in (3.9) yield the contraction of operator Fn.
Consequently F has a unique fixed point by the Banach’s contraction principle, which

gives rise to a unique mild solution to the problem (3.1) and (3.2).

The following existence result is based upon Theorem 2.9.

Theorem 3.3. Assume that the following hypotheses hold.

(H2) The semigroup {T(t)}t∈J is compact for t > 0.

(H3) There exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖C, for each t ∈ J, and each u ∈ C([−r, 0], E). (3.12)

Then the problem (3.1) and (3.2) has at least one mild solution on [−r, b].

Proof. Transform the IVP (3.1) and (3.2) into a fixed point problem. Consider the operator F
as defined in Theorem 3.2. To show that F is continuous, let us consider a sequence {yn} such
that yn → y in C([−r, b], E). Then

∣∣F(yn)(t) − F(y)(t)∣∣ ≤
∣∣∣∣∣

1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)[f(s, yns) − f(s, ys)]ds

∣∣∣∣∣
≤ Mbα

αΓ(α)
∥∥f(·, yn·) − f(·, y·)∥∥∞.

(3.13)
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Since f is a continuous function, then we have

∥∥F(yn) − F(y)∥∥∞ ≤ Mbα

Γ(α + 1)
∥∥f(·, yn·) − f(·, y·)∥∥∞ −→ 0 as n −→ ∞. (3.14)

Thus F is continuous. Now for any ρ > 0, and each y ∈ Bρ = {y ∈ C([−r, b], E) : ‖y‖∞ ≤ ρ}
we have for each t ∈ J

|F(y)(t)| =
∣∣∣∣∣

1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds

∣∣∣∣∣
≤ M‖p‖∞

Γ(α)

∫ t
0
(t − s)α−1ds +M‖p‖∞ + ρ‖q‖∞

Γ(α)

∫ t
0
(t − s)α−1ds

≤ Mbα

Γ(α + 1)
(‖p‖∞ + ρ‖q‖∞

)
=: δ <∞.

(3.15)

Thus F maps bounded sets into bounded sets in C([−r, b], E).
Now, let τ1, τ2 ∈ J , τ2 > τ1. Thus if ε > 0 and ε ≤ τ1 ≤ τ2 we have for any y ∈ Bρ

∣∣F(y)(τ2) − F(y)(τ1)∣∣

≤ 1
Γ(α)

(∣∣∣∣∣
∫ τ1−ε
0

[(
τ2 − s

)α−1
T
(
τ2 − s

) − (τ1 − s)α−1T(τ1 − s)]f(s, ys)ds
∣∣∣∣∣

+

∣∣∣∣∣
∫ τ1
τ1−ε

[(
τ2 − s

)α−1
T
(
τ2 − s

) − (τ1 − s)α−1T(τ1 − s)]f(s, ys)ds
∣∣∣∣∣

+

∣∣∣∣∣
∫ τ2
τ1

(
τ2 − s

)α−1
T
(
τ2 − s

)
f
(
s, ys

)
ds

∣∣∣∣∣
)

≤ M
(‖p‖∞ + ρ‖q‖∞

)
Γ(α)

(∣∣∣∣∣
∫ τ1−ε
0

[(
τ2 − s

)α−1 − (τ1 − s)α−1]T(τ1 − s)ds
∣∣∣∣∣

+

∣∣∣∣∣
∫ τ1−ε
0

(
τ2 − s

)α−1
T
(
τ1 − ε − s

)(
T
(
τ2 − τ1 − ε

) − T(ε))ds
∣∣∣∣∣

+
∫ τ1
τ1−ε

[(
τ2 − s

)α−1 − (τ1 − s)α−1]ds +
∫ τ2
τ1

(
τ2 − s

)α−1
ds

)

≤ M
(‖p‖∞ + ρ‖q‖∞

)
Γ(α)

(∫ τ1−ε
0

[(
τ2 − s

)α−1 − (τ1 − s)α−1]ds

+ ‖T(τ2 − τ1 − ε) − T(ε)‖B(E)
∫ τ1−ε
0

(
τ2 − s

)α−1
ds

+
∫ τ1
τ1−ε

((
τ2 − s

)α−1 − (τ1 − s)α−1)ds +
∫ τ2
τ1

(
τ2 − s

)α−1
ds

)
.

(3.16)



12 Advances in Difference Equations

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to zero,
since T(t) is a strongly continuous operator and the compactness of T(t) for t > 0 implies the
continuity in the uniform operator topology [29]. By the Arzelá-Ascoli theorem it suffices to
show that F maps Bρ into a precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ we
define

Fε(y)(t) =
T(ε)
Γ(α)

∫ t−ε
0

(t − s − ε)α−1T(t − s − ε)f(s, ys)ds. (3.17)

Since T(t) is a compact operator for t > 0, the set

Yε(t) =
{Fε(y)(t) : y ∈ Bρ

}
(3.18)

is precompact in E for every ε, 0 < ε < t.Moreover

∣∣F(y)(t) − Fε(y)(t)
∣∣ ≤ M

(‖p‖∞ + ρ‖q‖∞
)

Γ(α)

(∫ t−ε
0

[
(t − s)α−1 − (t − s − ε)α−1]ds

+
∫ t
t−ε

(t − s)α−1ds.
)

≤ M
(‖p‖∞ + ρ‖q‖∞

)
Γ(α + 1)

(
tα − (t − ε)α).

(3.19)

Therefore, the set Y (t) = {F(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator F is
completely continuous. Now, it remains to show that the set

E = {y ∈ C([−r, b], E) : y = λF(y) for some 0 < λ < 1} (3.20)

is bounded.
Let y ∈ E be any element. Then, for each t ∈ J ,

y(t) = λ
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds. (3.21)

Then

|y(t)| ≤ Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1∥∥ys∥∥ds. (3.22)

We consider the function defined by

μ(t) = max{|y(s)| : −r ≤ s ≤ t}, t ∈ J. (3.23)
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Let t∗ ∈ [−r, t] such that μ(t) = |y(t∗)|, if t∗ ∈ [0, b] then by (3.22) we have, for t ∈ J, (note
t∗ ≤ t)

μ(t) ≤ Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1μ(s)ds. (3.24)

If t∗ ∈ [−r, 0] then μ(t) = ‖φ‖C and the previous inequality holds.
By Lemma 2.7 we have

μ(t) ≤ Mbα‖p‖∞
Γ(α + 1)

+ k
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1Mbα‖p‖∞

Γ(α + 1)
ds

≤ Mbα‖p‖∞
Γ(α + 1)

(
1 + k

Mbα‖q‖∞
Γ(α + 1)

)

=: Λ.

(3.25)

Hence

‖y‖∞ ≤ max
{‖φ‖C,Λ} ∀y ∈ E. (3.26)

This shows that the set E is bounded. As a consequence of Theorem 2.9, we deduce that the
operator F has a fixed point which is a mild solution of the problem (3.1) and (3.2).

3.3. An Example

As an application of our results we consider the following partial functional differential
equation of the form

∂α

∂tα
z(t, x) =

∂2

∂x2
z(t, x) +Q(t, z(t − r, x)), x ∈ [0, π], t ∈ [0, b], α ∈ (0, 1],

z(t, 0) = z(t, π) = 0, t ∈ [0, b],

z(t, x) = φ(t, x), t ∈ [−r, 0], x ∈ [0, π],

(3.27)

where r > 0, φ : [−r, 0]× [0, π] → R is continuous andQ : [0, b]×R → R is a given function.
Let

y(t)(x) = z(t, x), t ∈ J, x ∈ [0, π],

F(t, φ)(x) = Q(t, φ(θ, x)), θ ∈ [−r, 0], x ∈ [0, π],

φ(θ)(x) = φ(θ, x), θ ∈ [−r, 0], x ∈ [0, π].

(3.28)

Take E = L2[0, π] and define A : D(A) ⊂ E → E by Aw = w′′ with domain

D(A) =
{
w ∈ E,w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0

}
. (3.29)
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Then

Aw =
∞∑
n=1

n2
(
w,wn

)
wn, w ∈ D(A), (3.30)

where (, ) is the inner product in L2 andwn(s) =
√
(2/π) sinns, n = 1, 2, . . . is the orthogonal

set of eigenvectors in A. It is well known (see [29]) that A is the infinitesimal generator of an
analytic semigroup T(t), t ∈ [0, b] in E and is given by

T(t)w =
∞∑
n=1

exp(−n2t)(w,wn

)
wn, w ∈ E. (3.31)

Since the analytic semigroup T(t) is compact, there exists a constantM ≥ 1 such that

‖T(t)‖B(E) ≤M. (3.32)

Also assume that there exist continuous functions σ1, σ2 : [0, b] → R
+ such that

|Q(t,w(t − r, x))| ≤ σ1(t)|w| + σ2(t). (3.33)

We can show that problem (3.1) and (3.2) is an abstract formulation of problem (3.27). Since
all the conditions of Theorem 3.3 are satisfied, the problem (3.27) has a solution z on [−r, b]×
[0, π].

3.4. Existence Results for Infinite Delay

In the following we will extend the previous results to the case when the delay is infinite.
More precisely we consider the following problem

Dαy(t) = Ay(t) + f
(
t, yt

)
, t ∈ J := [0, b],

y0 = φ ∈ B,
(3.34)

where Dα is the standard Riemann-Liouville fractional derivative, f : J × B → E is a
continuous function, B the phase space [41],A : D(A) ⊂ E → E is the infinitesimal generator
of a strongly continuous semigroup {T(t)}t≥0, φ : B → E a continuous function with φ(0) = 0
and (E, | · |) a real Banach space. For any t ∈ J the function yt ∈ B is defined by

yt(θ) = y(t + θ), θ ∈ (−∞, 0]. (3.35)

Consider the following space:

Bb =
{
y : (−∞, b] → E : y/J ∈ C(J, E), y0 ∈ B}, (3.36)
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where y/J is the restriction of y to J. Let ‖ · ‖b be the seminorm in Bb defined by

‖y‖b = ‖y0‖B + sup{|y(s)| : 0 ≤ s ≤ b}, y ∈ Bb. (3.37)

Definition 3.4. One says that a function y ∈ Bb is a mild solution of problem (3.34) if y0 = φ
and

y(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ J. (3.38)

The first existence result is based on Banach’s contraction principle.

Theorem 3.5. Assume the following.

(H4) There exists a nonnegative constant k such that

|f(t, u) − f(t, v)| ≤ k‖u − v‖B, for t ∈ J and every u, v ∈ B. (3.39)

Then there exists a unique mild solution of problem (3.34) on (−∞, b].

Proof. Transform the IVP (3.34) into a fixed point problem. Consider the operator N : Bb →
Bb defined by

N(y)(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), t ∈ (−∞, 0],

1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ J.

(3.40)

For φ ∈ B, we define the function

x(t) =

⎧⎨
⎩
φ(t), t ∈ (−∞, 0],

0, t ∈ J.
(3.41)

Then x ∈ Bb. Set

y(t) = z(t) + x(t). (3.42)

It is obvious that y satisfies (3.38) if and only if z satisfies z0 = 0 and

z(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, zs + xs)ds, t ∈ J. (3.43)

Let

B0
b =

{
z ∈ Bb : z0 = 0

}
. (3.44)
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For any z ∈ B0
b, we have

‖z‖b =
∥∥z0∥∥B + sup{|z(s)| : 0 ≤ s ≤ b} = sup{|z(s)| : 0 ≤ s ≤ b}. (3.45)

Thus (B0
b, ‖ · ‖b) is a Banach space. Let the operator P : B0

b → B0
b defined by

P(z)(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, zs + xs)ds. (3.46)

It is obvious that N has a fixed point is equivalent to P has a fixed point, and so we turn to
proving that P has a fixed point. As in Theorem 3.2, we show by induction that Pn satisfy for
any z, z ∈ B0

b, the following inequality:

∥∥Pn(z) − Pn(z)
∥∥
b ≤

(
kMKb

)n
Γ(nα + 1)

bnα
∥∥z − z∥∥b, (3.47)

which yields the contraction ofPn for sufficiently large values of n. Therefore, by the Banach’s
contraction principle P has a unique fixed point z∗. Then y∗(t) = z∗(t) + x(t), t ∈ (−∞, b] is
a fixed point of the operator N, which gives rise to a unique mild solution of the problem
(3.34).

Next we give an existence result based upon the nonlinear alternative of Leray-
Schauder type.

Theorem 3.6. Assume that the following hypotheses hold.

(H5) The semigroup {T(t)}t∈J is compact for t > 0.

(H6) There exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖B, for a.e. t ∈ J, and each u ∈ B. (3.48)

Then, the problem (3.34) has at least one mild solution on (−∞, b].

Proof. Transform the IVP (3.34) into a fixed point problem. Consider the operatorP defined as
in Theorem 3.5. We will show that the operator P is continuous and completely continuous.
Let {zn} be a sequence such that zn → z in B0

b
. Then

∣∣P(zn)(t) − P(z)(t)
∣∣ ≤

∣∣∣∣∣
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)[f(s, zns + xs) − f(s, zs + xs)]ds

∣∣∣∣∣
≤ Mbα

αΓ(α)
∥∥f(·, zn· + x·) − f(·, z· + x·)∥∥∞.

(3.49)

Since f is a continuous function, then we have

∥∥P(zn) − P(z)
∥∥
b ≤

Mbα

Γ(α + 1)
∥∥f(·, zn· + x·) − f(·, z· + x·)∥∥∞ −→ 0 as n −→ ∞. (3.50)
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ThusP is continuous. To show thatPmaps bounded sets into bounded sets in B0
b it is enough

to show that for any ρ > 0 there exists a positive constant δ such that for each z ∈ Bρ = {z ∈
B0
b
: ‖z‖b ≤ ρ}we have P(z) ∈ Bδ. Let z ∈ Bρ, then

∥∥zs + xs∥∥B ≤ ∥∥zs∥∥B +
∥∥xs∥∥B

≤ Kbρ +Mb‖φ‖B
:= ρ∗.

(3.51)

Then we have for each t ∈ J

|P(z)(t)| =
∣∣∣∣∣

1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, zs + xs)ds

∣∣∣∣∣
≤ M

Γ(α)

∫ t
0
sup
s∈[0,t]

|p(s)|(t − s)α−1ds + Mρ∗

Γ(α)

∫ t
0
sup
s∈[0,t]

|q(s)|(t − s)α−1ds.
(3.52)

Taking the supremum over t we have

‖P(z)‖b ≤
Mbα

(‖p‖∞ + ρ∗‖q‖∞
)

Γ(α + 1)
=: δ. (3.53)

Now let τ1, τ2 ∈ J , τ2 > τ1. thus if ε > 0 and ε ≤ τ1 ≤ τ2 we have for each z ∈ Bρ

∣∣P(z)
(
τ2
) − P(z)

(
τ1
)∣∣ ≤ M

(‖p‖∞ + ρ∗‖q‖∞
)

Γ(α)

×
(∫ τ1−ε

0

[(
τ2 − s

)α−1 − (τ1 − s)α−1]ds

+
∥∥T(τ2 − τ1 − ε) − T(ε)∥∥B(E)

∫ τ1−ε
0

(
τ2 − s

)α−1
ds

+
∫ τ1
τ1−ε

((
τ2 − s

)α−1 − (τ1 − s)α−1)ds +
∫ τ2
τ1

(
τ2 − s

)α−1
ds

)
.

(3.54)

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to zero,
since T(t) is a strongly continuous operator and the compactness of T(t) for t > 0 implies
the continuity in the uniform operator topology (see [29]). By the Arzelá-Ascoli theorem it
suffices to show that P maps Bρ into a precompact set in E. Let 0 < t < b be fixed and let ε be
a real number satisfying 0 < ε < t. For z ∈ Bρ we define

Pε(z)(t) =
T(ε)
Γ(α)

∫ t−ε
0

(t − s − ε)α−1T(t − s − ε)f(s, zs + xs)ds. (3.55)
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Since T(t) is a compact operator for t > 0, the set

Zε(t) =
{Pε(z)(t) : z ∈ Bρ

}
(3.56)

is precompact in E for every ε, 0 < ε < t.Moreover

∣∣P(z)(t) − Pε(z)(t)
∣∣ ≤ M

(‖p‖∞ + ρ∗‖q‖∞
)

Γ(α)

(∫ t−ε
0

[
(t − s)α−1 − (t − s − ε)α−1]ds

+
∫ t
t−ε

(t − s)α−1ds.
)

≤ M
(‖p‖∞ + ρ∗‖q‖∞

)
Γ(α + 1)

(
tα − (t − ε)α).

(3.57)

Therefore, the set Z(t) = {P(z)(t) : z ∈ Bρ} is precompact in E. Hence the operator P is
completely continuous. Now, it remains to show that the set

E =
{
z ∈ B0

b : z = λP(z) for some 0 < λ < 1
}

(3.58)

is bounded. Let z ∈ E be any element. Then, for each t ∈ J ,

z(t) =
λ

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, zs + xs)ds. (3.59)

Then

|z(t)| ≤ Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1∥∥zs + xs∥∥Bds, (3.60)

but
∥∥zt + xt∥∥B ≤ K(t) sup{|z(s)| : 0 ≤ s ≤ t} +M(t)

∥∥z0∥∥B
+K(t) sup{|x(s)| : 0 ≤ s ≤ t} +M(t)

∥∥x0∥∥B
≤ Kb sup{|z(s)| : 0 ≤ s ≤ t} +Mb‖φ‖B.

(3.61)

Take the right-hand side of the above inequality as v(t), then by (3.60) we have

|z(t)| ≤ Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1v(s)ds. (3.62)

Using the above inequality and the definition of v we have

v(t) ≤ MKbb
α‖p‖∞

Γ(α + 1)
+
MKb‖q‖∞

Γ(α)

∫ t
0
(t − s)α−1v(s)ds +Mb‖φ‖B. (3.63)
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By Lemma 2.7, there exists a constant K = K(α) such that we have

v(t) ≤
[
MKbb

α‖p‖∞
Γ(α + 1)

+Mb‖φ‖B
][

1 +
MKKbb

α‖q‖∞
Γ(α + 1)

]
:= Λ. (3.64)

Then there exists a constant d = d(Λ) such that ‖z‖b ≤ d. This shows that the set E is bounded.
As a consequence of the Leray-Schauder Theorem, we deduce that the operator P has a fixed
point, thenN has one which gives rise to a mild solution of the problem (3.34).

3.5. An Example

To illustrate the previous results, we consider in this section the following model:

∂α

∂tα
v(t, ξ) =

∂2v

∂ξ2
(t, ξ) +

∫0

−∞
P(θ)r(t, v(t + θ, ξ))dθ, t ∈ [0, T], ξ ∈ [0, π], α ∈ (0, 1],

v(t, 0) = v(t, π) = 0, ∈ [0, T],

v(θ, ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

(3.65)

where P : (−∞, 0] → R, r : [0, T] × R → R, v0 : (−∞, 0] × [0, π] → R are continuous
functions.

Consider E = L2([0, π], R) and define A by Aw = w′′ with domain

D(A) =
{
w ∈ E : w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0

}
. (3.66)

Then A generates a C0 semigroup T(t) (see [29]).
For the phase space B, we choose the well-known space BUC(R−, E) : the space of

uniformly bounded continuous functions endowed with the following norm:

‖ϕ‖ = sup
θ≤0

|ϕ(θ)| for ϕ ∈ B. (3.67)

If we put for ϕ ∈ BUC(R−, E) and ξ ∈ [0, π]

y(t)(ξ) = v(t, ξ), t ∈ [0, T], ξ ∈ [0, π],

φ(θ)(ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

f(t, ϕ)(ξ) =
∫0

−∞
P(θ)r(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π].

(3.68)

Then, problem (3.65) takes the abstract neutral evolution form (3.34).
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4. Semilinear Functional Differential Equations of Neutral Type

4.1. Introduction

Neutral differential equations arise in many areas of applied mathematics, an extensive
theory is developed, we refer the reader to the book by Hale and Verduyn Lunel [44] and
Kolmanovskii and Myshkis [45]. The work for neutral functional differential equations with
infinite delay was initiated by Hernández and Henrı́quez in [57, 58]. In the following, we
will extend such results to arbitrary order functional differential equations of neutral type
with finite as well as infinite delay. We based our main results upon the Banach’s principle
and the Leray-Schauder theorem.

4.2. Existence Results for the Finite Delay

First we will be concerned by the case when the delay is finite, more precisely we consider
the following class of neutral functional differential equations

Dα[y(t) − h(t, yt)] = A[y(t) − h(t, yt)] + f(t, yt), t ∈ J := [0, b],

y(t) = φ(t), t ∈ [−r, 0].
(4.1)

Definition 4.1. One says that a function y ∈ C([−r, b], E) is a mild solution of problem (4.1) if
y(t) = φ(t), t ∈ [−r, 0] and

y(t) = h
(
t, yt

) − T(t)h(0, φ) + 1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ J. (4.2)

Our first existence result is based on the Banach’s contraction principle.

Theorem 4.2. Assume the following.

(H7) There exists a nonnegative constant k such that

|f(t, u) − f(t, v)| ≤ k‖u − v‖C, for t ∈ J and every u, v ∈ C([−r, 0], E). (4.3)

(H8) There exists a nonnegative constant l such that

|h(t, u) − h(t, v)| ≤ l‖u − v‖C, for t ∈ J and every u, v ∈ C([−r, 0], E). (4.4)

Then there exists a unique mild solution of problem (4.1) on [−r, b].
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Proof. Transform the IVP (4.1) into a fixed point problem. Consider the operator F :
C([−r, b], E) → C([−r, b], E) defined by

F(y)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],
h(t, yt) − T(t)h(0, φ),

+
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ J.

(4.5)

As in Theorem 3.2, we show by induction that Fn satisfy for any y, z ∈ C([−r, b], E), the
following inequality:

∥∥Fn(y) − Fn(z)
∥∥
∞ ≤

n∑
j=0

1
Γ(jα + 1)

C
j
n

(
kMbα

)j
ln−j‖y − z‖∞, (4.6)

which yields the contraction ofFn for sufficiently large values of n. Therefore, by the Banach’s
contraction principle F has a unique fixed point which gives rise to unique mild solution of
problem (4.1).

Next we give an existence result using the nonlinear alternative of Leray-Schauder.

Theorem 4.3. Assume that the following hypotheses hold.

(H9) The semigroup {T(t)}t∈J is compact for t > 0.

(H10) There exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖C, for a.e. t ∈ J, and each u ∈ C([−r, 0], E). (4.7)

(H11) The function h is continuous and completely continuous, and for every bounded set B ∈
C([−r, b], E), the set {t → h(t, yt), y ∈ B} is equicontinuous in E.

(H12) There exists constants: 0 ≤ c1 < 1, and c2 ≥ 0 such that

|h(t, u)| ≤ c1‖u‖C + c2, for t ∈ J and u ∈ C([−r, 0], E). (4.8)

Then the problem (4.1) has at least one mild solution on [−r, b].

Proof. Consider the operator F : C([−r, b], E) → C([−r, b], E) as in Theorem 4.2.
To show that the operator F is continuous and completely continuous it suffices to

show, using (H11), that the operator F̃ : C([−r, b], E) → C([−r, b], E) defined by

F̃(y)(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), t ∈ [−r, 0],
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ J

(4.9)
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is continuous and completely continuous. This can be done following the proof of
Theorem 3.3.

Now, it remains to show that the set

E = {y ∈ C([−r, b], E) : y = λF(y) for some 0 < λ < 1} (4.10)

is bounded. Let y ∈ E be any element. Then, for each t ∈ J ,

|y(t)| ≤ ∣∣h(t, yt)∣∣ +M|h(0, φ)| + M

Γ(α)

∫ t
0
(t − s)α−1∣∣f(s, ys)∣∣ds

≤ c1‖yt‖C + c2 +M‖φ‖C +Mc2 +
Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1∥∥ys∥∥Cds.

(4.11)

We consider the function defined by

μ(t) = max{|y(s)| : −r ≤ s ≤ t}, t ∈ J. (4.12)

Let t∗ ∈ [−r, t] such that μ(t) = |y(t∗)|, If t∗ ∈ [0, b] then we have, for t ∈ J, (note t∗ ≤ t)

(
1 − c1

)
μ(t) ≤M‖φ‖C + (1 +M)c2 +

Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1μ(s)ds. (4.13)

If t∗ ∈ [−r, 0] then μ(t) = ‖φ‖C and the previous inequality holds.
By Lemma 2.7 there exists K = K(α) such that

μ(t) ≤ 1
1 − c1

(
M‖φ‖C + (1 +M)c2 +

Mbα‖p‖∞
Γ(α + 1)

)(
1 +

MKbα‖q‖∞
Γ(α + 1)

)
:= Λ. (4.14)

This shows that the set E is bounded. As a consequence of the Leray-Schauder Theorem, we
deduce that the operatorF has a fixed point which gives rise to amild solution of the problem
(4.1).

4.3. Existence Results for the Infinite Delay

In the following we will extend our previous results to the case of infinite delay, more
precisely we consider the following problem:

Dα[y(t) − h(t, yt)] = A[y(t) − h(t, yt)] + f(t, yt), t ∈ J := [0, b],

y0 = φ ∈ B.
(4.15)

Our first existence result is based on the Banach’s contraction principle.
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Theorem 4.4. Assume that the following hypotheses hold.

(H13) There exists a nonnegative constant k such that

|f(t, u) − f(t, v)| ≤ k‖u − v‖B, for t ∈ J and every u, v ∈ B. (4.16)

(H14) There exists a nonnegative constant l such that

|h(t, u) − h(t, v)| ≤ l‖u − v‖B, for t ∈ J and every u, v ∈ B. (4.17)

Then there exists a unique mild solution of problem (4.15) on (−∞, b].

Proof. Consider the operator N : Bb → Bb defined by

N(y)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (−∞, 0],

h
(
t, yt

) − T(t)h(0, φ),
+

1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ J.

(4.18)

In analogy to Theorem 3.2, we consider the operator P : B0
b
→ B0

b
defined by

P(z)(t) = h
(
t, zt + xt

) − T(t)h(0, φ) + 1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, zs + xs)ds. (4.19)

As in Theorem 3.2, we show by induction that Pn satisfy for any z, z ∈ B0
b, the following

inequality:

∥∥Pn(z) − Pn(z)
∥∥
∞ ≤

n∑
j=0

Kn
b

Γ(jα + 1)
C
j
n

(
kMbα

)j
ln−j
∥∥z − z∥∥b, (4.20)

which yields the contraction ofPn for sufficiently large values of n. Therefore, by the Banach’s
contraction principle P has a unique fixed point z∗. Then y∗(t) = z∗(t) + x(t), t ∈ (−∞, b] is
a fixed point of the operator N, which gives rise to a unique mild solution of the problem
(4.15).

Next we give an existence result based upon the the nonlinear alternative of Leray-
Schauder.

Theorem 4.5. Assume that the following hypotheses hold.

(H15) The semigroup {T(t)}t∈J is compact for t > 0.

(H16) There exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖B, for a.e. t ∈ J, and each u ∈ B. (4.21)
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(H17) The function h is continuous and completely continuous, and for every bounded set B ∈ B0
b,

the set {t → h(t, yt), y ∈ B} is equicontinuous in E.

(H18) There exists constants: 0 ≤ c1 < 1/Kb, and c2 ≥ 0 such that

|h(t, u)| ≤ c1‖u‖B + c2, for t ∈ J, u ∈ B. (4.22)

Then the problem (4.15) has at least one mild solution on (−∞, b].

Proof. Let P : B0
b
→ B0

b
defined as in Theorem 4.4. We can easily show that the operator P

is continuous and completely continuous. Using (H17) it suffices to show that the operator
P : B0

b
→ B0

b
defined by

P(z)(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, zs + xs)ds (4.23)

is continuous and completely continuous. Now, it remains to show that the set

E =
{
z ∈ B0

b : z = λP(z) for some 0 < λ < 1
}

(4.24)

is bounded.
Let z ∈ E be any element. Then, for each t ∈ J ,

|z(t)| ≤ ∣∣h(t, zt + xt)∣∣ +M|h(0, φ)| + M

Γ(α)

∫ t
0
(t − s)α−1∣∣f(s, zs + xs)∣∣ds

≤ c1‖zt + xt‖B + c2 +M‖φ‖B +Mc2 +
Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1∥∥zs + xs∥∥Bds.

(4.25)

Denote v(t) as in Theorem 3.6. Then

∥∥zt + xt∥∥B ≤ v(t),

v(t) ≤ c1Kbv(t) +Kb

[(
M +

Mb

Kb

)
‖φ‖B + (1 +M)c2 +

Mbα‖p‖∞
Γ(α + 1)

]

+
KbM‖q‖∞

Γ(α)

∫ t
0
(t − s)α−1v(s)ds.

(4.26)
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Then

v(t) ≤ Kb

1 − c1Kb

[(
M +

Mb

Kb

)
‖φ‖B + (1 +M)c2 +

Mbα‖p‖∞
Γ(α + 1)

]

+
Kb

1 − c1Kb

M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1v(s)ds.

(4.27)

By Lemma 2.7 there exists a constant K = K(α) such that

v(t) ≤ d1Kb

1 − c1Kb

(
1 +

KKb

1 − c1Kb

Mbα‖q‖∞
Γ(α + 1)

)
:= Λ (4.28)

where

d1 =

(
M +

Mb

Kb

)
‖φ‖B + (1 +M)c2 +

Mbα‖p‖∞
Γ(α + 1)

. (4.29)

Then there exists a constant d = d(Λ) such that ‖z‖b ≤ d. This shows that the set E is bounded.
As a consequence of the Leray-Schauder Theorem, we deduce that the operator P has a fixed
point which gives rise to a mild solution of the problem (4.15).

4.4. Example

To illustrate the previous results, we consider the following model arising in population
dynamics:

∂α

∂tα

[
v(t, ξ) −

∫0

−∞
K1(θ)g1(t, v(t + θ, ξ))dθ

]

=
∂2

∂ξ2

[
v(t, ξ) −

∫0

−∞
K1(θ)g1(t, v(t + θ, ξ))dθ

]

+
∫0

−∞
K2(θ)g2(t, v(t + θ, ξ))dθ for t ∈ J, ξ ∈ [0, π], α ∈ (0, 1]

v(t, 0) −
∫0

−∞
K1(θ)g1(t, v(t + θ, 0))dθ = 0 for t ∈ J = [0, b],

v(t, π) −
∫0

−∞
K1(θ)g1(t, v(t + θ, π))dθ = 0 for t ∈ J,

v(θ, ξ) = v0(θ, ξ) for −∞ < θ ≤ 0, ξ ∈ [0, π],

(4.30)
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where K1, K2 : (−∞, 0] → R and g1, g2 : J × R → R and v0 : (−∞, 0] × 0, π] → R are
continuous functions. Let E = L2([0, π];R) and consider the operator

A : D(A) ⊆ E −→ E (4.31)

defined by

D(A) =
{
y ∈ E, y, y′ are absolutely continuous with y′′ ∈ E and y(0) = y(π) = 0

}
,

Ay = y′′.
(4.32)

It is well known that A generates a C0-semigroup (see [29]). For the phase space B,
we choose the well-known space BUC(R−, E): the space of bounded uniformly continuous
functions endowed with the following norm:

‖ϕ‖ = sup
θ≤0

|ϕ(θ)| for ϕ ∈ B. (4.33)

If we put for ϕ ∈ BUC(R−, E) and ξ ∈ [0, π]

h(t, ϕ)(ξ) =
∫0

−∞
K1(θ)g1(t, ϕ(θ)(ξ))dθ,

f(t, ϕ)(ξ) =
∫0

−∞
K2(θ)g2(t, ϕ(θ)(ξ))dθ,

(4.34)

then (4.30) take the abstract form (4.15). Under appropriate conditions on g1, g2, the problem
(4.30) has by Theorem 4.5 a solution.

5. Semilinear Functional Differential Inclusions

Differential inclusions are generalization of differential equations, therefore all problems
considered for differential equations, that is, existence of solutions, continuation of solutions,
dependence on initial conditions and parameters, are present in the theory of differential
inclusions. Since a differential inclusion usually has many solutions starting at a given point,
new issues appear, such as investigation of topological properties of the set of solutions, and
selection of solutions with given properties.

Functional differential inclusions with fractional order are first considered by El Sayed
and Ibrahim [59]. Very recently Benchohra et al. [49], and Ouahab [60] have considered some
classes of ordinary functional differential inclusions with delay, and in [6, 61] Agarwal et al.
considered a class of boundary value problems for differential inclusion involving Caputo
fractional derivative of order α ∈ (2, 3]. Chang and Nieto [62] considered a class of fractional
differential inclusions of order α ∈ (1, 2]. Here we continue this study by considering partial
functional differential inclusions involving the Riemann-Liouville derivative of order α ∈
(0, 1]. The both cases of convex valued and nonconvex valued of the right-hand side are
considered, and where the delay is finite as well as infinite. Our approach is based on the
C0-semigroups theory combined with some suitable fixed point theorems.
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In the following, wewill be concernedwith fractional semilinear functional differential
inclusions with finite delay of the form

Dαy(t) −Ay(t) ∈ F(t, yt), t ∈ J := [0, b],

y(t) = φ(t), t ∈ [−r, 0],
(5.1)

where Dα is the standard Riemann-Liouville fractional derivative. F : J × C([−r, 0], E) →
P(E) is a multivalued function. P(E) is the family of all nonempty subsets of E. A : D(A) ⊂
E → Eis a densely defined (possibly unbounded) operator generating a strongly continuous
semigroup {T(t)}t≥0 of bounded linear operators from E into E. φ : [−r, 0] → E is a given
continuous function such that φ(0) = 0 and (E, | · |) is a real separable Banach spaces. For
ψ ∈ C([−r, 0], E) the norm of ψ is defined by

‖ψ‖C = sup{|ψ(θ)|, θ ∈ [−r, 0]}. (5.2)

For φ ∈ C([−r, b], E) the norm of φ is defined by

‖φ‖D = sup{|φ(θ)|, θ ∈ [−r, b]}. (5.3)

Recall that for each y ∈ C([−r, b], E) the set

SF,y =
{
v ∈ L1(J, E) : v(t) ∈ F(t, yt) for a.e. t ∈ J

}
(5.4)

is known as the set of selections of the multivalued F.

Definition 5.1. One says that a continuous function y : [−r, b] → E is a mild solution of
problem (5.1) if there exists f ∈ SF,y such that y(t) = φ(t), t ∈ [−r, 0], and

y(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds, t ∈ J. (5.5)

In the following, we give our first existence result for problem (5.1) with a convex
valued right-hand side. Our approach is based upon Theorem 2.10.

Theorem 5.2. Assume the following.

(H19) F : J × C([−r, 0], E) → Pcv,cp(E) is Carathéodory.

(H20) The semigroup {T(t)}t∈J is compact for t > 0.

(H21) There exist functions p, q ∈ C(J,R+) such that

‖F(t, u)‖P(E) ≤ p(t) + q(t)‖u‖C, for a.e. t ∈ J, and each u ∈ C([−r, 0], E). (5.6)

Then the problem (5.1) has at least one mild solution.
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Proof. Consider the multivalued operator

A : C([−r, b], E) −→ P(C([−r, b], E)) (5.7)

defined byA(y) := {h ∈ C([−r, b], E)} such that

h(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), if t ∈ [−r, 0],
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds, if t ∈ J,

(5.8)

where f ∈ SF,y. It is obvious that fixed points of A are mild solutions of problem (5.1). We
will show thatA is a completely continuous multivalued operator, u.s.c. with convex values.

It is obvious that A is convex valued for each y ∈ C([−r, b], E) since F has convex
values.

To show that A maps bounded sets into bounded sets in C([−r, b], E) it is enough to
show that there exists a positive constant δ such that for each h ∈ A(y), y ∈ Bρ = {y ∈
C(J, E) : ‖y‖∞ ≤ ρ} one has h ∈ Bδ. Indeed, if h ∈ A(y), then there exists f ∈ SF,y such that
for each t ∈ J we have

h(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds. (5.9)

Using (H21) we have for each t ∈ J ,

|h(t)| ≤ Mbα

Γ(α + 1)
(‖p‖∞ + ρ‖q‖∞

)
=: δ. (5.10)

Then for each h ∈ A(Bρ)we have ‖h‖ ≤ δ.
Now let h ∈ A(y) for y ∈ Bρ, and let τ1, τ2 ∈ J , τ2 > τ1. If ε > 0 and ε ≤ τ1 ≤ τ2 we have

∣∣h(τ2) − h(τ1)∣∣ ≤ 1
Γ(α)

∣∣∣∣∣
∫ τ1−ε
0

[(
τ2 − s

)α−1
T
(
τ2 − s

) − (τ1 − s)α−1T(τ1 − s)]f(s)ds
∣∣∣∣∣

+
1

Γ(α)

∣∣∣∣∣
∫ τ1
τ1−ε

[(
τ2 − s

)α−1
T
(
τ2 − s

) − (τ1 − s)α−1T(τ1 − s)]f(s)ds
∣∣∣∣∣

+
1

Γ(α)

∣∣∣∣∣
∫ τ2
τ1

(
τ2 − s

)α−1
T
(
τ2 − s

)
f(s)ds

∣∣∣∣∣,

(5.11)

where f ∈ SF,y. Using the following semigroup identities

T
(
τ2 − s

)
= T
(
τ2 − τ1 + ε

)
T(τ1 − ε − s

)
,

T
(
τ1 − s

)
= T
(
τ1 − ε − s

)
T(ε),

(5.12)
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we get

∣∣h(τ2) − h(τ1)∣∣ ≤M‖p‖∞ + ρ‖q‖∞
Γ(α)

×
(∫ τ1−ε

0

[(
τ2 − s

)α−1 − (τ1 − s)α−1]ds +M
∫ τ1
τ1−ε

[(
τ2 − s

)α−1 − (τ1 − s)α−1]ds

+M‖T(τ2 − τ1 + ε)−T(ε)‖B(E)
∫ τ1
0

(
τ2 − s

)α−1
ds+M

∫ τ2
τ1

(
τ2 − s

)α−1
ds

)
.

(5.13)

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to zero,
since T(t) is a strongly continuous operator and the compactness of T(t) for t > 0 implies the
continuity in the uniform operator topology [29]. Let 0 < t < b be fixed and let ε be a real
number satisfying 0 < ε < t. For y ∈ Bρ we define

hε(t) =
T(ε)
Γ(α)

∫ t−ε
0

(t − s − ε)α−1T(t − s − ε)f(s)ds, (5.14)

where f ∈ SF,y. Since T(t) is a compact operator, the set

Hε(t) =
{
hε(t) : hε ∈ A(y)

}
(5.15)

is precompact in E for every ε, 0 < ε < t.Moreover, for every h ∈ A(y) we have

∣∣h(t) − hε(t)∣∣ ≤M‖p‖∞ + ρ‖q‖∞
Γ(α)

(
tα − (t − ε)α). (5.16)

Therefore, the set H(t) = {h(t) : h ∈ A(y)} is totally bounded. Hence H(t) = {h(t) : h ∈
A(Bρ)} is precompact in E.

As a consequence of the Arzelá-Ascoli theorem we can conclude that the multivalued
operator A is completely continuous.

Now we show that the operator A has closed graph. Let yn → y∗, hn ∈ A(yn), and
hn → h∗. We will show that h∗ ∈ A(y∗).

hn ∈ A(yn)means that there exists fn ∈ SF,yn such that

hn(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)fn(s)ds, t ∈ J. (5.17)

We must show that there exists f∗ ∈ SF,y∗ such that, for each t ∈ J

h∗(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f∗(s)ds. (5.18)
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Since F(·, ·) has compact values, there exists a subsequence fnj (·) such that

fnj (·) −→ f∗(·) as j −→ ∞,

f∗(t) ∈ F
(
t, y∗(t)

)
a.e. t ∈ J.

(5.19)

Since F(t, ·) is u.s.c., then for every ε > 0 (particularly for (Γ(α + 1)/Mbα)ε), there exist n0 =
n0(ε) ≥ 0 such that for every n ≥ n0, we have

hn(t) ∈ F
(
t, yn(t)

) ⊂ F(t, y∗(t)) + εB(0, 1), a.e. t ∈ J, (5.20)

and hence,

∣∣fnj (t) − f∗(t)∣∣ ≤ Γ(α + 1)
Mbα

ε, a.e. t ∈ J. (5.21)

Then for each t ∈ J

∣∣hn(t) − h∗(t)∣∣ ≤ M

Γ(α)

∫ t
0
(t − s)α−1∣∣fn(s) − f∗(s)∣∣ds

≤ Mbα

Γ(α + 1)
∥∥fn − f∗∥∥∞.

(5.22)

Hence,

∥∥hn − h∗∥∥∞ < ε. (5.23)

Now it remains to show that the set

E = {y ∈ C([−r, b], E) : λy ∈ Ay for some λ > 1} (5.24)

is bounded. Let y ∈ E be any element, then there exists f ∈ SF,y such that

y(t) = λ−1
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds. (5.25)

Then by (H20) and (H21) for each t ∈ J we have

|y(t)| ≤ Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1∥∥ys∥∥Cds. (5.26)

Consider the function defined by

μ(t) = max{|y(s)| : −r ≤ s ≤ t}, t ∈ J. (5.27)
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Let t∗ ∈ [−r, t] such that μ(t) = |y(t∗)|, If t∗ ∈ [0, b] then we have, for t ∈ J, (note t∗ ≤ t)

μ(t) ≤ Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1μ(s)ds. (5.28)

If t∗ ∈ [−r, 0] then μ(t) = ‖φ‖C and the previous inequality holds.
By Lemma 2.7 we have

μ(t) ≤ Mbα‖p‖∞
Γ(α + 1)

(
1 + k

Mbα‖q‖∞
Γ(α + 1)

)
=: Λ. (5.29)

Taking the supremum over t ∈ J we get

‖y‖C ≤ Λ. (5.30)

Hence

‖y‖D = max
{‖φ‖C,Λ}, (5.31)

and so, the set E is bounded. Consequently the multivalued operator A has a fixed point
which gives rise to a mild solution of problem (5.1) on [−r, b].

Now we will be concerned with existence results for problem (5.1) with nonconvex
valued right-hand side. Our approach is based on the fixed point theorem for contraction
multivalued maps due to Covitz and Nadler Jr. [35].

Theorem 5.3. Assume that (H19) holds.

(H22) There exists l ∈ L1(J,R+) such that

Hd(F(t, x), F(t, y)) ≤ l(t)‖x − y‖C a.e. t ∈ J, ∀x, y ∈ C([−r, 0], E), (5.32)

with

d(0, F(t, 0)) ≤ l(t) for a.e. t ∈ J. (5.33)

If

MIα0 l(b) < 1, (5.34)

then the problem (5.1) has at least one mild solution on [−r, b].
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Proof. First we will prove that A(y) ∈ Pcl(C([−r, b], E)) for each y ∈ C([−r, b], E). (yn)n≥0 ∈
A(y) such that yn → ỹ in C([−r, b], E). Then ỹ ∈ C([−r, b], E) and there exists fn ∈ SF,y such
that for each t ∈ J

yn(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)fn(s)ds. (5.35)

Using the compactness property of the values of F and the second part of (H22) we may
pass to a subsequence if necessary to get that fn converges weakly to f ∈ L1

ω(J, E) (the space
endowed with the weak topology). From Mazur’s lemma (see [63]) there exists

f ∈ conv
{
fn(t) : n ≥ 1

}
, (5.36)

then there exists a subsequence {fn(t) : n ≥ 1} in conv{fn(t) : n ≥ 1}, such that fn converges
strongly to f in L1(J, E) ⇒ f ∈ L1(J, E). Then for each t ∈ J ,

yn(t) −→ ỹ(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds. (5.37)

So, ỹ ∈ A(y).
Now Let y1, y2 ∈ C([−r, b], E) and h1 ∈ A(y1). Then there exists f1 ∈ SF,y1 such that

h1(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f1(s)ds, t ∈ J. (5.38)

Then from (H22) there is ω ∈ SF,y2 such that

∣∣f1(t) −ω∣∣ ≤ l(t)∥∥y1t − y2t∥∥C, t ∈ J. (5.39)

Consider the multivalued operatorU : J → P(E) defined by

U(t) =
{
ω ∈ E :

∣∣f1(t) −ω∣∣ ≤ l(t)∥∥y1t − y2t∥∥C}. (5.40)

Since the multivalued operator V (t) = U(t) ∩ F(t, y2t) is measurable (see [64, proposition
III4]) there exists f2(t) a measurable selection for V . So, f2(t) ∈ F(t, y2t) and

∣∣f1(t) − f2(t)∣∣ ≤ l(t)∥∥y1t − y2t∥∥C, t ∈ J. (5.41)

Let us define for each t ∈ J

h2(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f1(s)ds. (5.42)
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Then we have

∣∣h1(t) − h2(t)∣∣ ≤ M

Γ(α)

∫ t
0
(t − s)α−1∣∣f1(s) − f2(s)∣∣ds

≤ M

Γ(α)

∫ t
0
(t − s)α−1l(s)∥∥y1s − y2s∥∥Cds

≤MIα0 l(b)
∥∥y1 − y2∥∥∞.

(5.43)

For t ∈ [−r, 0], the previous inequality is satisfied. Taking the supremum over t we get

∥∥h1 − h2∥∥D ≤MIα0 l(b)
∥∥y1 − y2∥∥D. (5.44)

By analogous relation, obtained by interchanging the roles of y1 and y2, it follows that

Hd

(A(y1),A(y2)) ≤MIα0 l(b)
∥∥y1 − y2∥∥D. (5.45)

By (5.34) A is a contraction, and hence Theorem 2.8 implies that A has a fixed point which
gives rise to a mild solution of problem (5.1).

In the following, we will extend the previous results to the case when the delay is
infinite. More precisely we consider the following problem:

Dαy(t) −Ay(t) ∈ F(t, yt), t ∈ J := [0, b],

y0 = φ ∈ B,
(5.46)

where Dα is the standard Riemann-Liouville fractional derivative. F : J × B → P(E) is a
multivalued function. B is the phase space [41], A : D(A) ⊂ E → E is the infinitesimal
generator of a strongly continuous semigroup {T(t)}t≥0, φ : B → E a continuous function
with φ(0) = 0 and (E, | · |) a real Banach space. Consider the following space:

Bb =
{
y : (−∞, b] → E : y/J ∈ C(J, E), y0 ∈ B}, (5.47)

where y/J is the restriction of y to J. Let ‖ · ‖b be the seminorm in Bb defined by

‖y‖b =
∥∥y0∥∥B + sup{|y(s)| : 0 ≤ s ≤ b}, y ∈ Bb. (5.48)

Definition 5.4. One says that a function y ∈ Bb is a mild solution of problem (5.46) if y0 = φ
and there exists f ∈ SF,y such that

y(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds, t ∈ J. (5.49)

In the following, we give an existence result for problem (5.46) with convex valued
right-hand side. Our approach is based upon Theorem 2.10.
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Theorem 5.5. Assume the following.

(H23) F : J × B → Pcv,cp(B) is Carathéodory.
(H24) The semigroup {T(t)}t∈J is compact for t > 0.

(H25) There exist functions p, q ∈ C(J,R+) such that

‖F(t, u)‖P(E) ≤ p(t) + q(t)‖u‖B, for a.e. t ∈ J, and each u ∈ B. (5.50)

Then the problem (5.46) has at least one mild solution.

Proof. Consider the operator

N : Bb −→ P(Bb

)
(5.51)

defined by

N(y)(t) =

⎧⎪⎨
⎪⎩h ∈ Bb : h(t) =

⎧⎪⎨
⎪⎩
φ(t), t ∈ (−∞, 0],
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds, t ∈ J

⎫⎪⎬
⎪⎭, (5.52)

where f ∈ SF,y.
For φ ∈ B, we define the function

x(t) =

{
φ(t), t ∈ (−∞, 0],
0, t ∈ J. (5.53)

Then x ∈ Bb. Set

y(t) = z(t) + x(t). (5.54)

It is obvious that y satisfies (5.49) if and only if z satisfies z0 = 0 and

z(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds, t ∈ J. (5.55)

Let

B0
b =

{
z ∈ Bb : z0 = 0

}
. (5.56)

For any z ∈ B0
b
, we have

‖z‖b =
∥∥z0∥∥B + sup{|z(s)| : 0 ≤ s ≤ b} = sup{|z(s)| : 0 ≤ s ≤ b}. (5.57)



Advances in Difference Equations 35

Thus (B0
b, ‖ · ‖b) is a Banach space. Let the operator A : B0

b → (B0
b) defined by

A(z)(t) =

{
h ∈ B0

b : h(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds, t ∈ J

}
, (5.58)

where f ∈ L1(J, E) and f(t) ∈ F(t, zt + xt) for a.e. t ∈ J .
As in Theorem 5.2, we can show that the multivalued operator A is completely

continuous, u.s.c. with convex values. It remains to show that the set

E =
{
u ∈ B0

b : λu ∈ Au for some λ > 1
}

(5.59)

is bounded.
Let z ∈ E be any element, then there exists a selection f ∈ L1(J, E) and f(t) ∈ F(t, zt +

xt) for a.e. t ∈ J such that

λz(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds, for some λ > 1. (5.60)

Then for each t ∈ J we have

|z(t)| ≤ M

Γ(α)

∫ t
0
(t − s)α−1∥∥F(s, zs + xs)∥∥P(E)ds

≤ Mbα‖p‖∞
Γ(α + 1)

+
M‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1∥∥zs + xs∥∥Bds.

(5.61)

Following the proof of Theorem 3.6, we can show that the set E is bounded. Consequently, the
multivalued operatorA has a fixed point. ThenN has one, witch gives rise to a mild solution
of problem (5.46).

Nowwe give an existence result for problem (5.46)with nonconvex valued right-hand
side by using the fixed point Theorem 2.8.

Theorem 5.6. Assume that (H23) holds. Then

(H26) There exists l ∈ L1(J,R+) such that

Hd(F(t, x), F(t, y)) ≤ l(t)‖x − y‖B a.e. t ∈ J, ∀x, y ∈ B, (5.62)

with

d(0, F(t, 0)) ≤ l(t) for a.e. t ∈ J. (5.63)
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If

MKbI
α
0 l(b) < 1, (5.64)

then the problem (5.46) has at least one mild solution on (−∞, b].

Proof. As the previous theorem and following steps of the proof of Theorem 5.3.

6. Perturbed Semilinear Differential Equations and Inclusions

In this section, we will be concerned with semilinear functional differential equations and
inclusion of fractional order andwhere a perturbed term is considered. Our approach is based
upon Burton-Kirk fixed point theorem (Theorem 2.11).

First, consider equations of the form

Dαy(t) = Ay(t) + f
(
t, yt

)
+ g
(
t, yt

)
, t ∈ J := [0, b],

y(t) = φ(t), t ∈ [−r, 0].
(6.1)

Definition 6.1. One says that a continuous function y : [−r, b] → E is a mild solution of
problem (6.1) if y(t) = φ(t), t ∈ [−r, 0], and

y(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)[f(s, ys) + g(s, ys)]ds, t ∈ J. (6.2)

Our first main result in this section reads as follows.

Theorem 6.2. Assume that the following hypotheses hold.

(H27) The semigroup {T(t)}t∈J is compact for t > 0.

(H28) There exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖C, for a.e. t ∈ J, and each u ∈ C([−r, 0], E). (6.3)

(H29) There exists a nonnegative constant k such that

|g(t, u) − g(t, v)| ≤ k‖u − v‖C, for t ∈ J and every u, v ∈ C([−r, 0], E), (6.4)

Mkbα

Γ(α + 1)
< 1, (6.5)

then the problem (6.1) has at least one mild solution on [−r, b].

Proof. Transform the problem (6.1) into a fixed point problem. Consider the two operators

F,G : C([−r, b], E) −→ C([−r, b], E) (6.6)
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defined by

F(y)(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), t ∈ [−r, 0],
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds, t ∈ J,

G(y)(t) =

⎧⎪⎪⎨
⎪⎪⎩
0, t ∈ [−r, 0],
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)g(s, ys)ds, t ∈ J.

(6.7)

Then the problem of finding the solution of IVP (6.1) is reduced to finding the solution of the
operator equation F(y)(t) +G(y)(t) = y(t), t ∈ [−r, b].Wewill show that the operators F and
G satisfies all conditions of Theorem 2.11.

From Theorem 3.6, the operator F is completely continuous. We will show that the
operator G is a contraction. Let y, z ∈ C([−r, b], E), then for each t ∈ [−r, b]

|G(y)(t) −G(z)(t)| ≤ M

Γ(α)

∫ t
0
(t − s)α−1∣∣g(s, ys) − g(s, zs)∣∣ds

≤ Mk

Γ(α)

∫ t
0
(t − s)α−1‖ys − zs‖Cds

≤ Mk

Γ(α)
‖y − z‖∞

∫ t
0
(t − s)α−1ds

≤ Mkbα

αΓ(α)
‖y − z‖∞.

(6.8)

Taking the supremum over t,

‖G(y) −G(z)‖∞ ≤ Mkbα

Γ(α + 1)
‖y − z‖∞, (6.9)

which implies by (6.5) that G is a contraction. Now, it remains to show that the set

E =
{
y ∈ C(J, E) : y = λF(y) + λG

(
y

λ

)
for some 0 < λ < 1

}
(6.10)

is bounded.
Let y ∈ E be any element. Then, for each t ∈ J ,

y(t) = λ
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds

+ λ
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)g

(
s,
ys
λ

)
ds.

(6.11)
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Then

|y(t)| ≤ λM 1
Γ(α)

∫ t
0
(t − s)α−1∣∣f(s, ys)∣∣ds

+ λM
1

Γ(α)

∫ t
0
(t − s)α−1

∣∣∣∣g
(
s,
ys
λ

)
− g(s, 0)

∣∣∣∣ds

+ λM
1

Γ(α)

∫ t
0
(t − s)α−1|g(s, 0)|ds

≤M bα‖p‖∞
Γ(α + 1)

+M
‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1‖ys‖Cds

+M
k

Γ(α)

∫ t
0
(t − s)α−1‖ys‖Cds +M bασ

Γ(α + 1)
,

(6.12)

where

σ = sup
s∈J

|g(s, 0)|. (6.13)

We consider the function defined by

μ(t) = max{|y(s)| : −r ≤ s ≤ t}, t ∈ J. (6.14)

Let t∗ ∈ [−r, t] such that μ(t) = |y(t∗)|. If t∗ ∈ [0, b] then by the previous inequality we have,
for t ∈ J, (note t∗ ≤ t)

μ(t) ≤M bα‖p‖∞
Γ(α + 1)

+M
bασ

Γ(α + 1)
+M

1
Γ(α)

(
k + ‖q‖∞

)∫ t
0
(t − s)α−1μ(s)ds. (6.15)

If t∗ ∈ [−r, 0] then μ(t) = ‖φ‖C and the previous inequality holds.
By Lemma 2.7, there exists a constant K = K(α) such that we have

μ(t) ≤M bα‖p‖∞
Γ(α + 1)

+M
bασ

Γ(α + 1)

+M
K

Γ(α)
(
k + ‖q‖∞

)∫ t
0
(t − s)α−1

(
M

bα‖p‖∞
Γ(α + 1)

+M
bασ

Γ(α + 1)

)
ds

≤
[
M

bα

Γ(α + 1)
(
σ + ‖p‖∞

)][
1 +M

Kbα

Γ(α + 1)
(
k + ‖q‖∞

)]

=: Λ.

(6.16)

Hence,

‖y‖∞ ≤ max
{‖φ‖C,Λ} ∀y ∈ E. (6.17)
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This shows that the set E is bounded. as a consequence of the Theorem 2.11, we deduce that
the operator F +G has a fixed point which gives rise to a mild solution of the problem (6.1).

Now we consider multivalued functional differential equations of the form

Dαy(t) −Ay(t) ∈ F(t, yt) +G(t, yt), t ∈ J := [0, b],

y(t) = φ(t), t ∈ [−r, 0].
(6.18)

Definition 6.3. One says that a continuous function y : [−r, b] → E is a mild solution of
problem (6.18) if y(t) = φ(t), t ∈ [−r, 0], and there exist f ∈ SF,y and g ∈ SG,y such that

y(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)[f(s) + g(s)]ds, t ∈ J. (6.19)

Theorem 6.4. Assume that the following hypotheses hold.

(H30) The semigroup {T(t)}t∈J is compact for t > 0.

(H31) The multifunction t → G(t, x) is measurable, convex valued and integrably bounded for
each x ∈ C([−r, 0], E).

(H32) There exists a function k ∈ C(J, R+) such that

Hd(G(t, x), G(t, y)) ≤ k(t)‖x − y‖ a.e. t ∈ J, ∀x, y ∈ C([−r, 0], E), (6.20)

with

d(0, G(t, 0)) ≤ k(t) for a.e. t ∈ J,
MIα0 k(b) < 1.

(6.21)

(H33) F : J × C([−r, 0], E) → Pcv,cp(E) is Carathéodory.

(H34) There exist functions p, q ∈ C(J,R+) such that

‖F(t, u)‖P(E) ≤ p(t) + q(t)‖u‖C, for a.e. t ∈ J, and each u ∈ C([−r, 0], E). (6.22)

Then IVP (6.18) has at least one mild solution on [−r, b].

Proof. Consider the two multivalued operators

A : C([−r, b], E) −→ P(C([−r, b], E)) (6.23)
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defined byA(y) := {h ∈ C([−r, b], E)} such that

h(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), if t ∈ [−r, 0],
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds, if t ∈ J,

B : C([−r, b], E) −→ P(C([−r, b], E))

(6.24)

defined by B(y) := {h ∈ C([−r, b], E)} such that

h(t) =

⎧⎪⎪⎨
⎪⎪⎩
0, if t ∈ [−r, 0],
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)g(s)ds, if t ∈ J,

(6.25)

where f ∈ SF,y and g ∈ SG,y. We will show that the operator B is closed, convex, and bounded
valued and it is a contraction. Let (yn)n≥0 ∈ B(y) such that yn → ỹ in C(J, E). Using (H31),
we can show that the values of Niemysky operator SG,y are closed in L1(J, E), and hence B(y)
is closed for each y ∈ C(J, E).

Now let h1, h2 ∈ B(y), then there exists g1, g2 ∈ SG,y such that, for each t ∈ J we have

hi(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)gi(s)ds, i = 1, 2. (6.26)

Let 0 ≤ δ ≤ 1. Then, for each t ∈ J , we have

(
δh1 + (1 − δ)h2

)
(t) =

1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)[δg1(s) + (1 − δ)g2(s)

]
ds. (6.27)

Since G(t, y) has convex values, one has

δh1 + (1 − δ)h2 ∈ B(y), (6.28)

and hence B(y) is convex for each y ∈ C(J, E).
Let h ∈ B(y) be any element. Then, there exists g ∈ SG,y such that

h(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)g(s)ds. (6.29)

By (H31), we have for all t ∈ J

|h(t)| ≤ M

Γ(α)

∫b
0
(t − s)α−1ω(s)ds

=MIα0ω(b),

(6.30)
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where ω is from Definition 2.4. Then ‖h‖∞ ≤ MIα0ω(b) for all h ∈ B(y). Hence B(y) is a
bounded subset of C(J, E).

As in Theorem 5.3, we can easily show that themultivalued operatorB is a contraction.
Now, as in Theorem 5.2 we can show that the operator A satisfies all the conditions of
Theorem 2.12.

It remains to show that the set

E = {y ∈ C(J, E) | y ∈ λAy + λBy, 0 < λ < 1} (6.31)

is bounded.
Let y ∈ E be any element. Then there exists f ∈ SF,y and g ∈ SG,y such that for each

t ∈ J ,

y(t) = λ
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s)ds

+ λ
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)g(s)ds.

(6.32)

Then

|y(t)| ≤M bα‖p‖∞
Γ(α + 1)

+M
‖q‖∞
Γ(α)

∫ t
0
(t − s)α−1∥∥ys∥∥Cds

+M
‖k‖∞
Γ(α)

∫ t
0
(t − s)α−1∥∥ys∥∥Cds +M bαΔ

Γ(α + 1)
,

(6.33)

where

Δ = sup
s∈J

|G(s, 0)|. (6.34)

We consider the function defined by

μ(t) = max{|y(s)| : −r ≤ s ≤ t}, t ∈ J. (6.35)

Let t∗ ∈ [−r, t] such that μ(t) = |y(t∗)|. If t∗ ∈ [0, b] then by the previous inequality we have,
for t ∈ J, (note t∗ ≤ t)

μ(t) ≤M bα‖p‖∞
Γ(α + 1)

+M
bαΔ

Γ(α + 1)

+M
1

Γ(α)
(‖k‖∞ + ‖q‖∞

)∫ t
0
(t − s)α−1μ(s)ds.

(6.36)

If t∗ ∈ [−r, 0] then μ(t) = ‖φ‖C and the previous inequality holds.
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By Lemma 2.7, there exists a constant K = K(α) such that we have

μ(t) ≤
[
M

bα

Γ(α + 1)
(‖p‖∞ + Δ)

][
1 +M

Kbα

Γ(α + 1)
(‖k‖∞ + ‖q‖∞

)]
=: Λ. (6.37)

Hence

‖y‖∞ ≤ max
{‖φ‖C,Λ} ∀y ∈ E. (6.38)

This shows that the set E is bounded. As a result, the conclusion (ii) of Theorem 2.12 does not
hold. Hence, the conclusion (i) holds and consequently A(y) + B(y) has a fixed point which
is a mild solution of problem (6.18).

7. Some Existence Results in Ordered Banach Spaces

In this section, we present some existence results in ordered Banach spaces using the method
of upper and lower mild solutions. Before stating our main results let us introduce some
preliminaries.

Definition 7.1. A nonempty closed subset C of a Banach space X is said to be a cone if

(i) C + C ⊂ C,
(ii) λC ⊂ C for λ > 0,

(iii) {−C} ∩ {C} = {0}.

A cone C is called normal if the norm ‖ · ‖ is semimonotone on C, that is, there exists a
constantN > 0 such that ‖x‖ ≤ N‖y‖, whenever x ≤ y. We equip the space X = C(J, E) with
the order relation ≤ induced by a regular cone C in E, that is for all y, y ∈ X : y ≤ y if and
only if y(t) − y(t) ∈ C for all t ∈ J. In what follows will assume that the cone C is normal.
Cones and their properties are detailed in [65, 66]. Let a, b ∈ X be such that a ≤ b. Then, by
an order interval [a, b]we mean a set of points in X given by

[a, b] = {x ∈ X | a ≤ x ≤ b}. (7.1)

Definition 7.2. Let X be an ordered Banach space. A mapping T : X → X is called increasing
if T(x) ≤ T(y) for any x, y ∈ X with x ≤ y. Similarly, T is called decreasing if T(x) ≥ T(y)
whenever x ≤ y.

Definition 7.3. A function f(t, x) is called increasing in x for t ∈ J , if f(t, x) ≤ f(t, y) for each
t ∈ J for all x, y ∈ X with x ≤ y. Similarly f(t, x) is called decreasing in x for t ∈ J , if
f(t, x) ≥ f(t, y) for each t ∈ J for all x, y ∈ E with x ≤ y.

Now suppose that E is an ordered Banach space and reconsider the initial value
problem (3.1) and (3.2)with the same data.
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Definition 7.4. One says that a continuous function v : [−r, b] → E is a lower mild solution of
problem (3.1) and (3.2) if v(t) = φ(t), t ∈ [−r, 0], and

v(t) ≤ 1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, vs)ds, t ∈ J. (7.2)

Similarly an upper mild solution w of IVP (3.1) and (3.2) is defined by reversing the order.

The following fixed point theorem is crucial for our existence result.

Theorem 7.5 (see [66]). Let K be a normal cone in a partially ordered Banach space X. Let F be
increasing on the interval [a, b] and transform [a, b] into itself, that is, F(a) ≥ a and F(b) ≤ b.
Assume further that F is continuous and completely continuous. Then F has at least one fixed point
x ∈ (a, b).

Our first main result reads as follows .

Theorem 7.6. Assume that assumptions (H2)-(H3) hold. Assume moreover that

(H35) The function f(t, u) is increasing in u for each t ∈ J .
(H36) T(t) is order-preserving, that is, T(t)(v) ≥ 0 whenever v ≥ 0.

(H37) The IVP (3.1) and (3.2) has a lower mild solution v and an upper mild solution w with
v ≤ w.

Then IVP (3.1) and (3.2) has at least one mild solution y on [−r, b] with v ≤ y ≤ w.

Proof. It can be shown, as in the proof of Theorem 3.2, that F is continuous and completely
continuous on [v,w]. We will show that F is increasing on [v,w]. Let y, y ∈ [a, b] be such
that y ≤ y. Then by (H35),(H36), we have for each t ∈ J

F(y)(t) =
1

Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds

≤ 1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)f(s, ys)ds

= F(y)(t).

(7.3)

Therefore F is increasing on [v,w]. Finally, let y ∈ [v,w] be any element. By (H37), we
deduce that

v ≤ F(v) ≤ F(y) ≤ F(w) ≤ w, (7.4)

which shows that F(y) ∈ [v,w] for all y ∈ [v,w]. Thus, the functions F satisfies all conditions
of Theorem 7.5, and hence IVP (3.1) and (3.2) has a mild solution on [−r, b] belonging to the
interval [v,w].

Now reconsider the perturbed initial value problem (6.1). To state our second main
result in this section we use the following fixed point theorem due to Dhage and Henderson.
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Theorem 7.7 (see [67]). Let [a, b] be an order interval in a Banach space and let B1, B2 : [a, b] → X
be two functions satisfying

(a) B1 is a contraction,

(b) B2 is completely continuous,

(c) B1 and B2 are strictly monotone increasing,

(d) B1(x) + B2(x) ∈ [a, b], ∀x ∈ [a, b].

Further if the cone K in X is normal, then the equation x = B1(x) + B2(x) has at least fixed point x∗
and a greatest fixed point x∗ ∈ [a, b]. Moreover x∗ = limn→∞ xn and x∗ = limn→∞ yn, where {xn}
and {yn} are the sequences in [a, b] defined by

xn+1 = B1
(
xn
)
+ B2

(
xn
)
, x0 = a, yn+1 = B1

(
yn
)
+ B2

(
yn
)
, y0 = b. (7.5)

We need the following definitions in the sequel.

Definition 7.8. One says that a continuous function v : [−r, b] → E is a lower mild solution of
problem (6.1) y(t) ≤ φ(t), t ∈ [−r, 0], and

y(t) ≤ 1
Γ(α)

∫ t
0
(t − s)α−1T(t − s)[f(s, ys) + g(s, ys)]ds, t ∈ J. (7.6)

Similarly an upper mild solution w of IVP (6.1) is defined by reversing the order.

Theorem 7.9. Assume that assumptions (H27)–(H29) hold. Suppose moreover that

(H38) The functions f(t, y) and g(t, y) are increasing in y for each t ∈ J .
(H39) T(t) is order-preserving, that is, T(t)(v) ≥ 0 whenever v ≥ 0.

(H40) The IVP (6.1) has a lower mild solution v and an upper mild solution w with v ≤ w.

Then IVP (6.1) has a minimal and a maximal mild solutions on [−r, b].
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