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1. Introduction

Consider the following boundary value problem:

−uΔΔ(t) = f(σ(t), uσ(t)), t ∈ [0, T]
T
, t /= tj , j = 1, 2, . . . , p, (1.1)

u
(
t+j

)
− u
(
t−j
)
= Aju

(
t−j
)
, j = 1, 2, . . . , p, (1.2)

uΔ
(
t+j

)
− uΔ

(
t−j
)
= Bju

Δ
(
t−j
)
+ Ij

(
u
(
t−j
))

, j = 1, 2, . . . , p, (1.3)

u(0) = 0 = u(T), (1.4)

where T is a time scale, [0, T]
T
:= [0, T] ∩ T, σ(0) = 0 and σ(T) = T, f : [0, T]

T
× R → R

is a given function, Ij ∈ C[R,R], {Aj}, {Bj} are real sequences with Bj = (1 + Aj)
−1 − 1 and∑p

k=1 |Ak| < 1, the impulsive points tj ∈ [0, T]
T
are right-dense and 0 = t0 < t1 < · · · < tp <

tp+1 = T, limh→ 0+u
Δ(tj + h) and limh→ 0+u

Δ(tj − h) represent the right and left limits of uΔ(t)
at t = tj in the sense of the time scale, that is, in terms of h > 0 for which tj +h, tj −h ∈ [0, T]

T
,

whereas if tj is left-scattered, we interpret uΔ(t−j ) = uΔ(tj) and u(t−j ) = u(tj).
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The theory of time scales, which unifies continuous and discrete analysis, was first
introduced by Hilger [1]. The study of boundary value problems for dynamic equations on
time scales has recently received a lot of attention, see [2–16]. At the same time, there have
been significant developments in impulsive differential equations, see the monographs of
Lakshmikantham et al. [17] and Samoı̆lenko and Perestyuk [18]. Recently, Benchohra and
Ntouyas [19] obtained some existence results for second-order boundary value problem of
impulsive differential equations on time scales by using Schaefer’s fixed point theorem and
nonlinear alternative of Leray-Schauder type. However, to the best of our knowledge, few
papers have been published on the existence of solutions for second-order boundary value
problem of impulsive dynamic equations on time scales via critical point theory. Inspired and
motivated by Jiang and Zhou [10], Nieto and O’Regan [20], and Zhang and Li [21], we study
the existence of weak solutions for boundary value problems of impulsive dynamic equations
on time scales (1.1)–(1.4) via critical point theory.

This paper is organized as follows. In Section 2, we present some preliminary results
concerning the time scales calculus and Sobolev’s spaces on time scales. In Section 3, we
construct a variational framework for (1.1)–(1.4) and present some basic notation and results.
Finally, Section 4 is devoted to the main results and their proof.

2. Preliminaries about Time Scales

In this section, we briefly present some fundamental definitions and results from the calculus
on time scales and Sobolev’s spaces on time scales so that the paper is self-contained. For
more details, one can see [22–25].

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of R, equipped with the
topology induced from the standard topology on R.

For a, b ∈ T, a < b, [a, b]
T
:= [a, b] ∩ T, [a, b)

T
:= [a, b) ∩ T.

Definition 2.2. One defines the forward jump operator σ : T → T, the backward jump
operator ρ : T → T, and the graininess μ : T → R

+ = [0,∞) by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) = σ(t) − t for t ∈ T, (2.1)

respectively. If σ(t) = t, then t is called right-dense (otherwise: right-scattered), and if ρ(t) = t,
then t is called left-dense (otherwise: left-scattered). Denote yσ(t) = y(σ(t)).

Definition 2.3. Assume f : T → R is a function and let t ∈ T. Then one defines fΔ(t) to be the
number (provided it exists) with the property that given any ε > 0, there is a neighborhood
U of t (i.e.,U = (t − δ, t + δ) ∩ T for some δ > 0) such that

∣∣∣[f(σ(t)) − f(s)
] − fΔ(t)[σ(t) − s]

∣∣∣ ≤ ε|σ(t) − s| ∀s ∈ U. (2.2)

In this case, fΔ(t) is called the delta (or Hilger) derivative of f at t. Moreover, f is said to be
delta or Hilger differentiable on T if fΔ(t) exists for all t ∈ T.
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Definition 2.4. A function f : T → R is said to be rd-continuous if it is continuous at right-
dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
rd-continuous functions f : T → R will be denoted by Crd(T).

As mentioned in [24], the Lebesgue μΔ-measure can be characterized as follows:

μΔ = λ +
∑
i∈I

(σ(ti) − ti)δti , (2.3)

where λ is the Lebesgue measure on R, and {ti}i∈I is the (at most countable) set of all
right-scattered points of T. A function f which is measurable with respect to μΔ is called
Δ-measurable, and the Lebesgue integral over [a, b)

T
is denoted by

∫b

a

f(t)Δt :=
∫

[a,b)
T

f(t)dμΔ. (2.4)

The Lebesgue integral associated with the measure μΔ on T is called the Lebesgue delta
integral.

Lemma 2.5 (see [24, Theorem 2.11]). If f, g : [a, b]
T

→ R are absolutely continuous functions
on [a, b]

T
, then f · g is absolutely continuous on [a, b]

T
and the following equality is valid:

∫

[a,b)
T

f(t)gΔ(t)Δt =
[
f(t)g(t)

]∣∣b
a −
∫

[a,b)
T

fΔ(t)gσ(t)Δt. (2.5)

For 1 < p < ∞, the Banach space Lp

Δ may be defined in the standard way, namely,

L
p

Δ([a, b)T
) :=

{
f : [a, b]

T
−→ R | f is Δ-measurable and

∫b

a

∣∣f(t)∣∣pΔt < ∞
}
, (2.6)

equipped with the norm

∥∥f∥∥Lp

Δ
:=

(∫b

a

∣∣f(t)∣∣pΔt

)1/p

. (2.7)

Let H1
Δ([a, b]T

) be the space of the form

H1
Δ([a, b]T

) := W1,2
Δ ([a, b]

T
)

:=
{
f : [0, T]

T
−→ R | f is absolutely continuous on [a, b]

T
, fΔ ∈ L2

Δ([a, b)T
)
}

(2.8)
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its norm is induced by the inner product given by

(
f, g

)
H1

Δ
:=
∫b

a

fΔ(t)gΔ(t)Δt +
∫b

a

f(t)g(t)Δt, (2.9)

for all f, g ∈ H1
Δ([a, b]T

).
Let C([a, b]

T
) denote the linear space of all continuous function f : [a, b]

T
→ R with

the maximum norm ‖f‖C = maxt∈[a,b]
T
|f(t)|.

Lemma 2.6 (see [24, Corollary 3.8]). Let {xm} ⊂ H1
Δ([a, b]T

), and x ∈ H1
Δ([a, b]T

). If {xm}
converges weakly inH1

Δ([a, b]T
) to x, then {xm} converges strongly in C([a, b]

T
) to x.

Lemma 2.7 (Hölder inequality [25, Theorem 3.1]). Let f, g ∈ Crd([a, b]), p > 1 and q be the
conjugate number of p. Then

∫b

a

∣∣f(t)g(t)∣∣Δt ≤
(∫b

a

∣∣f(t)∣∣pΔt

)1/p(∫b

a

∣∣g(t)∣∣qΔt

)1/q

. (2.10)

When p = q = 2, we obtain the Cauchy-Schwarz inequality.
For more basic properties of Sobolev’s spaces on time scales, one may refer to Agarwal

et al. [24].

3. Variational Framework

In this section, we will establish the corresponding variational framework for problem (1.1)–
(1.4).

Let Γj = [tj , tj+1]T
, and

fΓj (t) :=

⎧
⎨
⎩
f(t), t ∈ (tj , tj+1

]
T
,

f
(
t+j

)
, t = tj ,

(3.1)

for j = 0, 1, . . . , p.
Now we consider the following space:

H :=
{
f : [0, T]

T
−→ R | f is continuous from left at each tj , f

(
t+j

)
exists,

fΓj is absolutely continuous on Γj , the delta derivative of fΓj ∈ L2
Δ

([
tj , tj+1

)
T

)
,

f satisfies the condition (1.2) for all j = 0, 1, . . . , p, f(0) = f(T) = 0
}
,

(3.2)
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its norm is induced by the inner product given by

(
f, g

)
H :=

p∑
j=0

∫ tj+1

tj

fΔ
Γj (t)g

Δ
Γj (t)Δt, ∀f, g ∈ H. (3.3)

That is

∥∥f∥∥H =

⎛
⎝

p∑
j=0

∫ tj+1

tj

∣∣∣fΔ
Γj (t)

∣∣∣
2
Δt

⎞
⎠

1/2

, (3.4)

for any f ∈ H.
First, we give some lemmas which are useful in the proof of theorems.

Lemma 3.1. If
∑p

k=1 |Ak| < 1, then for any x ∈ H, supt∈[0,T]
T

|x(t)| ≤ R0‖x‖H, where R0 =
T1/2/(1 −∑p

k=1 |Ak|).

Proof. For any x ∈ H and t ∈ [tj , tj+1]T
, j = 0, 1, . . . , p,we have

|x(t)| =
∣∣∣x(t) − x

(
t+j

)
+ x
(
t+j

)
− · · · − x

(
t+1
)
+ x
(
t+1
) − x(t0)

∣∣∣

=

∣∣∣∣∣x(t) − x
(
t+j

)
+

j−1∑
k=0

[
x
(
t−k+1

) − x
(
t+k
)]

+
j−1∑
k=0

Ak+1x
(
t−k+1

)
∣∣∣∣∣

=

∣∣∣∣∣
∫ t

tj

xΔ
Γk(s)Δs +

j−1∑
k=0

∫ tk+1

tk

xΔ
Γk(s)Δs +

j−1∑
k=0

Ak+1x
(
t−k+1

)
∣∣∣∣∣

≤
∫ t

tj

∣∣∣xΔ
Γj (s)

∣∣∣Δs +
j−1∑
k=0

∫ tk+1

tk

∣∣∣xΔ
Γk(s)

∣∣∣Δs +
j−1∑
k=0

|Ak+1|
∣∣x(t−k+1

)∣∣

≤
p∑

k=0

∫ tk+1

tk

∣∣∣xΔ
Γk(s)

∣∣∣Δs +
j−1∑
k=0

|Ak+1|
∣∣x(t−k+1

)∣∣

≤ T1/2‖x‖H +
p∑

k=1

|Ak| sup
t∈[0,T]

T

|x(t)|,

(3.5)

which implies that

sup
t∈[0,T]

T

|x(t)| ≤ R0‖x‖H, ∀x ∈ H. (3.6)

Lemma 3.2. H is a Hilbert space.
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Proof. Let {uk}∞k=1 be a Cauchy sequence inH. By Lemma 3.1, we have

∥∥f∥∥H1
Δ([tj ,tj+1]T

) =

[∫ tj+1

tj

∣∣∣fΔ
Γj (t)

∣∣∣
2
Δt +

∫ tj+1

tj

∣∣∣fΓj (t)
∣∣∣
2
Δt

]1/2

≤
[∫ tj+1

tj

∣∣∣fΔ
Γj (t)

∣∣∣
2
Δt + R2

0
(
tj+1 − tj

)∥∥f∥∥2H
]1/2

≤
(
1 + R2

0T
)1/2∥∥f∥∥H.

(3.7)

Set

u
j

k(t) := (uk)Γj :=

⎧
⎨
⎩
uk(t), t ∈ (tj , tj+1

]
T
,

uk

(
t+j

)
, t = tj ,

(3.8)

for j = 0, 1, . . . , p, k = 1, 2, . . . . Then {uj

k
}∞k=1 be a Cauchy sequence in H1

Δ([tj , tj+1]T
), for

j = 0, 1, . . . , p. Therefore, there exists a uj ∈ H1
Δ([tj , tj+1]T

), such that {uj

k} converges to uj in

H1
Δ([tj , tj+1]T

), j = 0, 1, . . . , p. It follows from Lemma 2.6 that {uj

k} converges strongly to uj in

C([tj , tj+1]T
), that is, ‖uj

k
− uj‖C([tj ,tj+1]T

) → 0 as k → +∞ for all j = 0, 1, . . . , p. Hence, we have

lim
k→+∞

u
j

k

(
tj
)
= uj(tj

)
, lim

k→+∞
u
j−1
k

(
tj
)
= uj−1(tj

)
. (3.9)

Noting that

lim
k→+∞

u
j

k

(
tj
)
= lim

k→+∞
uk

(
t+j

)
= lim

k→+∞
(
1 +Aj

)
uk

(
t−j
)
= lim

k→+∞
(
1 +Aj

)
uk

(
tj
)

=
(
1 +Aj

)
lim

k→+∞
u
j−1
k

(
tj
)
=
(
1 +Aj

)
uj−1(tj

)
,

(3.10)

we have

uj(tj
)
=
(
1 +Aj

)
uj−1(tj

)
, j = 0, 1, . . . , p. (3.11)

Set

u(t) :=

⎧
⎨
⎩
uj(t), t ∈ (tj , tj+1

]
T
, j = 0, 1, . . . , p,

uj−1(tj
)
, t = tj , j = 0, 1, . . . , p.

(3.12)
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Then we have

u
(
t+j

)
= uj

(
t+j

)
= uj(tj

)
=
(
1 +Aj

)
uj−1(tj

)
=
(
1 +Aj

)
u
(
tj
)
=
(
1 +Aj

)
u
(
t−j
)
,

uΓj = uj, j = 0, 1, . . . , p.
(3.13)

Thus u ∈ H. Noting that

‖uk − u‖H =

⎡
⎣

p∑
j=0

∫ tj+1

tj

∣∣∣(uj

k
)Δ(t) − uΔ

Γj (t)
∣∣∣
2
Δt

⎤
⎦

1/2

≤
⎡
⎣

p∑
j=0

∥∥∥uj

k
− uj

∥∥∥
2

H1
Δ([tj ,tj+1]T

)

⎤
⎦

1/2

,

(3.14)

we have uk converges to u inH as k → +∞. The proof is complete.

Lemma 3.3. If
∑p

k=1 |Ak| < 1, then for any u ∈ H,

p∑
j=0

∫ tj+1

tj

∣∣∣uσ
Γj (t)

∣∣∣
2
Δt ≤ R2

0T‖u‖2H, (3.15)

where R0 is given in Lemma 3.1.

Proof. For any u ∈ H, t ∈ [tj , tj+1]T
, by Lemma 3.1, we have

∣∣∣uσ
Γj (t)

∣∣∣ ≤ R0‖u‖H, j = 0, 1, . . . , p, (3.16)

which implies that

p∑
j=0

∫ tj+1

tj

∣∣∣uσ
Γj (t)

∣∣∣
2
Δt ≤ R2

0T‖u‖2H. (3.17)

The proof is complete.

For any u ∈ H satisfying (1.1)–(1.4), take v ∈ H and multiply (1.1) by vσ
Γj
, then

integrate it between tj and tj+1:

−
∫ tj+1

tj

uΔΔ(t)vσ
Γj (t)Δt =

∫ tj+1

tj

f(σ(t), uσ(t))vσ
Γj (t)Δt. (3.18)
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The first term is now

∫ tj+1

tj

uΔΔ(t)vσ
Γj (t)Δt = uΔ

(
t−j+1
)
vΓj

(
t−j+1
)
− uΔ

(
t+j

)
vΓj

(
t+j

)
−
∫ tj+1

tj

uΔ(t)vΔ
Γj (t)Δt. (3.19)

Hence, one gets

−
p∑
j=0

∫ tj+1

tj

uΔΔ(t)vσ
Γj (t)Δt

=
p∑
j=0

[
uΔ
(
t+j

)
vΓj

(
t+j

)
− uΔ

(
t−j+1
)
vΓj

(
t−j+1
)]

+
p∑
j=0

∫ tj+1

tj

uΔ(t)vΔ
Γj (t)Δt

=
p∑
j=1

[
uΔ
(
t+j

)
v
(
t+j

)
− uΔ

(
t−j
)
v
(
t−j
)]

+
p∑
j=0

∫ tj+1

tj

uΔ(t)vΔ
Γj (t)Δt

=
p∑
j=1

[(
1 +Aj

)
uΔ
(
t+j

)
− uΔ

(
t−j
)]

v
(
t−j
)
+

p∑
j=0

∫ tj+1

tj

uΔ(t)vΔ
Γj (t)Δt

=
p∑
j=1

(
1 +Aj

)
Ij
(
u
(
t−j
))

v
(
t−j
)
+

p∑
j=0

∫ tj+1

tj

uΔ(t)vΔ
Γj (t) Δt,

(3.20)

for all u, v ∈ H. Then we have

p∑
j=0

∫ tj+1

tj

uΔ(t)vΔ
Γj (t)Δt −

p∑
j=0

∫ tj+1

tj

f(σ(t), uσ(t))vσ
Γj (t)Δt +

p∑
j=1

(
1 +Aj

)
Ij
(
u
(
t−j
))

v
(
t−j
)
= 0,

(3.21)

for all u, v ∈ H.
This suggests that one defines ϕ : H → R, by

ϕ(u) =
1
2

p∑
j=0

∫ tj+1

tj

∣∣∣uΔ
Γj (t)

∣∣∣
2
Δt −

p∑
j=0

∫ tj+1

tj

F
(
σ(t), uσ

Γj (t)
)
Δt +

p∑
j=1

∫u(tj )

0
Ij(s)ds, (3.22)

where F(t, x) =
∫x
0f(t, s)ds, and Ij = (1 +Aj)Ij , ∀j = 1, 2, . . . , p.



Advances in Difference Equations 9

By a standard argument, one can prove that the functional ϕ is continuously
differentiable at any u ∈ H and

(
ϕ′(u), v

)
=

p∑
j=0

∫ tj+1

tj

uΔ
Γj (t)v

Δ
Γj (t)Δt −

p∑
j=0

∫ tj+1

tj

f
(
σ(t), uσ

Γj (t)
)
vσ
Γj (t)Δt +

p∑
j=1

Ij
(
u
(
tj
))
v
(
tj
)
,

(3.23)

for all u, v ∈ H.
We call such critical points weak solutions of problem (1.1)–(1.4).
Let E be a Banach space, ϕ ∈ C1(E,R), which means that ϕ is a continuously Fréchet-

differentiable functional on E. ϕ is said to satisfy the Palais-Smale condition (P-S condition)
if any sequence {xn} ⊂ E such that {ϕ(xn)} is bounded and ϕ′(xn) → 0 as n → ∞, has a
convergent subsequence in E.

Lemma 3.4 (Mountain pass theorem [26, Theorem 2.2], [27]). Let E be a real Hilbert space.
Suppose ϕ ∈ C1(E,R), satisfies the P-S condition and the following assumptions:

(l1) there exist constants ρ > 0 and a > 0 such that ϕ(x) ≥ a for all x ∈ ∂Bρ, where Bρ = {x ∈
E | ‖x‖E < ρ} which will be the open ball in E with radius ρ and centered at 0;

(l2) ϕ(0) ≤ 0 and there exists x0 /∈Bρ such that ϕ(x0) ≤ 0.

Then ϕ possesses a critical value c ≥ a.Moreover, c can be characterized as

c = inf
h∈Γ

max
s∈[0,1]

ϕ(h(s)), (3.24)

where

Γ = {h ∈ C([0, 1];E) | h(0) = 0, h(1) = x0}. (3.25)

4. Main Results

Now we introduce some assumptions, which are used hereafter:

(H1) the function f : [0, T]
T
× R → R is continuous;

(H2) limx→ 0(f(t, x)/x) = 0 holds uniformly for t ∈ [0, T]
T
;

(H3) there exist constants μ > 2 and L > 0 such that

0 < μF(t, x) ≤ xf(t, x), ∀|x| ≥ L; (4.1)

(H4) there exist constants Mj,with 0 < M < min{1/2R2
0, (μ − 2)/R2

0(μ + 2)} such that

∣∣(1 +Aj

)
Ij(x)

∣∣ ≤ Mj |x|, ∀x ∈ R, j = 1, 2, . . . , p, (4.2)

where M =
∑p

j=1 Mj, and R0 = T1/2/(1 −∑p

k=1 |Ak|).
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Remark 4.1. (H3) is the well-known Ambrosetti-Rabinowitz condition from the paper [27].

Lemma 4.2. Suppose that the conditions (H1)–(H4) are satisfied, then ϕ satisfies the Palais-Smale
condition.

Proof. Let {uk} be the sequence in H satisfying that {ϕ(uk)} is bounded and ϕ′(uk) → 0 as
k → ∞. Then there exists a constant β > 0 such that

∣∣ϕ(uk)
∣∣ ≤ β, (4.3)

for every k ∈ N. By (H3), we know that there exist constants c1 > 0, c2 > 0 such that

F(t, x) ≥ c1|x|μ − c2, (4.4)

for all x ∈ R. By (H4) and Lemma 3.1, we have

p∑
j=1

∫u(tj )

0
Ij(s)ds ≥ −

p∑
j=1

∫max{0,u(tj )}

min{0,u(tj )}

∣∣∣Ij(s)
∣∣∣ds

≥ −1
2

p∑
j=1

Mj

∣∣u(tj
)∣∣2

≥ −1
2
MR2

0‖u‖2H,

(4.5)

p∑
j=1

Ij
(
u
(
tj
))
u
(
tj
) ≤

p∑
j=1

∣∣∣Ij
(
u
(
tj
))∣∣∣
∣∣u(tj

)∣∣

≤
p∑
j=1

Mj

∣∣u(tj
)∣∣2

≤ MR2
0‖u‖2H,

(4.6)

for all u ∈ H.
Set

Ωj

k =
{
t ∈ [tj , tj+1

]
T
|
∣∣∣uj

k(σ(t))
∣∣∣ ≥ L

}
,

u
j

k(t) := (uk)Γj :=

⎧
⎨
⎩
uk(t), t ∈ (tj , tj+1

]
T
,

uk

(
t+j

)
, t = tj ,

(4.7)

for j = 0, 1, . . . , p, k = 1, 2, . . . .
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It follows from (4.3)–(4.5), and (H3) that

β + γ‖uk‖H ≥ ϕ(uk) − 1
μ

(
ϕ′(uk), uk

)

=
(
1
2
− 1
μ

)
‖uk‖2H +

p∑
j=1

∫uk(tj)

0
Ij(s)ds − 1

μ

p∑
j=1

Ij
(
uk

(
tj
))
uk

(
tj
)

−
p∑
j=0

∫ tj+1

tj

[
F
(
σ(t), uj

k(σ(t))
)
− f
(
σ(t), uj

k(σ(t))
)
u
j

k(σ(t))
]
Δt

=
(
1
2
− 1
μ

)
‖uk‖2H +

p∑
j=1

∫uk(tj)

0
Ij(s) ds − 1

μ

p∑
j=1

Ij
(
uk

(
tj
))
uk

(
tj
)

−
p∑
j=0

∫

Ωj

k

[
F
(
σ(t), uj

k(σ(t))
)
− f
(
σ(t), uj

k(σ(t))
)
u
j

k(σ(t))
]
Δt

−
p∑
j=0

∫

[tj ,tj+1]T
\Ωj

k

[
F
(
σ(t), uj

k(σ(t))
)
− f
(
σ(t), uj

k(σ(t))
)
u
j

k(σ(t))
]
Δt

≥
(

1
2
− 1
μ
− MR2

0

2
− MR2

0

μ

)
‖u‖2H − c3,

(4.8)

for some constants γ > 0, c3 > 0, which implies that {‖uk‖H} is bounded by the fact that
μ > 2, M < (μ − 2)/R2

0(μ + 2).
Then {‖uj

k
‖H1

Δ([tj ,tj+1]T
)} is bounded in H1

Δ([tj , tj+1]T
) for j = 0, 1, . . . , p. Therefore,

there exists a subsequence {uk} (for simplicity denoted again by {uk}) such that {uj

k
}

converges weakly to uj inH1
Δ([tj , tj+1]T

), and by Lemma 2.6, {uj

k
} converges strongly to uj in

C([tj , tj+1]T
), that is, ‖uj

k − uj‖C([tj ,tj+1]T
) → 0 as k → +∞ for all j = 0, 1, . . . , p.

Set

u(t) :=

⎧
⎨
⎩
uj(t), t ∈ (tj , tj+1

]
T
, j = 0, 1, . . . , p,

uj−1(tj
)
, t = tj , j = 0, 1, . . . , p.

(4.9)

In a similar way to Lemma 3.2, one can prove that u ∈ H,uΓj = uj , j = 0, 1, . . . , p.
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For any v ∈ H, we have

(v, uk)H =
p∑
j=0

∫ tj+1

tj

vΔ
Γj (t)

(
u
j

k

)Δ
(t)Δt

=
p∑
j=0

[(
vΓj , u

j

k

)
H([tj ,tj+1]T

)
−
∫ tj+1

tj

vΓj (t)u
j

k(t)Δt

]

−→
p∑
j=0

[(
vΓj , u

j
)
H([tj ,tj+1]T

)
−
∫ tj+1

tj

vΓj (t)u
j(t)Δt

]

=
p∑
j=0

∫ tj+1

tj

vΔ
Γj (t)

(
uj
)Δ

(t)Δt = (v, u)H,

(4.10)

which implies that {uk} converges weakly to u inH.
By (3.22) and (3.23), we have

(
ϕ′(uk) − ϕ′(u), uk − u

)

=
p∑
j=0

∫ tj+1

tj

[(
u
j

k

)Δ
(t) − uΔ

Γj (t)
]2
Δt

−
p∑
j=0

∫ tj+1

tj

[
f
(
σ(t), uj

k(σ(t))
)
− f
(
σ(t), uσ

Γj (t)
)][

u
j

k(σ(t)) − uσ
Γj (t)

]
Δt

+
p∑
j=1

[
Ij
(
uk

(
tj
)) − Ij

(
u
(
tj
))][

uk

(
tj
) − u

(
tj
)]

=
p∑
j=0

∫ tj+1

tj

[(
u
j

k

)Δ
(t) − uΔ

Γj (t)
]2
Δt

−
p∑
j=0

∫ tj+1

tj

[
f
(
σ(t), uj

k(σ(t))
)
− f
(
σ(t), uj(σ(t))

)][
u
j

k(σ(t)) − uj(σ(t))
]
Δt

+
p∑
j=1

[
Ij
(
u
j−1
k

(
tj
)) − Ij

(
uj−1(tj

))][
u
j−1
k

(
tj
) − uj−1(tj

)]
.

(4.11)

By the fact that (ϕ′(uk) − ϕ′(u), uk − u) → 0 as k → ∞, and the continuity of f and Ij , on
[0, T]

T
, j = 1, 2, . . . , p,we conclude

p∑
j=0

∫ tj+1

tj

[(
u
j

k

)Δ
(t) − uΔ

Γj (t)
]2
Δt −→ 0 as k −→ ∞, (4.12)
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that is,

‖uk − u‖H −→ 0 as k −→ ∞. (4.13)

Thus, {uk} possesses a convergent subsequence inH. Then, the P-S condition is now satisfied.

Theorem 4.3. Suppose that (H1)–(H4) hold. Then problem (1.1)–(1.4) has at least one nontrivial
weak solution on H.

Proof. In order to show that ϕ has at least one nonzero critical point, it suffices to check the
conditions (l1) and (l2). It follows from (H2) that there is a constant δ > 0 such that

∣∣f(t, s)∣∣ ≤ 1
2R2

0T
|s|, (4.14)

for all 0 < |s| ≤ δ and t ∈ [0, T]
T
.Hence, we have

F(σ(t), uσ(t)) =
∫uσ(t)

0
f(σ(t), s)ds

≤
∫max{0,uσ(t)}

min{0,uσ(t)}

∣∣f(σ(t), s)∣∣ds

≤ 1
2R2

0T

∫max{0,uσ(t)}

min{0,uσ(t)}
|s|ds

≤ 1
4R2

0T
|uσ(t)|2,

(4.15)

for all supt∈[0,T]
T

|u(t)| ≤ δ and t ∈ [0, T]
T
. By Lemma 3.3, we obtain

p∑
j=0

∫ tj+1

tj

F
(
σ(t), uσ

Γj (t)
)
Δt ≤ 1

4R2
0T

p∑
j=0

∫ tj+1

tj

∣∣∣uσ
Γj (t)

∣∣∣
2
Δt

≤ 1
4
‖u‖2H,

(4.16)

for all supt∈[0,T]
T

|u(t)| ≤ δ and t ∈ [0, T]
T
. It follows from (4.5) and (4.16) that

ϕ(u) ≥ 1
2
‖u‖2H − 1

4
‖u‖2H − 1

2
MR2

0‖u‖2H

=
1
2

(
1
2
−MR2

0

)
‖u‖2H,

(4.17)
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for all supt∈[0,T]
T

|u(t)| ≤ δ and t ∈ [0, T]
T
. Therefore, by (3.6), one gets

ϕ(u) ≥ α, (4.18)

for all u ∈ ∂Bρ, where Bρ = {u ∈ H | ‖u‖H < ρ = δ/R0} and α = (δ2/2R2
0)((1/2) −MR2

0) > 0.
Then (l1) is verified. Next we verify (l2). By (4.4), one has

p∑
j=0

∫ tj+1

tj

F
(
σ(t), uσ

Γj (t)
)
Δt ≥ c1

p∑
j=0

∫ tj+1

tj

∣∣∣uσ
Γj (t)

∣∣∣
μ
Δt − c2T, (4.19)

for all u ∈ H, and by (H4) and Lemma 3.1, we have

p∑
j=1

∫u(tj )

0
Ij(s)ds ≤

p∑
j=1

∫max 0,u(tj )

min 0,u(tj )

∣∣∣Ij(s)
∣∣∣ds

≤ 1
2

p∑
j=1

Mj

∣∣u(tj
)∣∣2

≤ c4‖u‖2H,

(4.20)

for all u ∈ H and some positive constant c4.
Let v0 ∈ H and ‖v0‖H = 1. For any τ > 0, by (4.19) and (4.20), one obtains

ϕ(τv0) =
τ2

2
‖v0‖2H −

p∑
j=0

∫ tj+1

tj

F
(
σ(t), τ(v0)σΓj (t)

)
Δt +

p∑
j=1

∫ τv0(tj )

0
Ij(s)ds

≤ τ2

2
‖v0‖2H − c1τ

μ
p∑
j=0

∫ tj+1

tj

∣∣∣(v0)σΓj (t)
∣∣∣
μ
Δt + c2T + c4τ

2‖v0‖2H

≤
(
1
2
+ c4

)
τ2‖v0‖2H − c1τ

μ
p∑
j=0

∫ tj+1

tj

∣∣∣(v0)σΓj (t)
∣∣∣
μ
Δt + c2T,

(4.21)

which implies that

ϕ(τv0) −→ −∞, (4.22)

as τ → ∞ for μ > 2. Hence, we can choose sufficiently large τ0 > ρ such that u0 = τ0v0 ∈ H,
u0 /∈Bρ, and ϕ(u0) < 0. Assumption (l2) is verified. Theorem 4.3 is now proved.
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Example 4.4. Let [0, T]
T
= [0, 0.01] ∪ [0.02, 0.05], t1 = 0.02, T = 0.05. Then the system

−uΔΔ(t) = 4[u(σ(t))]3 exp [u(σ(t))]4, t ∈ [0, T]
T
, t /= t1,

u
(
t+1
) − u

(
t−1
)
=

1
2
u
(
t−1
)
,

uΔ(t+1
) − uΔ(t−1

)
= u

(
t−1
) − 1

3
uΔ(t−1

)
,

u(0) = u(T) = 0

(4.23)

is solvable.
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