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1. Introduction

This paper is concerned with the long-time behavior of the following non-autonomous lattice
systems:

u̇i + νi(Au)i + λiui + fi(ui, (Bu)i) + αivi = ki(t), i ∈ Z, t > τ, (1.1)

v̇i + δivi − βiui = gi(t), i ∈ Z, t > τ, (1.2)

with initial conditions

ui(τ) = ui,τ , vi(τ) = vi,τ , i ∈ Z, τ ∈ R, (1.3)

where Z is the integer lattice; νi, λi, δi > 0, αiβi > 0, fi is a nonlinear function satisfying
fi ∈ C1(R × R,R), i ∈ Z; A is a positive self-adjoint linear operator; k(t) = (ki(t))i∈Z

, g(t) =
(gi(t))i∈Z

belong to certain metric space, which will be given in the following.
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Lattice dynamical systems occur in a wide variety of applications, where the
spatial structure has a discrete character, for example, chemical reaction theory, electrical
engineering, material science, laser, cellular neural networks with applications to image
processing and pattern recognition; see [1–4]. Thus, a great interest in the study of infinite
lattice systems has been raising. Lattice differential equations can be considered as a spatial
or temporal discrete analogue of corresponding partial differential equations on unbounded
domains. It is well known that the long-time behavior of solutions of partial differential
equations on unbounded domains raises some difficulty, such as well-posedness and lack of
compactness of Sobolev embeddings for obtaining existence of global attractors. Authors in
[5–7] consider the autonomous partial equations on unbounded domain in weighted spaces,
using the decaying of weights at infinity to get the compactness of solution semigroup. In
[8–10], asymptotic compactness of the solutions is used to obtain existence of global compact
attractors for autonomous system on unbounded domain. Authors in [11] consider them
in locally uniform space. For non-autonomous partial differential equations on bounded
domain, many studies on the existence of uniform attractor have been done, for example
[12–14].

For lattice dynamical systems, standard theory of ordinary differential equations can
be applied to get the well-posedness of it. “Tail ends” estimate method is usually used to get
asymptotic compactness of autonomous infinite-dimensional lattice, and by this the existence
of global compact attractor is obtained; see [15–17]. Authors in [18, 19] also prove that the
uniform smallness of solutions of autonomous infinite lattice systems for large space and time
variables is sufficient and necessary conditions for asymptotic compactness of it. Recently,
“tail ends” method is extended to non-autonomous infinite lattice systems; see [20–22]. The
traveling wave solutions of lattice differential equations are studied in [23–25]. In [18, 26,
27], the existence of global attractors of autonomous infinite lattice systems is obtained in
weighted spaces, which do not exclude traveling wave.

In this paper, we investigate the existence of uniform attractor for non-autonomous
lattice systems (1.1)–(1.3). The external term in [20] is supposed to belong to Cb(R, l2) and
to be almost periodic function. By Bochner-Amerio criterion, the set of this external term’s
translation is precompact in Cb(R, l2). Based on ideas of [28], authors in [14] introduce
uniformly ω-limit compactness, and prove that the family of weakly continuous processes
with respect to (w.r.t.) certain symbol space possesses compact uniform attractors if the
process has a bounded uniform absorbing set and is uniformly ω-limit compact. Motivated
by this, we will prove that the process corresponding to problem (1.1)–(1.3) with external
terms being locally asymptotic smallness (see Definition 4.5) possesses a compact uniform
attractor in l2 × l2, which coincides with uniform attractor of the family of processes with
external terms belonging to weak closure of translation set of locally asymptotic smallness
function in L2

loc(R, l
2). We also show that locally asymptotic functions are translation bounded

in L2
loc(R, l

2), but not translation compact (tr.c.) in L2
loc(R, l

2). Since the locally asymptotic
smallness functions are not necessary to be translation compact in Cb(R, l2), compared with
[20], the conditions on external terms of (1.1)–(1.3) can be relaxed in this paper.

This paper is organized as follows. In Section 2, we give some preliminaries and
present our main result. In Section 3, the existence of a family of processes for (1.1)–
(1.3) is obtained. We also show that the family of processes possesses a uniformly (w.r.t
Hw(k0) × Hw(g0)) absorbing set. In Section 4, we prove the existence of uniform attractor.
In Section 5, the upper semicontinuity of uniform attractor will be studied.
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2. Main Result

In this section, we describe our main result. Denote by l2 the Hilbert space defined by

l2 =

{
u = (ui)i∈Z

| ui ∈ R,
∑
i∈Z

u2i < +∞
}
, (2.1)

with the inner product 〈·, ·〉 and norm ‖ · ‖ given by

〈u, v〉 =
∑
i∈Z

uivi, ‖u‖2 = 〈u, u〉 =
∑
i∈Z

u2i . (2.2)

For l2×l2, we endowwith the inner and norm as. For ψj = (u(j), v(j)) = (u(j)i , v
(j)
i )i∈Z

∈ l2×l2, j =
1, 2,

〈
ψ1, ψ2

〉
l2×l2 =

〈
u(1), u(2)

〉
l2
+
〈
v(1), v(2)

〉
l2
=

∑
i∈Z

(
u
(1)
i u

(2)
i + v(1)

i v
(2)
i

)
,

∥∥ψ∥∥2
l2×l2 =

〈
ψ, ψ

〉
l2×l2 , ∀ψ ∈ l2 × l2.

(2.3)

Denote by L2
loc(R, l

2) the space of function φ(s), s ∈ R with values in l2 that locally 2-power
integrable in the Bochner sense, that is,

∫ t2

t1

∥∥φ(s)∥∥2
l2ds < +∞, ∀[t1, t2] ⊂ R. (2.4)

It is equipped with the local 2-power mean convergence topology. Then, L2
loc(R, l

2) is a
metrizable space. Let L2

b
(R, l2) be a space of functions φ(t) from L2

loc(R, l
2) such that

∥∥φ(t)∥∥2
L2
b
(R,l2) = sup

t∈R

∫ t+1

t

∥∥φ(s)∥∥2
l2ds <∞. (2.5)

Denote by L2,w
loc (R, l

2) the space L2
loc(R, l

2) endow with the local weak convergence topology.
For each sequence u = (ui)i∈Z

, define linear operators on l2 by

(Bu)i = ui+1 − ui, (B∗u)i = ui−1 − ui, i ∈ Z,

(Au)i = −ui+1 + 2ui − ui−1, i ∈ Z.
(2.6)

Then

A = BB∗ = B∗B,

(B∗u, v) = (u, Bv), ∀u, v ∈ l2.
(2.7)
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For convenience, initial value problem (1.1)–(1.3) can be written as

u̇ + ν(Au) + λu + f(u, Bu) + αv = k(t), t > τ, (2.8)

v̇ + δv − βu = g(t), t > τ, (2.9)

with initial conditions

u(τ) = uτ = (ui,τ)i∈Z
, v(τ) = vτ = (vi,τ)i∈Z

, τ ∈ R, (2.10)

where u=(ui)i∈Z
, v=(vi)i∈Z

, ν(Au)=(νi(Aui))i∈Z
, f(u, Bu) = (f(ui, (Bu)i))i∈Z

, k(t) = (ki(t))i∈Z
,

g(t) = (gi(t))i∈Z
.

In the following, we give some assumption on nonlinear function fi ∈ C1(R × R,R),
and νi, λi, αi, βi, δi ∈ R:

(H1)

fi(ui = 0, (Bu)i = 0) = 0, fi(ui, (Bu)i)ui ≥ 0. (2.11)

(H2) There exists a positive-value continuous function Q : R+ �→ R+ such that

sup
i∈Z

max
ui,(Bu)i∈[−r,r]

∣∣∣f ′
i,ui

(ui, (Bu)i)
∣∣∣ + sup

i∈Z

max
ui,(Bu)i∈[−r,r]

∣∣∣f ′
i,(Bu)i

(ui, (Bu)i)
∣∣∣ ≤ Q(r). (2.12)

(H3) There exist positive constants ν0, ν0, λ0, λ0, α0, α0, β0, β0, σ0, σ0such that

0 < ν0 = min{νi, : i ∈ Z}, ν0 = max{νi, : i ∈ Z} < +∞,

0 < λ0 = min{λi, : i ∈ Z}, λ0 = max{λi, : i ∈ Z} < +∞,

0 < α0 = min{αi, : i ∈ Z}, α0 = max{αi, : i ∈ Z} < +∞,

0 < β0 = min
{
βi, : i ∈ Z

}
, β0 = max

{
βi, : i ∈ Z

}
< +∞,

0 < δ0 = min{δi, : i ∈ Z}, δ0 = max{δi, : i ∈ Z} < +∞.

(2.13)

Let the external term h(t), g(t) belong to L2
b(R, l

2), it follows from the standard theory
of ordinary differential equations that there exists a unique local solution (u, v) ∈ C([τ, t0), l2×
l2) for problem (2.8)–(2.10) if (H1)–(H3) hold. For a fixed external term (k0(t), g0(t)) ∈
L2
b(R, l

2) × L2
b(R, l

2), take the symbol space Σ = {k0(s + h) | h ∈ R} × {g0(s + h) | h ∈ R} =
H(k0) × H(g0), the set contains all translations of (k0(s), g0(s)) in L2

b
(R, l2) × L2

b
(R, l2). Take

the [Σ]w = Hw(k0) × Hw(g0) the closure of Σ in L2,w
loc (R, l

2) × L2,w
loc (R, l

2). Denote by T(h) the
translation semigroup, T(h)(k(s), g(s)) = (k(s + h), g(s + h)) for all (k, g) ∈ Σ or [Σ]w, s ∈ R,
h ≥ 0. It is evident that {T(h)}h≥0 is continuous on Σ in the topology of L2

b(R, l
2) and on [Σ]w

in the topology of L2,w
loc (R, l

2), respectively,

T(h)Σ = Σ = H(k0) ×H(
g0

)
, T(h)[Σ]w = [Σ]w = Hw(k0) ×Hw

(
g0

)
, ∀h > 0. (2.14)
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In Section 3, we will show that for every (k(t), g(t)) ∈ Hw(k0)×Hw(g0), and (uτ , vτ) =
(ui,τ , vi,τ)i∈Z

∈ l2 × l2, τ ∈ R, problem (2.8)–(2.10) has a unique global solution (u, v)(t) =
(ui, vi)i∈Z

(t) ∈ C([τ,∞), l2 × l2). Thus, there exists a family of processes {U(k,g)(t, τ)} from
l2 × l2 to l2 × l2. In order to obtain the uniform attractor of the family of processes, we suppose
the external term is locally asymptotic smallness (see Definition 4.5). Let E be a Banach space
which the processes acting in, for a given symbol space Ξ, the uniform (w.r.t. σ ∈ Ξ) ω-limit
set ωτ,Ξ(B) of B ⊂ E is defined by

ωτ,Ξ(B) =
⋂
t≥τ

⋃
σ∈Ξ

⋃
s≥t
Uσ(s, τ)B

E

. (2.15)

The first result of this paper is stated in the following, which will be proved in Section 4.

Theorem A. Assume that (k0(s), g0(s)) ∈ L2loc(R, l
2) × L2loc(R, l

2) be locally asymptotic smallness
and (H1)–(H3) hold. Then the process {U(k0,g0)} corresponding to problems (2.8)–(2.10)with external
term (k0(s), g0(s)) possesses compact uniform (w.r.t. τ ∈ R) attractor A0 in l2 × l2 which coincides
with uniform (w.r.t. (k(s), g(s)) ∈ Hw(k0) × Hw(g0)) attractor AHw(k0)×Hw(g0) for the family of
processes {U(k,g)(t, τ)}, (k, g) ∈ Hw(k0) ×Hw(g0), that is,

A0 = AHw(k0)×Hw(g0) = ω0,AHw (k0)×Hw (g0)
(B0) =

⋃
(k,g)∈Hw(k0)×Hw(g0)

K(k,g)(0), (2.16)

where B0 is the uniform (w.r.t. (k, g) ∈ Hw(k0)×Hw(g0)) absorbing set in l2×l2, andK(k,g) is kernel
of the process {U(k,g)(t, τ)}. The uniform attractor uniformly (w.r.t. (k, g) ∈ Hw(k0) × Hw(g0))
attracts the bounded set in l2 × l2.

We also consider finite-dimensional approximation to the infinite-dimensional
systems (1.2)-(1.3) on finite lattices. For every positive integer n > 0, letZn = Z∩{−n ≤ i ≤ n},
consider the following ordinary equations with initial data in R2n+1 × R2n+1:

u̇i + νi(Au)i + λiui + fi(ui, (Bu)i) + αivi = ki(t), i ∈ Zn, t > τ,

v̇i + δivi − βiui = gi(t), i ∈ Zn, t > τ,

u(τ) = (ui(τ))|i|≤n = (ui,τ)|i|≤n, v(τ) = (vi(τ))|i|≤n = (vi,τ)|i|≤n, τ ∈ R.

(2.17)

In Section 5, we will show that the finite-dimensional approximation systems possess a
uniform attractor An

0 in 2n+1 × R2n+1, and these uniform attractors are upper semicontinuous
when n → ∞. More precisely, we have the following theorem.

Theorem B. Assume that (k0(s), g0(s)) ∈ L2b(R, l
2) × L2b(R, l

2) and (H1)–(H3) hold. Then for
every positive integer n, systems (2.17) possess compact uniform attractor An

0 . Further, An
0 is upper

semicontinuous toA0 as n → ∞, that is,

lim
n→∞

dl2×l2
(An

0 ,A0
)
= 0, (2.18)
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where

dl2×l2
(An

0 ,A0
)
= sup

a∈An
0

inf
b∈A0

‖a − b‖l2×l2 . (2.19)

3. Processes and Uniform Absorbing Set

In this section, we show that the process can be defined and there exists a bounded uniform
absorbing set for the family of processes.

Lemma 3.1. Assume that k0, g0 ∈ L2b(R, l
2) and (H1)–(H3) hold. Let (k(s), g(s)) ∈ Hw(k0)×Hw(g0),

and (uτ , vτ) ∈ l2 × l2, τ ∈ R. Then the solution of (2.8)–(2.10) satisfies

‖(u, v)(t)‖2l2×l2 ≤ ‖(u, v)(τ)‖2l2×l2e−(γ0/η0)(t−τ)

+
1
η0

(
β0

λ0
‖k0(s)‖2L2

b(R,l2)
+
α0

δ0

∥∥g0(s)∥∥2
L2
b
(R,l2)

)(
1 +

η0
γ0

)
,

(3.1)

where η0 = min{α0, β0}, γ0 = min{λ0β0, α0δ0}.

Proof. Taking the inner product of (2.8) with βu in l2, by (H1),we get

1
2
d

dt

∑
i∈Z

βiu
2
i +

∑
i∈Z

βiνi|(Bu)i|2 +
∑
i∈Z

λiβiu
2
i +

∑
i∈Z

βiαiuivi ≤
∑
i∈Z

βiuiki(t). (3.2)

Similarly, taking the inner product of (2.9) with αv in l2, we get

1
2
d

dt

∑
i∈Z

αiv
2
i +

∑
i∈Z

αiδiu
2
i −

∑
i∈Z

βiαiuivi =
∑
i∈Z

αivigi(t). (3.3)

Note that

∑
i∈Z

βiuiki(t) ≤ 1
2

∑
i∈Z

λiβiu
2
i +

1
2

∑
i∈Z

βi
λi
k2i (t),

∑
i∈Z

αivigi(t) ≤ 1
2

∑
i∈Z

αiδiv
2
i +

1
2

∑
i∈Z

αi
δi
g2
i (t).

(3.4)

Summing up (3.2) and (3.3), from (3.4), we get

d

dt

∑
i∈Z

(
βiu

2
i + αiv

2
i

)
+
∑
i∈Z

(
λiβiu

2
i + αiδiv

2
i

)
≤

∑
i∈Z

(
βi
λi
k2i (t) +

αi
δi
g2
i (t)

)
. (3.5)
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Thus, by (H3),

η0
d

dt
‖(u, v)(t)‖2l2×l2 + γ0‖(u, v)(t)‖2l2×l2 ≤

(
β0

λ0
‖k(t)‖2l2 +

α0

δ0

∥∥g(t)∥∥2
l2

)
. (3.6)

Since (k(t), g(t)) ∈ Hw(k0) ×Hw(g0), from [12, Proposition V.4.2.], we have

‖k(t)‖2
L2
b
(R,l2) ≤ ‖k0(t)‖2L2

b
(R,l2),

∥∥g(t)∥∥2
L2
b
(R,l2) ≤

∥∥g0(t)∥∥2
L2
b
(R,l2). (3.7)

From (3.6)-(3.7), applying Gronwall’s inequality of generalization (see [12, Lemma II.1.3]),
we get (3.1). The proof is completed.

It follows from Lemma 3.1 that the solution (u, v) of problem (2.8)–(2.10) is defined
for all t ≥ τ . Therefore, there exists a family processes acting in the space l2 × l2 : {U(k,g)} :
U(k,g)(t, τ)(uτ , vτ) = (u(t), v(t)), U(k,g)(t, τ) : l2 × l2 → l2 × l2, t ≥ τ , τ ∈ R, where (u(t), v(t))
is the solution of (2.8)–(2.10), and the time symbol (k(s), g(s)) belongs to H(k0) × H(g0)
and Hw(k0) × Hw(g0), respectively. The family of processes {U(k,g)} satisfies multiplicative
properties:

U(k,g)(t, s) ◦U(k,g)(s, τ) = U(k,g)(t, τ), ∀t ≥ s ≥ τ, τ ∈ R,

U(k,g)(τ, τ) = Id is the identity operator, τ ∈ R.
(3.8)

Furthermore, the following translation identity holds:

U(k,g)(t + h, τ + h) = UT(h)(k,g)(t, τ), ∀t ≥ τ, τ ∈ R, h ≥ 0. (3.9)

The kernel K of the processes U(k,g)(t, τ) consists of all bounded complete trajectories of the
processU(k,g)(t, τ), that is,

K(k,g) =
{
(u(·), v(·)) | ‖(u(t), v(t))‖l2×l2 ≤ C(u,v),

U(k,g)(t, τ)(u(τ), v(τ)) = (u(t), v(t)), ∀t ≥ τ, τ ∈ R

}
.

(3.10)

K(s) denotes the kernel section at a times moment s ∈ R:

K(k,g)(s) =
{
(u(s), v(s)) | (u(·), v(·)) ∈ K(k,g)

}
. (3.11)

Lemma 3.1 also shows that the family of processes possesses a uniform absorbing set
in l2 × l2.
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Lemma 3.2. Assume that k0, g0 ∈ L2b(R, l
2) and (H1)–(H3) hold. Let (k(s), g(s)) ∈ Hw(k0) ×

Hw(g0). Then, there exists a bounded uniform absorbing set B0 in l2 × l2 for the family of processes
{U(k,g)}Hw(k0)×Hw(g0)

, that is, for any bounded set B ⊂ l2 × l2, there exists t0 = t0(τ,B) ≥ τ ,

⋃
(k,g)∈Hw(k0)×Hw(g0)

U(k,g)(t, τ)B ⊂ B0, ∀t ≥ t0. (3.12)

Proof. Let ‖(uτ , vτ)‖l2×l2 ≤ R, from (3.1)we have

‖(u, v)(t)‖2l2×l2 ≤ R2e−(γ0/η0)(t−τ) +
1
η0

(
β0

λ0
‖k0(s)‖2L2

b(R,l2)
+
α0

δ0

∥∥g0(s)∥∥2
L2
b(R,l2)

)(
1 +

η0
γ0

)

≤ 2
η0

(
β0

λ0
‖k0(s)‖2L2

b(R,l2)
+
α0

δ0
‖g0(s)‖2L2

b(R,l2)

)(
1 +

η0
γ0

)
, ∀t ≥ t0,

(3.13)

where

t0 =
η0
γ0

ln
R2

X
+ τ, X =

1
η0

(
β0

λ0
‖k0(s)‖2L2

b(R,l2)
+
α0

δ0

∥∥g0(s)∥∥2
L2
b(R,l2)

)(
1 +

η0
γ0

)
. (3.14)

Let B0 = {(u, v)(t) ∈ l2 × l2 | ‖(u, v)(t)‖2l2×l2 ≤ 2X2}. The proof is completed.

4. Uniform Attractor

In this section, we establish the existence of uniform attractor for the non-autonomous lattice
systems (2.8)–(2.10). Let E be a Banach space, and let Ξ be a subset of some Banach space.

Definition 4.1. {Uσ(t, τ)}, σ ∈ Ξ is said to be (E×Ξ, E)weakly continuous, if for any t ≥ τ, τ ∈
R, the mapping (u, σ) → {Uσ(t, τ)u is weakly continuous from E × Ξ to E.

A family of processes Uσ(t, τ), σ ∈ Ξ is said to be uniformly (w.r.t. σ ∈ Ξ) ω-limit
compact if for any τ ∈ R and bounded set B ⊂ E, the set

⋃
σ∈Ξ

⋃
s≥t Uσ(s, τ)B is bounded for

every t and
⋃
σ∈Ξ

⋃
s≥t Uσ(s, t)B is precompact set as t → +∞. We need the following result in

[14].

Theorem 4.2. Let Ξ be the weak closure of Ξ0. Assume that {Uσ(t, τ)}, σ ∈ Ξ is (E × Ξ,E) weakly
continuous, and

(i) has a bounded uniformly (w.r.t. σ ∈ Ξ) absorbing set B0,

(ii) is uniformly (w.r.t. σ ∈ Ξ) ω-limit compact.
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Then the families of processes {Uσ(t, τ)}, σ ∈ Ξ0, σ ∈ Ξ possess, respectively, compact uniform
(w.r.t. σ ∈ Ξ0, σ ∈ Ξ, resp.) attractorsAΞ0 and AΞ satisfying

AΞ0 = AΞ = ω0,Ξ(B0) =
⋃
σ∈Ξ

Kσ(0). (4.1)

Furthermore,Kσ(0) is nonempty for all σ ∈ Ξ.

Let E be a Banach space and p ≥ 1, denote the space Lploc(R,E) of functions ρ(s), s ∈ R

with values in E that are locally p-power integral in the Bochner sense, it is equipped with
the local p-power mean convergence topology. Recall the Propositions in [12].

Proposition 4.3. A set Σ ⊂ Lploc(R,E) is precompact in Lploc(R,E) if and only if the set Σ[t1,t2] is
precompact in Lploc([t1, t2],E) for every segment [t1, t2] ⊂ R. Here, Σ[t1,t2] denotes the restriction of the
set Σ to the segment [t1, t2].

Proposition 4.4. A function σ(s) is tr.c. in Lploc(R,E) if and only if

(i) for any h ∈ R the set {∫ t+ht σ(s)ds | t ∈ R} is precompact in E;
(ii) there exists a function α(s), α(s) → 0+(s → 0+) such that

∫ t+1

t

‖σ(s) − σ(s + l)‖pEds ≤ α(|l|), ∀t ∈ R. (4.2)

Now, one introduces a class of function.

Definition 4.5. A function ϕ ∈ L2
loc(R, l

2) is said to be locally asymptotic smallness if for any
ε > 0, there exists positive integerN such that

sup
t∈R

∫ t+1

t

∑
|i|≥N

ϕ2
i (s)ds < ε. (4.3)

Denote by L2
las(R, l

2) the set of all locally asymptotic smallness functions in L2
loc(R, l

2).
It is easy to see that L2

las(R, l
2) ⊂ L2

b(R, l
2). The next examples show that there exist functions

in L2
b(R, l

2) but not in L2
las(R, l

2), and a function belongs to L2
las(R, l

2) is not necessary a tr.c.
function in L2

loc(R, l
2).

Example 4.6. Let φ(t) = (φi(t))i∈Z
,

φi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i ≤ 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2i + 4i

√
2i(t − 2i), 2i − 1

4i
≤ t ≤ 2i,

√
2i, 2i ≤ t ≤ 2i +

1
2i
,

√
2i − 4i

√
2i
(
t − 2i − 1

2i

)
, 2i +

1
2i

≤ t ≤ 2i +
3
4i
,

0, otherwise.

i ≥ 1.
(4.4)
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For every t ∈ [2i − 1/4i, 2i + 3/4i], i ≥ 1,

∫ t+1

t

∑
i∈Z

∣∣φi(s)∣∣2ds ≤
∫2i

2i−(1/4i)

[√
2i + 4i

√
2i(s − 2i)

]2
ds

+
∫2i+(1/2i)

2i
2i ds +

∫2i+3/4i

2i+1/2i

[√
2i − 4i

√
2i
(
s − 2i − 1

2i

)]2
ds

≤ 2i × 1
4i

+ 2i × 1
2i

+ 2i × 1
4i

= 2 < +∞.

(4.5)

Thus,

sup
t∈R

∫ t+1

t

∑
i∈Z

∣∣φi(s)∣∣2ds ≤ 2, (4.6)

and φ(t) ∈ L2
b(R, l

2). However, for every positive integerN, and for any positive i ≥N,

sup
t∈R

∫ t+1

t

∑
|i|≥N

∣∣φi(s)∣∣2ds ≥
∫2i+1/2i

2i
2i ds = 1. (4.7)

Therefore, φ(t)/∈L2
las(R, l

2).

Example 4.7. ϕ(t) = (ϕi(t))i∈Z
,

ϕi(t) = 0, for i ≤ 0,

ϕ1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2k + 4(2k)2

√
2k

(
t − 2k − j

2k

)
, 2k +

j

2k
− 1

4(2k)2
≤ t ≤ 2k +

j

2k
,

√
2k, 2k +

j

2k
≤ t ≤ 2k +

j

2k
+

1

(2k)2
,

√
2k − 4(2k)2

√
2k

(
t − 2k − j

2k
− 1

(2k)2

)
, 2k+

j

2k
+

1

(2k)2
≤ t ≤ 2k+

j

2k
+

5

4(2k)2
,

j = 0, 1, 2, . . . , 2k − 1, k ∈ Z
+,

0, otherwise.
(4.8)
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for i ≥ 2,

ϕi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2i + (2i)2

√
2i(t − 2i), 2i − 1

(2i)2
≤ t ≤ 2i,

√
2i, 2i ≤ t ≤ 2i +

1

(2i)2
,

√
2i − (2i)2

√
2i

(
t − 2i − 1

(2i)2

)
, 2i +

1

(2i)2
≤ t ≤ 2i +

2

(2i)2
,

0, otherwise.

(4.9)

Here, Z
+ denote the positive integer set.
For every positive integerN > 1, i ≥N, and for t ∈ [2i − (1/(2i)2), 2i + (2/(2i)2)],

∫ t+1

t

∑
|i|≥N

∣∣ϕi(s)∣∣2ds ≤
∫2i

2i−1/(2i)2

[√
2i + (2i)2

√
2i(s − 2i)

]2
ds

+
∫2i+1/(2i)2

2i
2i ds +

∫2i+2/(2i)2

2i+1/(2i)2

×
[√

2i − (2i)2
√
2i

(
s − 2i − 1

(2i)2

)]2

ds

≤ 2i × 1

(2i)2
+ 2i × 1

(2i)2
+ 2i × 1

(2i)2

=
3
2i
,

(4.10)

which implies that

sup
t∈R

∫ t+1

t

∑
|i|≥N

∣∣ϕi(s)∣∣2ds ≤ 3
2N

. (4.11)

Therefore, ϕ(t) = (ϕi(t))i∈Z
∈ L2

las(R, l
2). Note that for any 1/(2i)2 ≤ l < 1/2k−(1/(2i)2)(k > 2),

∫1

0

∑
i∈Z

∣∣ϕi(s + 2k) − ϕi(s + 2k + l)
∣∣2 ≥ ∫1

0

∑
i∈Z

∣∣ϕ1(s + 2k) − ϕ1(s + 2k + l)
∣∣2

≥ 1.

(4.12)

From Proposition 4.4, ϕ(t) = (ϕi(t))i∈Z is not translation compact in L2
loc(R, l

2).

Remark 4.8. Example 4.7 shows that a locally asymptotic function is not necessary translation
compact in Cb(R, l2).

In the following, we give some properties of locally asymptotic smallness function.
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Lemma 4.9. L2
las(R, l

2) is a closed subspace of L2
b(R, l

2).

Proof. Let {ψn}∞n=1 ⊂ L2
las(R, l

2) such that

ψn −→ ψ in L2
b

(
R, l2

)
. (4.13)

Then, for any ε > 0, there exists positive integerN1 such that for every n ≥N1,

sup
t∈R

∫ t+1

t

∥∥ψn(s) − ψ(s)∥∥2
l2 < ε. (4.14)

Since ψn ∈ L2
las(R, l

2), there existN2 > 0 such that for all n ∈ Z
+,

sup
t∈R

∫ t+1

t

∑
|i|≥N2

ψ2
ni(s)ds < ε. (4.15)

Let n > N1, we get that

sup
t∈R

∫ t+1

t

∑
|i|≥N2

ψ2
i (s)ds

≤ 2

⎛
⎝sup

t∈R

∫ t+1

t

∑
|i|≥N2

∣∣ψni(s) − ψi(s)∣∣2ds + sup
t∈R

∫ t+1

t

∑
|i|≥N2

ψ2
ni(s)ds

⎞
⎠

< 4ε.

(4.16)

Therefore, ψ(s) ∈ L2
las(R, l

2). This completes the proof.

Lemma 4.10. Every translation compact function w(s) in L2loc(R, l
2) is locally asymptotic smallness.

Proof. Sincew(s) is tr.c. in L2
loc(R, l

2), we get that {w(s+ t) | t ∈ R} is precompact in L2
loc(R, l

2).
By Proposition 4.3, we get that {w(s + t) | t ∈ R}[0,1] is precompact in L([0, 1]; l2). Thus, for
any ε > 0, there exists finite number w1(s), w2(s), . . . , wK(s) ∈ L([0, 1]; l2) such that for every
w ∈ {w(s + t) | t ∈ R}[0,1], there exist some wj(s), 1 ≤ j ≤ K, such that

∫1

0

∥∥w(s + t) −wj(s)
∥∥2
l2
< ε, t ∈ R. (4.17)

For the ε given above, wj(s) ∈ L([0, 1]; l2) implies that there exists positive integer N such
that

∫1

0

∑
|i|≥N

∣∣wj(s)
∣∣2ds < ε. (4.18)
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Therefore,

∫1

0

∑
|i|≥N

|wi(s + t)|2ds ≤ 2
∫1

0

∑
|i|≥N

∣∣wi(s + t) −wji(s)
∣∣2ds + 2

∫1

0

∑
|i|≥N

∣∣wji(s)
∣∣2ds

≤ 4ε,

(4.19)

which implies w(s) is locally asymptotic smallness. This completes the proof.

We now establish the uniform estimates on the tails of solutions of (2.8)–(2.10) as
n → ∞.

Lemma 4.11. Assume that (H1)–(H3) hold and (k0, g0) ∈ L2loc(R, l
2) × L2loc(R, l

2) is locally
asymptotic smallness. Then for any ε > 0, there exist positive integer N(ε) and T(ε,R) such that
if ‖(u(τ), v(τ))‖l2×l2 ≤ R, (u(t), v(t)) = U(k,g)(t, τ)(u(τ), v(τ)), (k, g) ∈ Hw(k0) ×Hw(g0) satisfies

∑
|i|≥N

(
|ui(t)|2 + |vi(t)|2

)
< ε. (4.20)

Proof. Choose a smooth function θ such that 0 ≤ θ(s) ≤ 1 for s ∈ R
+, and

θ(s) = 0 for 0 ≤ s ≤ 1,

θ(s) = 1 for s ≥ 2,
(4.21)

and there exists a constant M0 such that |θ′(s)| ≤ M0 for s ∈ R
+. Let N be a suitable large

positive integer, (φ, ψ) = (θ(|i|/N)ui, θ(|i|/N)vi)i∈Z
. Taking the inner product of (2.8)with βφ

and (2.9) with αψ in l2, we have

〈
u̇, βφ

〉
+
〈
νAu, βφ

〉
+
〈
λu, βφ

〉
+
〈
f(u, Bu), βφ

〉
+
〈
αv, βφ

〉
=

〈
k(t), βφ

〉
,〈

v̇, αψ
〉
+
〈
δv, αψ

〉 − 〈
βu, αψ

〉
=

〈
g(t), αψ

〉
.

(4.22)

From (H1)–(H3), we have

〈
u̇, βφ

〉
+
〈
v̇, αψ

〉 ≥ η0
2
d

dt

∑
i∈Z

(
u2i + v

2
i

)
θ

( |i|
N

)
, (4.23)
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where η0 is same as in Lemma 3.1

〈
νAu, βφ

〉
=

∑
i∈Z

νiβi(Bu)i
(
Bφ

)
i

=
∑
i∈Z

νiβi(Bu)i

(
θ

( |i + 1|
N

)
ui+1 − θ

( |i|
N

)
ui

)

≥
∑
i∈Z

νiβi(Bui)2θ
( |i|
N

)
−
∑
i∈Z

νiβi

∣∣∣∣(Bu)i
(
θ

( |i + 1|
N

)
− θ

( |i|
N

))
ui+1

∣∣∣∣
≥

∑
i∈Z

νiβi(Bui)2θ
( |i|
N

)
− 4ν0β0M0X

2

N
, ∀t ≥ t0,

(4.24)

t0 as in (3.10)

〈
λu, βφ

〉 ≥ λ0β0
∑
i∈Z

θ

( |i|
N

)
u2i ,

〈
αv, βφ

〉
=

〈
βu, αψ

〉
,

〈
δv, αψ

〉 ≥ δ0α0
∑
i∈Z

θ

( |i|
N

)
v2
i ,

〈
k(t), βu

〉 ≤ β0∑
i∈Z

ki(t)θ
( |i|
N

)
ui ≤ 1

2
λ0β0

∑
i∈Z

θ

( |i|
N

)
u2i +

1
2
β0

2

λ0β0

∑
i∈Z

θ

( |i|
N

)
k2i (t),

〈
g(t), αψ

〉 ≤ 1
2
δ0α0

∑
i∈Z

θ

( |i|
N

)
v2
i +

1
2
α0

2

δ0α0

∑
i∈Z

θ

( |i|
N

)
g2
i (t).

(4.25)

Summing up (4.22), from (4.23)–(4.25) we get

d

dt

∑
i∈Z

(
u2i + v

2
i

)
θ

( |i|
N

)
+
γ0
η0

∑
i∈Z

(
u2i + v

2
i

)
θ

( |i|
N

)

≤ β0
2

λ0β0

∑
i∈Z

θ

( |i|
N

)
k2i (t) +

α0
2

δ0α0

∑
i∈Z

θ

( |i|
N

)
g2
i (t) +

4ν0β0M0X
2

N
, ∀t ≥ t0.

(4.26)

Thus,

∑
i∈Z

(
u2i + v

2
i

)
θ

( |i|
N

)
≤

∑
i∈Z

θ

( |i|
N

)(
u2i (τ) + v

2
i (τ)

)
e−(γ0/η0)(t−τ)

+
η0
γ0

· 4ν
0β0M0X

2

N
+
∫ t

τ

β0
2

λ0β0
e−(γ0/η0)(t−s)

∑
i∈Z

θ

( |i|
N

)
k2i (s)ds

+
∫ t

τ

α0
2

δ0α0
e−(γ0/η0)(t−s)

∑
i∈Z

θ

( |i|
N

)
g2
i (s)ds.

(4.27)
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We now estimate the integral term on the right-hand side of (4.27).

∫ t

τ

e−(γ0/η0)(t−s)
∑
i∈Z

θ

( |i|
N

)
k2i (s)ds ≤

∫ t

t−1
e−(γ0/η0)(t−s)

∑
i∈Z

θ

( |i|
N

)
k2i (s)ds

+
∫ t−1

t−2
e−(γ0/η0)(t−s)

∑
i∈Z

θ

( |i|
N

)
k2i (s)ds + · · ·

≤ e−γ0/η0
∫1

0
e−(γ0/η0)s

∑
i∈Z

θ

( |i|
N

)
k2i (s + t − 1)ds

+ e−2γ0/η0
∫1

0
e−(γ0/η0)s

∑
i∈Z

θ

( |i|
N

)
k2i (s + t − 2)ds + · · ·

≤
(
1 + e−γ0/η0 + e−2γ0/η0 + · · ·

)
sup
t∈R

∫1

0

∑
i∈Z

θ

( |i|
N

)
k2i (s + t)ds

≤ 1

1 − e(γ0/η0)
sup
t∈R

∫1

0

∑
i∈Z

θ

( |i|
N

)
k2i (s + t)ds.

(4.28)

Similarly,

∫ t

τ

e−(γ0/η0)(t−s)
∑
i∈Z

θ

( |i|
N

)
g2
i (s)ds ≤

1
1 − eγ0/η0 supt∈R

∫1

0

∑
i∈Z

θ

( |i|
N

)
g2
i (s + t)ds. (4.29)

Since (k0(t), g0(t)) is locally asymptotic smallness, from (4.27)–(4.29)we get that for any ε > 0,
if ‖(u(τ), v(τ))‖2l2×l2 ≤ R, there exist T = T(ε, R) ≥ τ and sufficient large positive integer N
such that

∑
i∈Z

(
u2i + v

2
i

)
θ

( |i|
N

)
≤ 2

(
η0
γ0

· 4ν
0β0M0X

2

N
+

β0
2

λ0β0

1

1 − e(γ0/η0)
sup
t∈R

∫1

0

∑
i∈Z

θ

( |i|
N

)
k20i(s + t)ds

+
α0

2

δ0α0

1

1 − e(γ0/η0)
sup
t∈R

∫1

0

∑
i∈Z

θ

( |i|
N

)
g2
0i(s + t)ds

)
< ε, ∀t ≥ T.

(4.30)

The proof is completed.

Lemma 4.12. Assume that (H1)–(H3) hold, let (un0, vn0), (u0, v0) ∈ l2 × l2. If (un0, vn0) → (u0, v0)
in l2 × l2 and (kn, gn)⇀ (k, g) weakly in L2loc(R, l

2 × l2), then for any t ≥ τ, τ ∈ R,

U(kn,gn)(un0, vn0)⇀ U(k,g)(u0, v0) weakly in l2 × l2, n −→ ∞. (4.31)
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Proof. Let (un, vn)(t) = U(kn,gn)(un0, vn0), (u, v)(t) = U(k,g)(u0, v0). Since {(un0, vn0)} is bou-
nded in l2 × l2, by Lemma 3.2, we get that

{(un, vn)(t)} is uniformly bounded in l2 × l2. (4.32)

Therefore, for all t ≥ τ , τ ∈ R,

(un, vn)(t)⇀ (uw, vw)(t) weakly in l2 × l2, as n −→ ∞. (4.33)

Note that (un, vn)(t) is the solution of (2.8) and (2.9) with time symbol (kn, gn) ∈ L2,w
loc (R, l

2 ×
l2), it follow from (4.32) that

(u̇n, v̇n)(t)⇀ (u̇w, v̇w)(t) weak starin L∞
(
R, l2 × l2

)
, as n −→ ∞. (4.34)

In the following, we show that (uw, vw)(t) = (u, v)(t). By the fact that (un, vn)(t) is the
solution of (2.8) and (2.9), for any ψ(t) ∈ C∞

0 ([τ, t], l2), we get that

∫ t

τ

u̇niψ(t)dt +
∫ t

τ

νi(Aun)iψ(t)dt +
∫ t

τ

λiuniψ(t)dt +
∫ t

τ

fi(uni, (Bun)i)ψ(t)dt +
∫ t

τ

αivniψ(t)dt

=
∫ t

τ

kni(t)ψ(t)dt, t ≥ τ,
∫ t

τ

v̇niψ(t)dt +
∫ t

τ

δivniψ(t)dt −
∫ t

τ

βiuniψ(t)dt =
∫ t

τ

gni(t)ψ(t)dt, t ≥ τ.
(4.35)

Note that (kn, gn) ⇀ (k, g) weakly in L2
loc(R, l

2 × l2). Let n → ∞ in (4.35), by (4.34) we get
that (uw, vw)(t) is the solution of (2.8) and (2.9) with the initial data (u0, v0). By the unique
solvability of problem (2.8)–(2.10), we get that (uw, vw)(t) = (u, v)(t). This completes the
proof.

Proof of Theorem A. From Lemmas 3.2, 4.11 and 4.12, and Theorem 4.2, we get the results.

5. Upper Semicontinuity of Attractors

In this section, we present the approximation to the uniform attractorAHw(k0)×Hw(g0) obtained
in Theory A by the uniform attractor of following finite-dimensional lattice systems in R2n+1×
R2n+1:

u̇i + νi(Au)i + λiui + fi(ui, (Bu)i) + αivi = ki(t), i ∈ Zn, t > τ,

v̇i + δivi − βiui = gi(t), i ∈ Zn, t > τ,
(5.1)
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with the initial data

u(τ) = (ui(τ))|i|≤n = (ui,τ)|i|≤n, v(τ) = (vi(τ))|i|≤n = (vi,τ)|i|≤n, τ ∈ R, (5.2)

and the periodic boundary conditions

(un+1, vn+1) = (u−n, v−n), (u−n−1, vn+1) = (un, vn). (5.3)

Similar to systems (2.8)–(2.10), under the assumption (H1)–(H3), the approximation
systems (5.1)–(5.2) with k, g ∈ L2

b
(R, l2) possess a unique solution (u, v) = (ui, vi)|i|≤n ∈

C([τ,+∞), R2n+1 × R2n+1), which continuously depends on initial data. Therefore, we can
associate a family of processes {Un

(k,g)(t, τ)}Hw(k0)×Hw(g0) which satisfy similar properties
(3.8)–(3.9). Similar to Lemma 3.2, we have the following result.

Lemma 5.1. Assume that k0, g0 ∈ L2b(R, l
2), and (H1)–(H3) hold. Let (k, g) ∈ Hw(k0) ×

Hw(g0). Then, there exists a bounded uniform absorbing set B1 for the family of processes
{Un

(k,g)(t, τ)}Hw(k0)×Hw(g0)
, that is, for any bounded set Bn ⊂ R2n+1×R2n+1, there exists t0 = t0(τ,Bn) ≥

τ , for t ≥ t0,

⋃
(k,g)∈Hw(k0)×Hw(g0)

Un
(k,g)(t, τ)Bn ⊂ B1. (5.4)

In particular, B1 is independent of (k, g) and n.

Since (5.1) is finite-dimensional systems, it is easy to know that under the assumption
of Lemma 5.1, the family of processes {Un

(k,g)(t, τ)}, (k, g) ∈ Hw(k0) × Hw(g0) is uniformly
(w.r.t.Hw(k0) ×Hw(g0)) ω-limit compact. Similar to Lemma 4.12, if (unm0, v

n
m0) → (un0 , v

n
0 ) in

l2 × l2, (km, gm)⇀ (k, g)weakly in L2
loc(R,R

2n+1 × R2n+1), then for any t ≥ τ , τ ∈ R,

Un

(km,gm)
(
unm0, v

n
m0

)
⇀ Un

(k,g)
(
un0 , v

n
0

)
weakly in l2 × l2, m −→ ∞. (5.5)

Lemma 5.2. Assume that (k0(s), g0(s)) ∈ L2b(R, l
2)×L2b(R, l

2) and (H1)–(H3) hold. Then the process
{Un

(k0,g0)
} corresponding to problems (5.1)-(5.2) with external term (k0(s), g0(s)) possesses compact

uniform (w.r.t. τ ∈ R) attractor An
0 in l2 × l2 which coincides with uniform (w.r.t. (k(s), g(s)) ∈

Hw(k0)×Hw(g0)) attractorAn
Hw(k0)×Hw(g0)

for the family of processes {Un
(k,g)(t, τ)}, (k, g) ∈ Hw(k0)×

Hw(g0), that is,

An
0 = An

Hw(k0)×Hw(g0)
= ω0,An

Hw (k0)×Hw (g0)
(B1) =

⋃
(k,g)∈Hw(k0)×Hw(g0)

Kn,(k,g)(0), (5.6)

where B1 is the uniform (w.r.t. (k, g) ∈ Hw(k0)×Hw(g0)) absorbing set inR2n+1×R2n+1, andK(k,g)

is kernel of the process {U(k,g)(t, τ)}. The uniform attractor uniformly (w.r.t. (k, g) ∈ Hw(k0) ×
Hw(g0)) attracts the bounded set in R2n+1 × R2n+1.



18 Advances in Difference Equations

Proof of Theorem B. If (un0 , v
n
0 ) ∈ An

0 , it follows from Lemma 5.2 that there exist (kn, gn) ∈
Hw(k0) × Hw(g0) and a bounded complete solution (un(·), vn(·)) ∈ C(R,R2n+1 × R2n+1) such
that

(un(t), vn(t)) = Un
(kn,gn)(t, 0)

(
un0 , v

n
0

)
,

(
un0 , v

n
0

)
= (un(0), vn(0)),

(un(t), vn(t)) ∈ An
0 , ∀t ∈ R, n = 1, 2, . . . .

(5.7)

Since (kn, gn) ∈ Hw(k0) × Hw(g0), there exist (k, g) ∈ Hw(k0) × Hw(g0) and a subsequence
of {(kn, gn)}∞n=1, which is still denote by {(kn, gn)}∞n=1, such that

(
kn, gn

)
⇀

(
k, g

)
weakly in L2

loc

(
R, l2 × l2

)
, as n −→ ∞. (5.8)

From Lemma 5.1, we get that

‖(un, vn)(t)‖l2×l2 ≤ C1 ∀t ∈ R, n = 1, 2, . . . , (5.9)

which imply that

‖u̇n(t)‖ ≤ C2, ‖v̇n(t)‖ ≤ C2. (5.10)

Thus,

‖un(t) − un(s)‖ ≤ ‖u̇n‖|t − s| ≤ C2|t − s|,
‖vn(t) − vn(s)‖ ≤ ‖v̇n‖|t − s| ≤ C2|t − s|.

(5.11)

Let Ij(j = 1, 2, . . .) be a sequence of compact intervals of R such that Ij ⊂ Ij+1 and⋃
j Ij = R. From (5.9) and (5.11), using Ascoli’s theorem, we get that for each t ∈ Ij , there

exists a subsequence of {(un, vn)(t)} (still denoted by {(un, vn)(t)}) and (ut, vt) ∈ l2 × l2 such
that

(un, vn)(t)⇀ (ut, vt)(t) weakly in l2 × l2, as n −→ ∞. (5.12)

Proceeding as in the proof of Lemma 4.11, we get that the weak convergence is actually strong
convergence, and therefore {(un, vn)(t)} is precompact in C(Ij , l2 × l2) for each j = 1, 2, . . ..
Then we infer that there exists a subsequence {(un1 , vn1)(t)} of {(un, vn)(t)} and (u1, v1)(t)
such that {(un1 , vn1)(t)} converges to (u1, v1)(t) ∈ C(I1, l2 × l2). Using Ascoli’s theorem again,
we get, by induction, that there is a subsequence {(unj+1 , vnj+1)(t)} of {(unj , vnj )(t)} such
that {(unj+1 , vnj+1)(t)} converges to (uj+1, vj+1)(t) in C(Ij+1, l2 × l2), where (uj+1, vj+1)(t) is an
extension of (uj, vj)(t) to Ij+1. Finally, taking a diagonal subsequence in the usual way, we
find that there exist a subsequence {(unn , vnn)(t)} of {(un, vn)(t)} and (u, v)(t) ∈ C(R, l2 × l2)
such that for any compact interval I ⊂ R

(unn , vnn)(t) −→ (u, v)(t) ∈ C
(
I, l2 × l2

)
, as n −→ ∞. (5.13)
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From (5.9)we get that

‖(u, v)(t)‖l2×l2 ≤ C1 ∀t ∈ R. (5.14)

Next, we show that (u(t), v(t)) is the solution of (2.8)–(2.10). It follows from (5.10) that

(u̇n(t), v̇n(t))⇀ (u̇(t), v̇(t)) weak star in L∞
(
R, l2 × l2

)
, as n −→ ∞. (5.15)

For fixed i ∈ Z, let n > |i|. Since (un(·), vn(·)) is the solution of (5.1)–(5.2) with (kn, gn) ∈
Hw(k0) ×Hw(g0), we have

u̇ni (t) = −νi(Aun)i − λiuni − fi
(
uni , (Bu

n)i
) − αivni + kni (t), t ∈ R,

v̇ni (t) = −δivni + βiuni + gi(t), t ∈ R.
(5.16)

Thus, for each ψ(t) ∈ C∞
0 (I, l2), we have

∫
I

u̇ni (t)ψ(t)dt = −
∫
I

νi(Aun)iψ(t)dt −
∫
I

λiu
n
i ψ(t)dt −

∫
I

fi
(
uni , (Bu

n)i
)
ψ(t)dt

−
∫
I

αiv
n
i ψ(t)dt +

∫
I

kni (t)ψ(t)dt, t ∈ R,

∫
I

v̇ni (t)ψ(t)dt = −
∫
I

δiv
n
i ψ(t)dt +

∫
I

βiu
n
i ψ(t)dt +

∫
I

gni (t)ψ(t)dt, t ∈ R.

(5.17)

Letting n → ∞, by (5.8), (5.13), (5.15) and (5.17)we find that (u, v) satisfies

u̇i(t) = −νi(Au)i − λiui − fi
(
uni , (Bu)i

) − αivi + ki(t), ∀t ∈ I, i ∈ Z,

v̇i(t) = −δivi + βiui + gi(t), ∀t ∈ I, i ∈ Z.
(5.18)

Since I is arbitrary, we note that (5.18) are valid for all t ∈ R. From (5.14) we find that (u, v)
is a bounded complete solution of (2.8)–(2.10). Therefore, (u(0), v(0)) ∈ A0. By (5.13) we get
that

(unn(0), vnn(0)) −→ (u(0), v(0)) ∈ A0. (5.19)

The proof is complete.

Remark 5.3. All the result of this paper is valid for the systems in [20, 21].
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