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1. Introduction

Stability of dynamic systems has been the primary study topic for system analysis. After
Lyapunov’s second method was created in 1892, it has been developed and applied by
many researchers in the past century with fruitful classical stability results achieved. Among
these important developments is the Input-to-State Stability (ISS) property, which was firstly
formulated by Sontag [1] and has found wide use in engineering by incorporating the idea of
nonlinear small-gain theorem [2, 3]. The ISS-based small-gain theorem has some advantages
over the earlier passivity-based small-gain theorem and is currently becoming a desirable
tool for nonlinear stability analysis, especially in the case of nonlinear robust stabilization
for systems with nonlinear uncertainties and unmodeled dynamics [4, 5]. Among all the
practical nonlinear systems with uncertainties, the systems of lower-triangular form are of
great importance; such systems have several special properties so that they are recently
attracting great attention. Firstly, the “lower-triangular” form has close connection with
feedback linearzation method; therefore this provides convenience to designers. Second,
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many real-world dynamic systems are of lower-triangular form [6, 7], and some general
systems can be transformed to lower-triangular form via mathematical method [8]. For this
reason, lower-triangle nonlinear system can find its wide applications in lots of practical
dynamic systems: turbine generator and water turbing generator [9], intelligent robot [10]
and missile [11], and so forth. However, dynamic processes in this field are very difficult to
describe exactly and depend on many factors. For example, imagining an attacking missile
tracking a moving target, this dynamic process is a classical problem of model following
and tracking; till now, different control algorithms have been put forward by using ideal
assumptions [12, 13]. However, the missile itself may have variable structures subject to
random changes and/or failures of its components or environments during its flight; such
problems also occur in the case of the moving of robots or the operation of generators.
Therefore, an urgent requirement appears to remodel such dynamic processes to meet the
need of accuracy and precision.

On the other hand, Markovian jump systems, which were firstly put forward by
Kac and Krasovskii [14], have now become convenient tools for representing many real-
world systems [15, 16] and therefore arouse much research attention in recent years. In
the case of fault detection, fault-tolerant control, and multimodal control, discrete jumps
in the continuous dynamics are used to model component failures and sudden switch of
system dynamics. With further study of Markovian jump systems, many achievements have
been made in the last decade, among which Shaikhet and Mao performed foundational
work on stochastic stability for jump systems [17–19] and jump systems with time delays
[20–23]. Based on the stochastic stability, more efforts are devoted to applications of jump
system model: system state estimation [24, 25], controller design [26–28], and hierarchical
reinforcement learning for model-free jump systems [29, 30]. However, in the referred works
concerned with controller design problems, assumptions are firstly made that system models
considered only consist of static uncertainty. This is an ideal approximation of real situation
and not the case nevertheless. As we know, Markovian jump systems are used to represent a
class of systems which are usually accompanied by sudden change of working environment
or system dynamics. For this reason, practical jump systems are usually accompanied by
uncertainties, and it is hard to describe these uncertainties, with precise mathematical model.
Thus, how to stabilize Markovian jump systems with unmodeled dynamic uncertainties is a
concernful work in our view.

In this paper, we focus on the switching controller design for a class of Markovian
jump nonlinear systems with dynamic uncertainties. The control strategy ensures robustness
property of systems in the presentence of dynamic uncertainties. And our main contributions
are composed of three aspects.

(i) Stochastic differential equation for Markovian jump system is given according to
generalized Itô formula, and the similar result is achieved by Yuan and Mao [19]
with a different method. Based on differential equation, the martingale process
caused by Markovian process is incarnated in the procedure of controller design
by applying mathematical transform.

(ii) We introduce the concept of Jump Input-to-State practical Stability (JISpS) and give
stochastic Lyapunov stability criterion.

(iii) By composing backstepping technology and stochastic small-gain theorem, a
switching controller is proposed. It is shown that all signals of the closed-loop
system are globally uniformly ultimately bounded. And the closed-loop system is
JISpS in probability.
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The rest of this paper is organized as follows. Section 2 begins with some mathematical
notions and Markovian jump system model along with its differential equation. In Section 3,
we introduce the notion of JISpS and stochastic Lyapunov stability criterion. Section 4
presents the problem description. In Section 5, a switching controller is given based on
backstepping technology and stochastic small-gain theorem. In Section 6, an example is
shown to illustrate the validity of the design. Finally, conclusions are drawn in Section 7.

2. Stochastic Differential Equation of Markovian Jump System

Throughout the paper, unless otherwise specified, we denote by (Ω,F, {Ft}t≥0, P) a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous, and F0 contains all p-null sets). Let |x| stand for the usual Euclidean norm for
a vector x and ‖xt‖ stand for the supremum of vector x over time period [t0, t], that is,
‖xt‖ = supt0≤s≤t|x(s)|. The superscript T will denote transpose, and we refer to Tr(·) as the
trace for matrix. In addition, we use L2(P) to denote the space of Lebesgue square integrable
vector.

Take into account the following Markovian jump nonlinear system:

dx = f
(
x, u, t, r(t)

)
dt + g

(
x, u, t, r(t)

)
dω(t), (2.1)

where x ∈ R
n, and u ∈ R

m is the state vector and input vector of the system, respectively.
r(t), t ≥ 0 is a right-continuous Markov chain on the probability space taking values in
finite state space S = {1, 2, . . . ,N}, and ω(t) is l-dimensional independent standard Wiener
process defined on the probability space, which is independent of the Markov chain r(t). The
functions f : R

n+m × R+ × S → R
n and g : R

n+m × R+ × S → R
n×l are locally Lipschitz in

(x, u, k) ∈ R
n+m × S, for all t ≥ 0, namely, for any h > 0, there is a constant Kh ≥ 0 such that

∣∣f
(
x1, u1, t, k

)
− f

(
x2, u2, t, k

)∣∣ ∨
∣∣g
(
x1, u1, t, k

)
− g

(
x2, u2, t, k

)∣∣ ≤ Kh

(∣∣x1 − x2
∣∣ +

∣∣u1 − u2
∣∣),

∀
(
x1, u1, t, k

)
,
(
x2, u2, t, k

)
∈ R

n+m × R+ × S,
∣∣x1

∣∣ ∨
∣∣x2

∣∣ ∨
∣∣u1

∣∣ ∨
∣∣u2

∣∣ ≤ h.
(2.2)

Consider the right-continuous Markov chain r(t), and we introduce Φ(t) = [Φ1(t),Φ2(t), . . . ,
ΦN(t)]T , the indicator process for the regime r(t), as

Φj(t) =

⎧
⎨

⎩

1, r(t) = j,

0, r(t)/= j, j = 1, 2, . . . ,N.
(2.3)

And Φ(t) satisfies the following differential equation [15]:

Φ(t) = Φ(0) + Π
∫ t

0
Φ(s)ds +M(t), (2.4)
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with M(t) = [M1(t),M2(t), . . . ,MN(t)]T , an Ft-martingale satisfying M(t) ∈ L2(P), and
Π = [πkj]N×N the chain generator, an N × N matrix. The entries πkj , k, j = 1, 2, . . . ,N are
interpreted as transition rates such that

P
(
r(t + dt) = j | r(t) = k

)
=

⎧
⎨

⎩

πkjdt + o(dt), if k /= j,

1 + πkjdt + o(dt), if k = j,
(2.5)

where dt > 0 and o(dt) satisfies limdt→ 0(o(dt)/dt) = 0. Here πkj > 0 (k /= j) is the transition
rate from regime k to regime j. Notice that the total probability axiom imposes πkk negative
and

N∑

j=1

πkj = 0, ∀k ∈ S. (2.6)

Let C2,1(Rn × R+ × S) denote the family of all functions F(x, t, k) on R
n × R+ × S which are

continuously twice differentiable in x and once in t. Furthermore, we will give the stochastic
differentiable equation of F(x, t, k).

Fix any (x0, t0, k) ∈ R
n × R+ × S; by the generalized Itô formula, we have

F
(
x, t, r(t)

)
= F

(
x0, t0, k

)
+
∫ t

t0

∂F
(
x, s, r(s)

)

∂s
ds +

∫ t

t0

∂F
(
x, s, r(s)

)

∂x
f
(
x, u, s, r(s)

)
ds

+
∫ t

t0

1
2

Tr
[
gT

(
x, u, s, r(s)

)∂2F
(
x, s, r(s)

)

∂x2
g
(
x, u, s, r(s)

)
]
ds

+
∫ t

t0

∂F
(
x, s, r(s)

)

∂x
g
(
x, u, s, r(s)

)
dω(s)

+
∫ t

t0

N∑

j=1

[
F(x, s, j) − F(x, s, k)

]
dΦj(s).

(2.7)

According to (2.4), the differential equation of the indicator Φ(t) is as following:

dΦ(t) = ΠΦ(t)dt + dM(t). (2.8)

Submit (2.8) into (2.7) and notice that

N∑

j=1

πkjF(x, t, k) = 0, ∀k ∈ S. (2.9)
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There is

F
(
x, t, r(t)

)
= F

(
x0, t0, k

)
+
∫ t

t0

∂F
(
x, s, r(s)

)

∂s
ds +

∫ t

t0

∂F
(
x, s, r(s)

)

∂x
f
(
x, u, s, r(s)

)
ds

+
∫ t

t0

1
2

Tr
[
gT

(
x, u, s, r(s)

)∂2F
(
x, s, r(s)

)

∂x2
g
(
x, u, s, r(s)

)
]
ds

+
∫ t

t0

∂F
(
x, s, r(s)

)

∂x
g
(
x, u, s, r(s)

)
dω(s)

+
∫ t

t0

N∑

j=1

πkjF(x, s, j)ds +
∫ t

t0

N∑

j=1

[
F(x, s, j) − F(x, s, k)

]
dMj(s).

(2.10)

Therefore, the stochastic differentiable equation of F(x, t, k) is given by the following:

dF(x, t, k) =
∂F(x, t, k)

∂t
dt +

∂F(x, t, k)
∂x

f(x, u, t, k)dt

+
1
2

Tr
[
gT (x, u, t, k)

∂2F(x, t, k)
∂x2

g(x, u, t, k)
]
dt

+
N∑

j=1

πkjF(x, t, j)dt +
∂F(x, t, k)

∂x
g(x, u, t, k)dω(t)

+
N∑

j=1

[
F(x, t, j) − F(x, t, k)

]
dMj(t).

(2.11)

We take the expectation in (2.11), so that the the infinitesimal generator produces [18, 19, 23]

LF(x, t, k) = ∂F(x, t, k)
∂t

+
∂F(x, t, k)

∂x
f(x, u, t, k) +

N∑

j=1

πkjF(x, t, j)

+
1
2

Tr
[
gT (x, u, t, k)

∂2F(x, t, k)
∂x2

g(x, u, t, k)
]
.

(2.12)

Remark 2.1. The differential equation of Markovian jump system (2.1) is given as above and,
the similar result is also achieved by Yuan and Mao [19]. Compared with the differential
equation of general nonjump systems, two parts come forth as differences: transition rates
πkj and the martingale process M(t), which are both caused by the property of Markov chain
r(t) (see (2.4)). Up till now, switching controller design for jump systems contains only the
transition rate πkj in most cases. In this paper, the controller design will take into account the
martingale process as well since the jump systems considered here are of the form of lower
triangular. The detailed description will be given in Section 4.
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3. JISpS and Stochastic Small-Gain Theorem

Definition 3.1. Markovian jump system (2.1) is p-moment Jump Input-to-State practically
Stable (JISpS) if there existKL function β(·, ·),K∞ function γ(·), and a constant dc ≥ 0 such
that

E
∣
∣x(t, k)

∣
∣p ≤ β

(∣∣x0
∣
∣, t

)
+ γ

(∥∥ut(k)
∥
∥) + dc, ∀t ≥ 0, k ∈ S, x0 ∈ R

n \ {0}, p > 0. (3.1)

Definition 3.2. Markovian jump system (2.1) is JISpS in probability if for any given ε > 0 there
existKL function β(·, ·),K∞ function γ(·), and a constant dc ≥ 0 such that

P
{∣∣x(t, k)

∣∣ < β
(∣∣x0

∣∣, t
)
+ γ

(∥∥ut(k)
∥∥) + dc

}
≥ 1 − ε, ∀t ≥ 0, k ∈ S, x0 ∈ R

n \ {0}. (3.2)

Remark 3.3. The concept of Input-to-State Stability (ISS) is a well-known classical tool for
designing nonlinear systems, which means for a bounded control input u, the trajectories
remain in the ball of radius as β(|x0|, 0) + γ(‖u‖); furthermore, as time t increases, all
trajectories approach the smaller ball of radius γ(‖u‖). However, for general nonlinear
systems disturbed by noise and/or unmodeled dynamics, it is impossible to obtain such
strong conclusion, therefore some generalized results are put forward: Noise-to-State Stability
(NSS) [31] and Input-to-State practically Stable (ISpS) [32]. In the definition of ISpS, the
trajectories remain in the ball of radius as β(|x0|, 0) + γ(‖u‖) + dc instead of β(|x0|, 0) + γ(‖u‖).
Similar to ISS, as time t increases, all trajectories approach the smaller ball of radius γ(‖u‖)+dc,
and the system is still BIBO. As can be seen in the following analysis of this paper, bound
dc can be made as small as possible by choosing appropriate control parameters. For some
special cases, if dc ≡ 0, the ISpS is reduced to ISS.

Remark 3.4. The definition of Input-to-State practically Stable (ISpS) in probability for
nonjump stochastic system is put forward by Wu et al. [32], and the difference between JISpS
in probability and ISpS in probability lies in the expressions of system state x(t, k) and control
signal ut(k). For nonjump system, system state and control signal contain only continuous
time t with k ≡ 1, while for jump system, they concern with both continuous time t and
discrete regime k. For different system dynamic r(t) = k, control signal ut(k) will differ even
with the same time t taken and that is the reason why it is called a switching controller. Based
on the idea of switching control, the corresponding stability is called ”Jump ISpS” and it is a
more general extension of ISpS. By choosing k ≡ 1, the definition of JISpS will degenerate to
ISpS.

Remark 3.5. This paper introduces two kinds of JISpS in the sense of stochastic stability: p-
moment JISpS and JISpS in probability. According to the knowledge of stochastic process, if
one system is p-moment stochastically stable, it must be stochastically stable in probability by
using martingale inequality. Here only sufficient conditions for p-moment stochastic stability
are considered and now introduce the following stochastic Lyapunov stability criterion.
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Theorem 3.6. For Markovian jump system (2.1), let α1, α2, λ, and p be positive numbers. Assume
that there exist a function V (x, t, r(t)) ∈ C2,1(Rn × R+ × S; R+), aK∞ function χ(·), and constants
d,� ≥ 0, satisfying

α1|x|p ≤ V (x, t, k) ≤ α2|x|p +�, (3.3)

LV (x, t, k) ≤ −λ|x|p + χ
(∣∣ut(k)

∣
∣) + d, (3.4)

for all (x, t, k) ∈ R
n × R+ × S, then jump system (2.1) is pth moment JISpS and JISpS in probability

as well.

Proof. Clearly the conclusion holds if x0 = 0. So we only need proof for x0 /= 0. Fix such x0

arbitrarily, we write x(t, k, x0) as x(t).
For each integer h ≥ 1, define a stopping time as

τh = inf
{
t ≥ 0 :

∣∣x(t)
∣∣ ≥ h

}
. (3.5)

Obviously, τh → ∞ almost surely as h → ∞. Noticing that 0 < |x(t)| ≤ h if 0 ≤ t < τh, we can
apply the generalized Itô formula to derive that for any t ≥ 0

E
[
e(λ/α2)(t∧τh)V

(
x
(
t ∧ τh

)
, t ∧ τh, r

(
t ∧ τh

))]

= EV
(
x0, 0, r(0)

)
+ E

∫ t∧τh

0
e(λ/α2)s

[(
λ

α2

)
V
(
x(s), s, r(s)

)
+LV

(
x(s), s, r(s)

)
]
ds

≤ EV
(
x0, 0, r(0)

)
+ E

∫ t∧τh

0
e(λ/α2)s

[(
λ

α2

)
(
α2|x|p +�

)
− λ|x|p + χ

(∣∣us
(
r(s)

)∣∣) + d
]
ds

= EV
(
x0, 0, r(0)

)
+ E

∫ t∧τh

0
e(λ/α2)s

[
χ
(∣∣us

(
r(s)

)∣∣) +
λ

α2
� + d

]
ds.

(3.6)

Let h → ∞, apply Fatou’s lemma to (3.6), and we have

E
[
e(λ/α2)tV

(
x(t), t, r(t)

)]
≤ EV

(
x0, 0, r(0)

)
+ E

∫ t

0
e(λ/α2)s

[
χ
(∣∣us

(
r(s)

)∣∣) +
λ

α2
� + d

]
ds.

(3.7)

According to Mean value theorems for integration, there is

E
[
e(λ/α2)tV (x(t), t, k)

]
= e(λ/α2)tEV

(
x(t), t, k

)

≤ EV
(
x0, 0, r(0)

)
+ E

{
sup
0≤s≤t

[
χ
(∣∣us(k)

∣∣) +
λ

α2
� + d

]}
·
∫ t

0
e(λ/α2)sds.

(3.8)
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Noticing the property ofK∞ function, the following inequality is deduced:

e(λ/α2)tEV
(
x(t), t, k

)
≤ EV

(
x0, 0, r(0)

)
+
{
χ

(
sup
0≤s≤t

∣∣us(k)
∣∣
)
+
λ

α2
� + d

}
·
∫ t

0
e(λ/α2)sds

= EV
(
x0, 0, r(0)

)
+
{
χ
(∥∥ut(k)

∥
∥) +

λ

α2
� + d

}
·
(
α2

λ

)
(
e(λ/α2)t − 1

)

≤ EV
(
x0, 0, r(0)

)
+
{
χ
(∥∥ut(k)

∥
∥) +

λ

α2
� + d

}
·
(
α2

λ

)
e(λ/α2)t.

(3.9)

Submitting (3.3) into (3.9) gives

e(λ/α2)t · α1E|x|p ≤ EV
(
x0, 0, r(0)

)
+
{
χ
(∥∥ut(k)

∥
∥) +

λ

α2
� + d

}
·
(
α2

λ

)
e(λ/α2)t. (3.10)

Consequently,

E|x|p ≤ 1
α1
e−(λ/α2)tEV

(
x0, 0, r(0)

)
+
α2

λα1

{
χ
(∥∥ut(k)

∥∥) +
λ

α2
� + d

}

≤ α2

α1
e−(λ/α2)t

∣∣x0
∣∣p +

α2

λα1
χ
(∥∥ut(k)

∥∥) +
α2

λα1
d +

1
α1
�
(
1 + e−(λ/α2)t

)

≤ α2

α1
e−(λ/α2)t

∣∣x0
∣∣p +

α2

λα1
χ
(∥∥ut(k)

∥∥) +
α2

λα1
d +

2
α1
�.

(3.11)

In (3.11), defineKL function β(·, ·),K∞ function γ(·), and positive constant dc as:

β
(
|x0|, t

)
=
α2

α1
e−(λ/α2)t

∣∣x0
∣∣p, γ

(∥∥ut(k)
∥∥) =

α2

λα1
χ
(∥∥ut(k)

∥∥), dc =
α2

λα1
d +

2
α1
�.

(3.12)

There is

E
∣∣x(t, k)

∣∣p ≤ β
(∣∣x0

∣∣, t
)
+ γ

(∥∥ut(k)
∥∥) + dc. (3.13)

This completes the proof.

Consider the jump interconnected dynamic system described in Figure 1:

dx1 = f1
(
x1, x2,Ξ1, r(t)

)
dt + g1

(
x1, x2,Ξ1, r(t)

)
dWt1,

dx2 = f2
(
x1, x2,Ξ2, r(t)

)
dt + g2

(
x1, x2,Ξ2, r(t)

)
dWt2,

(3.14)

where x = (xT1 , x
T
2 )

T ∈ R
n1+n2 is the state of system, and Ξi (i = 1, 2) denotes exterior

disturbance and/or interior uncertainty. Wti is independent Wiener noise with appropriate
dimension, and we introduce the following stochastic nonlinear small-gain theorem as a
lemma, which is an extension of the corresponding result in Wu et al. [32].
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x1-system

x2-system

x1

x2

Wt1

Wt2

Ξ1(k)

Ξ2(k)

Figure 1: Interconnected feedback system.

Lemma 3.7 (Stochastic small-gain theorem). Suppose that both the x1-system and x2-system are
JISpS in probability with (Ξ1(k), x2(k)) as input and x1(k) as state, and (Ξ2(k), x1(k)) as input and
x2(k) as state, respectively, that is, for any given ε1, ε2 > 0,

P
{∣∣x1(t, k)

∣∣ < β1
(∣∣x1(0, k)

∣∣, t
)
+ γ1

(∥∥x2(t, k)
∥∥) + γw1

(∥∥Ξ1t(k)
∥∥) + d1

}
≥ 1 − ε1,

P
{∣∣x2(t, k)

∣∣ < β2
(∣∣x2(0, k)

∣∣, t
)
+ γ2

(∥∥x1(t, k)
∥∥) + γw2

(∥∥Ξ2t(k)
∥∥) + d2

}
≥ 1 − ε2

(3.15)

hold with βi(·, ·) being KL function, γi and γwi being K∞ functions, and di being nonnegative
constants, i = 1, 2. If there exist nonnegative parameters ρ1, ρ2, s0 such that nonlinear gain functions
γ1, γ2 satisfy

(
1 + ρ1

)
γ1 ◦

(
1 + ρ2

)
γ2(s) ≤ s, ∀s ≥ s0, (3.16)

the interconnected system is JISpS in probability with Ξ(k) = (Ξ1(k),Ξ2(k)) as input and x =
(x1, x2) as state, that is, for any given ε > 0, there exist aKL function βc(·, ·), aK∞ function γw(·),
and a parameter dc ≥ 0 such that

P
{∣∣x(t, k)

∣∣ < βc
(∣∣x0

∣∣, t
)
+ γw

(∥∥Ξt(k)
∥∥) + dc

}
≥ 1 − ε. (3.17)

Remark 3.8. Small-gain theorem for nonlinear systems was firstly provided by Mareels and
Hill [33] and was extended to the stochastic case by Wu et al. [32]. The above stochastic
small-gain theorem for jump systems is an extension of the nonjump case. This extension
can be achieved without any mathematical difficulties, and the proof process is the same
as in [32]. The reason is that in Lemma 3.7 we only take into account the interconnection
relationships between interconnected system and its subsystems, despite subsystems are of
jump or nonjump case. If both subsystems are nonjump and ISpS in probability, respectively,
the interconnected system is ISpS in probability. In contrast, if both subsystems are jump and
JISpS in probability, respectively, the interconnected system is JISpS in probability and so on.
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4. Problem Description

Consider the following Markovian jump nonlinear systems with unmodeled dynamics
described by

dξ = q
(
y, ξ, t, r(t)

)
dt,

dxi = xi+1dt + fi
(
Xi, t, r(t)

)
dt + Δi

(
X, ξ, t, r(t)

)
dt, i = 1, 2, . . . , n − 1

dxn = udt + fn
(
X, t, r(t)

)
dt + Δn

(
X, ξ, t, r(t)

)
dt,

y = x1,

(4.1)

where Xi = (x1, x2, . . . , xi)
T ∈ R

i (X ∈ R
n) is system state vector, u ∈ R is system input signal,

ξ ∈ R
n0 is unmeasured state vector, and y is output signal. The Markov chain r(t) ∈ S is as

defined in Section 2. fi : R
i × R+ × S → R is a smooth function, and Δi(X, ξ, t, r(t)) denotes

the unmodeled dynamic uncertainty which could be different with different system regime
r(t). Both fi(·, ·, ·) and Δi(·, ·, ·, ·) are locally Lipschitz as described in Section 2.

Our design purpose is to find a switching controller u of the form u(x, t, k), k ∈ S,
such that the closed-loop jump system could be JISpS in probability, and the system output
y could be within an attractive region around the equilibrium point with radius as small as
possible. In this paper, the following assumptions are made for jump system (4.1):

(A1) The ξ subsystem with input y is JISpS in probability, namely, there exists a smooth
positive definite Lyapunov function V0(ξ, t, k) ∈ C2,1(Rn0 × R+ × S; R+) such that

α10|ξ|p0 ≤ V0(ξ, t, k) ≤ α20|ξ|p0 ,

LV0(ξ, t, k) ≤ −λ0|ξ|p0 + χ0
(
|y|

)
+ d0,

(4.2)

where χ0(·) is K∞ function, p0 is positive integer, and α10, α20, λ0 > 0, d0 ≥ 0 are
constants.

(A2) For each i = 1, 2, . . . , n, k ∈ S, there exists an unknown positive constant p∗i ≤ pi
such that

∣∣Δi(X, ξ, t, k)
∣∣ ≤ p∗i φi1

(
Xi, k

)
+ p∗i φi2

(
|ξ|, k

)
, (4.3)

where pi is known constant and φi1(·, k), φi2(·, k) are known nonnegative smooth
functions for any given k ∈ S.

For the design of switching controller, we introduce the following lemmas.

Lemma 4.1 (Young’s inequality). For any two vectors x, y ∈ R
n, the following inequality holds

xTy ≤ ε
p

p
|x|p + 1

qεq
|y|q, (4.4)

where ε > 0 and the constants p > 1, q > 1 satisfy (p − 1)(q − 1) = 1.
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Lemma 4.2 (Martingale representation [34]). Let B(t) = [B1(t), B2(t), . . . , BN(t)] be N-
dimensional standard Wiener noise. Suppose M(t) is an FNt -martingale (w.r.t. P) and that M(t) ∈
L2(P), for all t ≥ 0, then there exists a stochastic process Ψ(t) ∈ L2(P), such that

dM(t) = Ψ(t) · dB(t). (4.5)

5. Controller Design and Stability Analysis

Now we seek the switching controller u(x, t, k) for jump system (4.1) so that the closed-loop
system could be JISpS in probability. Perform a new transformation as

zi = xi − αi−1

(
Xi−1, t, k

)
, ∀i = 1, 2, . . . , n, k ∈ S. (5.1)

For simplicity, we just denote αi−1(Xi−1, t, k), fi(Xi, t, k), Δi(X, ξ, t, k), q(y, ξ, t, k) by αi−1(k),
fi(k), Δi(k), q(k), where α0(k) = 0, αn(k) = u(x, t, k), ∀k ∈ S, and the new coordinate is
Z = (z1, z2, . . . , zn).

According to stochastic differential equation (2.11), one has:

dzi = dxi − dαi−1(k)

=
[
xi+1 + fi(k) + Δi(k)

]
dt − ∂αi−1(k)

∂t
dt −

i−1∑

j=1

∂αi−1(k)
∂xj

[xj+1 + fj(k) + Δj(k)
]
dt

−
N∑

j=1

πkjαi−1(j)dt +
N∑

j=1

[
αi−1(k) − αi−1(j)

]
dMj(t)

=
[
zi+1 + αi(k) + fi(k) + Λi(k)

]
dt − ∂αi−1(k)

∂t
dt −

i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 + fj(k)

]
dt

−
N∑

j=1

πkjαi−1(j)dt + Γi(k)dM(t).

(5.2)

Here we define

Λi(k) � Δi(k) −
i−1∑

j=1

∂αi−1(k)
∂xj

Δj(k),

Γi(k) �
[
αi−1(k) − αi−1(1), αi−1(k) − αi−1(2), . . . , αi−1(k) − αi−1(N)

]
.

(5.3)

From assumption (A2), one gets that there exist nonnegative smooth functions φi1(·, k),
φi2(·, k) satisfying

∣∣Λi(k)
∣∣ ≤ p∗i φi1

(
Xi, k

)
+ p∗i φi2

(
|ξ|, k

)
. (5.4)

The inequality (5.4) could easily be deduced by using Lemma 4.1.
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Now we turn to the martingale process M(t); according to Lemma 4.2, there exist a
function Ψ(t) ∈ L2(P) and an N-dimensional standard Wiener noise B(t) satisfying dM(t) =
Ψ(t)dB(t), where E[Ψ(t)Ψ(t)T ] = ψ(t)ψ(t)T ≤ Q < ∞, and Q is a positive bounded constant.
Therefore we have

dzi =
{
zi+1 + αi(k) + fi(k) + Λi(k) −

∂αi−1(k)
∂t

−
i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 + fj(k)

]
−

N∑

j=1

πkjαi−1(j)
}
dt + Γi(k)Ψ(t)dB(t).

(5.5)

Remark 5.1. Differential equation of new coordinateZ(t) is deduced as above. The martingale
process resulting from Markov process is transformed into Wiener noise by using Martingale
representation theorem, and it will affect the Lyapunov function construction and affect the
remainder of the control design process; for nonjump systems with uncertainty, a quadratic
Lyapunov is chosen to meet control performance in most cases [32, 35, 36]. However, for jump
systems, this choice will fail because of the existence of martingale process (or Wiener noise).
To solve this problem, we suggest using quartic Lyapunov function instead of quadratic one,
and this will increase largely the difficulty of design.

Choose the quartic Lyapunov function as

V =
1
4

n∑

i=1

z4
i . (5.6)

In the view of (5.5) and (5.6), the infinitesimal generator of V satisfies

LV =
n∑

i=1

z3
i

{

zi+1 + αi(k) + fi(k) + Λi(k) −
∂αi−1(k)

∂t

−
i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 + fj(k)

]
−

N∑

j=1

πkjαi−1(j)

}

+
3
2

n∑

i=1

z2
i Γi(k)ψψ

TΓTi (k)

≤
n∑

i=1

z3
i

{(
3
4
δ4/3
i +

1
4δ4

i−1

)
zi + αi(k) + fi(k) + Λi(k) −

∂αi−1(k)
∂t

−
i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 + fj(k)

]
−

N∑

j=1

πkjαi−1(j) + μzi
[
Γi(k)ΓTi (k)

]2
}

+
9n

16μ
Q2.

(5.7)
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The following inequalities could be deduced by using Young’s inequality and norm
inequalities with the help of changing the order of summations or exchanging the indices
of the summations:

n∑

i=1

z3
i zi+1 ≤

3
4

n−1∑

i=1

δ4/3
i z4

i +
1
4

n−1∑

i=1

1
δ4
i

z4
i+1

=
n∑

i=1

(
3
4
δ4/3
i +

1
4δ4

i−1

)
z4
i ,

3
2

n∑

i=1

z2
i Γi(k)ψψ

TΓTi (k) ≤
3
2

n∑

i=1

z2
i Γi(k)QΓTi (k)

≤
n∑

i=1

μz4
i

[
Γi(k)ΓTi (k)

]2
+

n∑

i=1

9
16μ

Q2

=
n∑

i=1

μz4
i

[
Γi(k)ΓTi (k)

]2
+

9n
16μ

Q2,

(5.8)

where δ0 =∞, δn = 0, and μ > 0, δi > 0, i = 1, 2, . . . , n are design parameters.
Based on assumption (A2) and (5.4), we obtain the following inequality by applying

Lemma 4.1:

z3
iΛi(k) ≤

∣∣z3
iΛi(k)

∣∣

≤
∣∣z3

i

∣∣ ∗
[
p∗i φi1

(
Xi, k

)
+ p∗i φi2

(
|ξ|, k

)]

=
∣∣z3

i

∣∣p∗i φi1
(
Xi, k

)
+
∣∣z3

i

∣∣p∗i φi2
(
|ξ|, k

)

≤
[
piz

3
i φ̂i1

(
Xi, k

)
+ σi

]
+
[
z6
i p

2
i +

1
4
φ2
i2

(
|ξ|, k

)
]
.

(5.9)

Here φ̂i1(Xi, k) = (pi/4σi)z3
i φ

2
i (Xi, k), σi > 0 are design parameters.

Submit (5.9) into (5.7), there is

LV ≤
n∑

i=1

z3
i

{(
3
4
δ4/3
i +

1
4δ4

i−1

)
zi + αi(k) + fi(k) + piφ̂i1

(
Xi, k

)
+ p2

i z
3
i −

∂αi−1(k)
∂t

−
i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 + fj(k)

]
−

N∑

j=1

πkjαi−1(j) + μzi
[
Γi(k)ΓTi (k)

]2
}

+
n∑

i=1

1
4
φ2
i

(
|ξ|, k

)
+

n∑

i=1

σi +
9n

16μ
Q2.

(5.10)
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Choose the virtual control signal as

αi(k) = −cizi −
(

3
4
δ4/3
i +

1
4δ4

i−1

)
zi − fi(k) − piφ̂i1

(
Xi, k

)
− p2

i z
3
i +

∂αi−1(k)
∂t

+
i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 + fj(k)

]
+

N∑

j=1

πkjαi−1(j) − μzi
[
Γi(k)ΓTi (k)

]2
.

(5.11)

Thus the real control signal u is u(x, t, k) = αn(k) such that

LV ≤ −
n∑

i=1

ciz
4
i +

n∑

i=1

1
4
φ2
i

(
|ξ|, k

)
+

n∑

i=1

σi +
9n

16μ
Q2

≤ −cV + Vξ
(
|ξ|, k

)
+ dz,

(5.12)

where c = min{4ci}, dz =
∑n

i=1σi + (9n/16μ)Q2, and K∞ function Vξ is chosen to satisfy
Vξ(|ξ|, k) ≥

∑n
i=1(1/4)φ2

i (|ξ|, k).

Theorem 5.2. If Assumptions (A1) and (A2) hold and a switching control law (5.11) is adopted,
the interconnected Markovian jump system (4.1) is JISpS in probability, and all solutions of closed-
loop system are ultimately bounded. Furthermore, the system output could be regulated to a small
neighborhood of the equilibrium point with preset precision in probability within finite time.

Proof. From Assumption (A1), the ξ subsystem is JISpS in probability. There exist α10, α20, p0 >
0 such that

α10|ξ|p0 ≤ V0(ξ, t, k) ≤ α20|ξ|p0 . (5.13)

Considering (5.12), for any given 0 < D1 < c, there is

LV ≤ −
(
c −D1

)
V + Vξ

(
|ξ|, k

)
+ dz −D1V. (5.14)

Notice the fact that LV ≤ −D1V ≤ 0 stands up as long as V ≥ (1/(c −D1))Vξ(|ξ|, k) + (1/(c −
D1))dz and vice versa. Thus we have

P

{
V ≤ max

{
3

c −D1
Vξ

[∥∥∥∥
V0(ξ, t, k)

α10

∥∥∥∥

1/p0
]
,

3dz
c −D1

}}

≥ P
{
{
LV ≤ −ι1D1V

}
∩
{
V ≤ max

{
3

c −D1
Vξ

[∥∥∥∥
V0(ξ, t, k)

α10

∥∥∥∥

1/p0
]
,

3dz
c −D1

}}}

≥ P
{
V ≤ max

{
e−ι1D1tV (0),

3
c −D1

Vξ

[∥∥∥∥
V0(ξ, t, k)

α10

∥∥∥∥

1/p0
]
,

3dz
c −D1

}}

≥ P
{
V ≤ 1

3
e−ι1D1tV (0) +

1
c −D1

Vξ

[∥∥∥∥
V0(ξ, t, k)

α10

∥∥∥∥

1/p0
]
+

dz
c −D1

}
.

(5.15)
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In (5.15), appropriate parameter ι1 can be chosen to satisfy e−ι1D1tV (0) ≤ max{(3/(c −
D1))Vξ[‖V0(ξ, t, k)/α10‖1/p0], 3dz/(c −D1)}.

According to Theorem 3.6 and (5.12), with switching controller u(k) adopted, the X
subsystem of jump system (4.1) is JISpS in probability with Xi as system state and ξ as input,
which means for any given ε1 > 0, there exists KL function β1(·, ·) = (1/3)e−ι1D1tV (0), K∞
function γ1(‖V0(k)‖) = (1/(c −D1))Vξ[‖V0(ξ, t, k)/α10‖1/p0], and d1 = 3dz/(c −D1) such that

P

{
1
4
|y|4 =

1
4
∣
∣Z1

∣
∣4 ≤ V ≤ max

{
3

c −D1
Vξ

[∥∥
∥
∥
V0(ξ, t, k)

α10

∥
∥
∥
∥

1/p0
]
,

3dz
c −D1

}}

≥ P
{
|V | ≤ β1

(
V (0), t

)
+ γ1

(∥∥V0(k)
∥
∥) + d1

}

≥ 1 − ε1.

(5.16)

On the other hand, according to Assumption (A1), there is

LV0(ξ, t, k) ≤ −λ0|ξ|p0 + χ0(|y|) + d0 ≤ −
λ0

α20
V0(ξ, t, k) + χ0

(∣∣4V (k)
∣∣1/4) + d0. (5.17)

Similarly, by choosing parameter 0 < D2 < λ0/α20, for any given ε2 > 0, there exist
KL function β2(·, ·) = (1/3)e−ι2D2tV0(ξ0, 0, k), K∞ function γ2(‖V (k)‖) = (3α20/(λ0 −
D2α20))χ0(‖4V (k)‖1/4), and d2 = 3d0α20/(λ0 −D2α20) such that

P

{
V0(·, ·, k) ≤ max

{
3

λ0/α20 −D2
χ0

(∥∥4V (k)
∥∥1/4)

,
3d0

λ0/α20 −D2

}}

≥ P
{∣∣V0

∣∣ ≤ β2
(
V0(0), t

)
+ γ2

(∥∥V (k)
∥∥) + d2

}

≥ 1 − ε2.

(5.18)

Here parameter ι2 can be chosen to satisfy e−ι2D2tV0(ξ0, 0, k) ≤ max{(3/(λ0/α20) −
D2)χ0(‖4V (k)‖1/4), 3d0/(λ0/α20) −D2}.

By combining (5.16) and (5.18) we choose parameters D1, D2, ρ1, ρ2 guaranteeing that

(
1 + ρ1

)
γ1 ◦

(
1 + ρ2

)
γ2(s) ≤ s, ∀s ≥ 0. (5.19)

According to stochastic small-gain theorem, for any given ε > 0, there existsKL function βc
such that

P
{∣∣VΞ(t, k)

∣∣ < βc
(∣∣VΞ(0)

∣∣, t
)
+ dc

}
≥ 1 − ε, (5.20)

where VΞ � (V, V0)
T , dc � (1+ρ−1

1 )[d1 +γ1((1+ρ−1
2 )d2)]+(1+ρ−2

2 )[d2 +γ2((1+ρ−1
1 )d1)] is given

as in [32]. From (5.20) it can be seen that all solutions of closed-loop system are ultimately
bounded in probability.

According to (5.20) and the property of KL function, for any given δ1 > 0, there
exists T > 0. If t > T , there is βc(|VΞ(0)|, t) < δ1. At the same time by choosing approximate
parameter, it can be guaranteed that dc < δ1.
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Figure 2: Regime transition r(t).

Let δ = 2δ1, thus we have that for any given ε > 0, there exists T > 0 and δ > 0 such
that if t > T , the output of jump system y satisfies

P
{∣∣y(t)

∣∣ < δ
}
≥ 1 − ε, (5.21)

meanwhile δ can be made as small as possible by choosing approximate parameters
ci, σi, D1, D2, ρ1, ρ2 > 0. The proof is completed.

Remark 5.3. Theorem 5.2 shows that if both X subsystem and ξ subsystem are JISpS in
probability, the jump system (4.1) is JISpS in probability with appropriate control parameters
chosen. Meanwhile the system output can be regulated to a small region in probability with
preset precision within finite time. In the following simulation, we will show how different
parameters affect the system states and output.

6. Simulation

Consider a two-order Markovian jump nonlinear system with regime transition space S =
{1, 2}, and the transition rate matrix is Π = [ π11 π12

π21 π22 ] = [ −3 3
4 −4 ].

The system with unmodeled dynamics is as follows:

dξ = q
(
x1, ξ, t, r(t)

)
dt,

dx1 = x2dt + f1
(
x1, t, r(t)

)
dt + Δ1

(
X, ξ, t, r(t)

)
dt,

dx2 = udt + f2
(
X, t, r(t)

)
dt + Δ2

(
X, ξ, t, r(t)

)
dt,

y = x1.

(6.1)
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Figure 3: Switching controller u.
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Figure 4: System output y.

Here

q
(
x1, ξ, t, 1

)
= −ξ + 0.2x1 + 0.5, q

(
x1, ξ, t, 2

)
= −ξ + 0.3x1 sin t,

f1
(
x1, t, 1

)
= x2

1, f1
(
x1, t, 2

)
= x1,

Δ1(X, ξ, t, 1) = 0.3ξ + 0.2x1 sin(3t), Δ1(X, ξ, t, 2) = x1ξ,

f2(X, t, 1) = x1 sinx2, f2(X, t, 2) = x1 + x2,

Δ2(X, ξ, t, 1) = 0.2ξ cos(2t) + 0.1x1, Δ2(X, ξ, t, 2) = x1|ξ|1/2.

(6.2)
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Figure 5: System state x2.

From Assumption (A2), we have

Δ1(X, ξ, t, 1) ≤ p∗1|ξ| + p
∗
1

∣∣x1
∣∣, Δ1(X, ξ, t, 2) ≤ p∗1|ξ|

2 + p∗1
∣∣x1

∣∣2
,

Δ2(X, ξ, t, 1) ≤ p∗2|ξ| + p∗2
∣∣x1

∣∣, Δ2(X, ξ, t, 2) ≤ p∗2|ξ| + p∗2
∣∣x1

∣∣2
,

(6.3)

where p∗1 ≤ 0.5, p∗2 ≤ 0.5, and the ξ subsystem satisfies

LV0(ξ, t, k) ≤ −
4
10
|ξ|2 + χ0

(∣∣x1
∣∣) + d0, (6.4)

where V0 = (1/2)ξ2, χ0(|x1|) = 0.15|x1|2, d0 = 0.125. Thus the control law is taken as follows
(here δ1 = 1).

Case 1. The system regime is k = 1:

α1(1) = −
(
c1 +

3
4

)
x1 − x2

1 −
1
4
x3

1 −
1

16σ1
x5

1,

α2(1) = −
(
c2 +

1
4

)
z2(1) − x1 sinx2 −

1
16σ2

z3
2(1)x

2
1 −

1
4
z3

2(1)

−
(
c1 +

3
4
+ 2x1 +

3
4
x2

1 +
5

16σ1
x4

1

)
(
x2

1 + x2
)

+ π11α1(1) + π12α1(2) − μz2(1)
[
α1(1) − α1(2)

]4
,

z2(1) = x2 − α1(1).

(6.5)
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Figure 6: Regime transition r(t).

Case 2. The system regime is k = 2:

α1(2) = −
(
c1 +

7
4

)
x1 −

1
4
x3

1 −
1

16σ1
x7

1,

α2(2) = −
(
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1
4

)
z2(2) −

1
16σ2

z3
2(2)x

4
1 −

1
4
z3

2(2) −
(
c1 +

11
4

+
3
4
x2

1 +
7

16σ1
x6

1

)
(
x1 + x2

)

+ π21α1(1) + π22α1(2) − μz2(2)
[
α1(1) − α1(2)

]4
,

z2(2) = x2 − α1(2).
(6.6)

In computation, we set the initial value to be x1 = −0.9, x2 = 3.3 and the time step to be
0.05 second. For comparison, two groups of different control parameters are given. First, we
take the parameter with values c1 = c2 = 2, σ1 = σ2 = 1, μ = 5, and the simulation results are
as follows. Figure 2 shows the regime transition of the jump system, and Figure 3 shows the
corresponding switching controller u. Figure 4 shows the system output y which is defined
as the system state x1, and Figure 5 shows system state x2.

Now we choose different control parameters as c1 = c2 = 6, σ1 = σ2 = 0.5, μ = 10
and repeat the simulation. The simulation results are as follows. Figure 6 shows the regime
transition of the jump system, and Figure 7 shows the corresponding switching controller u.
Figure 8 shows the system output y which is defined as the system state x1, and Figure 9
shows system state x2.

Comparing the results from two simulations, all the signals of closed-loop system
are globally uniformly ultimately bounded, and the system output can be regulated to a
neighborhood near the equilibrium point despite of different experiment samples. As can be
seen from the figures, larger values of c1, c2 help to increase the convergence speed of system
states while larger value of μand smaller values of σ1, σ2 help to increase the precision. If
one wants the system states to converge to the neighborhood of the equilibrium point with
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Figure 7: Switching controller u.
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Figure 8: System output y.

fast speed and an acceptable precision, one should increase the value of c1, c2, μ and decrease
σ1, σ2 though this choice will increase the cost of control signals.

Remark 6.1. Much research work has been performed toward the study of nonlinear system
by using small-gain theorem [4, 32, 33]. In contrast to their contributions, this paper focuses
on the switching controller design for Markovian jump nonlinear system which is a more
general form of nonjump systems. For each different regime r(t) = k, the actual controller
u(k) is different, and it consists of two parts with obvious difference (see (5.11)): the coupling
of regime πkjαi−1(j) and μzi[Γi(k)ΓTi (k)]

2, which are both caused by the Markovian jumps
(see (2.4)). By defining regime k ≡ 1, the above two terms will reduce to zero. Thus this
switching controller design is capable of stabilizing the general nonjump system as well.
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Figure 9: System state x2.

7. Conclusion

In this paper, the authors take into account switching controller design for a class of
Markovian jump nonlinear system with unmodeled dynamics. Based on the differential
equation and infinitesimal generator of jump systems, the concept of Jump Input-to-State
Stability (JISpS) and stochastic Lyapunov stability criterion are put forward. Moreover, the
martingale process caused by the stochastic Markovian jumps is converted into Wiener noise.
By using backstepping technology and stochastic small-gain theorem, a switching controller
is proposed which ensures JISpS in probability of the jump nonlinear system. And system
output can be regulated in probability to a small neighborhood of the equilibrium point
with preset precision. The result presented in this paper also stands for the general nonjump
system.
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