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1. Introduction

One of the interesting questions concerning the stability problems of functional equations
is as follows: when is it true that a mapping satisfying a functional equation approximately
must be close to the solution of the given functional equation? Such an idea was suggested
in 1940 by Ulam [1]. The case of approximately additive mappings was solved by Hyers [2].
In 1978, Rassias [3] generalized Hyers’ result to the unbounded Cauchy difference. During
the last decades, stability problems of various functional equations have been extensively
studied and generalized by a number of authors (see [4–9]). The terminology Hyers-Ulam-
Rassias stability originates from these historical backgrounds and this terminology is also
applied to the cases of other functional equations. For instance, Rassias [10] investigated
stability properties of the following functional equation

f(x + 2y) + f(x − 2y) + 6f(x) = 4f(x + y) + 4f(x − y) + 24f(y). (1.1)

It is easy to see that f(x) = x4 is a solution of (1.1) by virtue of the identity

(x + 2y)4 + (x − 2y)4 + 6x4 = 4(x + y)4 + 4(x − y)4 + 24y4. (1.2)
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For this reason, (1.1) is called a quartic functional equation. Also Chung and Sahoo [11]
determined the general solution of (1.1) without assuming any regularity conditions on the
unknown function. In fact, they proved that the function f : R → R is a solution of (1.1) if
and only if f(x) = A(x, x, x, x), where the function A : R

4 → R is symmetric and additive in
each variable. Since the solution of (1.1) is even, we can rewrite (1.1) as

f(2x + y) + f(2x − y) = 4f(x + y) + 4f(x − y) + 24f(x) − 6f(y). (1.3)

Lee et al. [12] obtained the general solution of (1.3) and proved the Hyers-Ulam-Rassias
stability of this equation. Also Park [13] investigated the stability problem of (1.3) in the
orthogonality normed space.

In this paper we consider the following quartic functional equation, which is a
generalization of (1.3),

f(ax + y) + f(ax − y) = a2f(x + y) + a2f(x − y) + 2a2
(
a2 − 1

)
f(x) − 2

(
a2 − 1

)
f(y), (1.4)

for fixed integer a with a/= 0,±1. In the cases of a = 0,±1 in (1.4), homogeneity property
of quartic functional equations does not hold. We dispense with this cases henceforth, and
assume that a/= 0,±1. In Section 2, we show that for each fixed integer a with a/= 0,±1,
(1.4) is equivalent to (1.3). Moreover, using the idea of Găvruţa [14], we prove the Hyers-
Ulam-Rassias stability of (1.4) in Section 3. Finally, making use of the pullbacks and the heat
kernels, we reformulate and prove the Hyers-Ulam-Rassias stability of (1.4) in the spaces of
some generalized functions such as S′(Rn) of tempered distributions and F′(Rn) of Fourier
hyperfunctions in Section 4.

2. General Solution of (1.4)

Throughout this section, we denote E1 and E2 by real vector spaces. It is well known [15] that
a function f : E1 → E2 satisfies the quadratic functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y) (2.1)

if and only if there exists a unique symmetric biadditive function B such that f(x) = B(x, x)
for all x ∈ E1. The biadditive function B is given by

B(x, y) =
1
4
(
f(x + y) − f(x − y)). (2.2)

Stability problems of quadratic functional equations can be found in [16–19]. Similarly, a
function f : E1 → E2 satisfies the quartic functional equation (1.3) if and only if there exists
a symmetric biquadratic function F : E1 × E1 → E2 such that f(x) = F(x, x) for all x ∈ E1

(see [12]). We now present the general solution of (1.4) in the class of functions between real
vector spaces.

Theorem 2.1. A mapping f : E1 → E2 satisfies the functional equation (1.3) if and only if for each
fixed integer a with a/= 0,±1, a mapping f : E1 → E2 satisfies the functional equation (1.4).
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Proof. Suppose that f satisfies (1.3). Putting x = y = 0 in (1.3) we have f(0) = 0. Also letting
x = 0 in (1.3) we get f(−y) = f(y). Using an induction argument we may assume that (1.4)
is true for all awith 1 < a ≤ k. Replacing y by x + y and a by k in (1.4)we have

f
(
(k + 1)x + y

)
+ f

(
(k − 1)x − y)

= k2f(2x + y) + k2f(y) + 2k2
(
k2 − 1

)
f(x) − 2

(
k2 − 1

)
f(x + y).

(2.3)

Substituting y by −y in (2.3) and using the evenness of f we get

f
(
(k + 1)x − y) + f((k − 1)x + y

)

= k2f(2x − y) + k2f(y) + 2k2
(
k2 − 1

)
f(x) − 2

(
k2 − 1

)
f(x − y). (2.4)

Adding (2.3) to (2.4) yields

f
(
(k + 1)x + y

)
+ f

(
(k + 1)x − y)

= −[f((k − 1)x + y
)
+ f

(
(k − 1)x − y)] + k2[f(2x + y) + f(2x − y)]

+ 4k2
(
k2 − 1

)
f(x) + 2k2f(y) − 2

(
k2 − 1

)[
f(x + y) + f(x − y)].

(2.5)

According to the inductive assumption for a = k − 1, (2.5) can be rewritten as

f
(
(k + 1)x + y

)
+ f

(
(k + 1)x − y)

= −[(k − 1)2f(x + y) + (k − 1)2f(x − y)
+ 2(k − 1)2

(
(k − 1)2 − 1

)
f(x) − 2

(
(k − 1)2 − 1

)
f(y)

]

+ k2
[
4f(x + y) + 4f(x − y) + 24f(x) − 6f(y)

]

+ 4k2(k2 − 1)f(x) + 2k2f(y) − 2(k2 − 1)
[
f(x + y) + f(x − y)]

= (k + 1)2f(x + y) + (k + 1)2f(x − y)
+ 2(k + 1)2

(
(k + 1)2 − 1

)
f(x) − 2

(
(k + 1)2 − 1

)
f(y)

(2.6)

which proves the validity of (1.4) for a = k + 1. For a negative integer a < −1, replacing a by
−a > 1 one can easily prove the validity of (1.4). Therefore (1.3) implies (1.4) for any fixed
integer awith a/= 0,±1.

We now prove the converse. For each fixed integer a with a/= 0,±1, we assume that
f : E1 → E2 satisfies (1.4). Putting x = y = 0 in (1.4) we have f(0) = 0. Also letting x = 0
in (1.4) we get f(−y) = f(y) for all y ∈ X. Setting y = 0 in (1.4) we obtain the homogeneity
property f(ax) = a4f(x) for all x ∈ X. Replacing y by x + ay in (1.4)we have

f
(
a(x + y) + x

)
+ f

(
a(x − y) − x)

= a2f(2x + ay) + a6f(y) + 2a2(a2 − 1)f(x) − 2(a2 − 1)f(x + ay).
(2.7)
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Interchanging y into −y in (2.7) yields

f
(
a(x − y) + x) + f(a(x + y) − x)

= a2f(2x − ay) + a6f(y) + 2a2
(
a2 − 1

)
f(x) − 2

(
a2 − 1

)
f(x − ay). (2.8)

Replacing x and y by x + y and x in (1.4)we get

f
(
a(x + y) + x

)
+ f

(
a(x + y) − x)

= a2f(2x + y) + a2f(y) + 2a2
(
a2 − 1

)
f(x + y) − 2

(
a2 − 1

)
f(x).

(2.9)

Substituting y by −y in (2.9) gives

f
(
a(x − y) + x) + f(a(x − y) − x)

= a2f(2x − y) + a2f(y) + 2a2
(
a2 − 1

)
f(x − y) − 2

(
a2 − 1

)
f(x).

(2.10)

Plugging (2.7) into (2.8), and using (2.9) and (2.10)we have

a2
[
f(2x + ay) + f(2x − ay)] + 2a6f(y) + 4a2

(
a2 − 1

)
f(x)

− 2
(
a2 − 1

)[
f(x + ay) + f(x − ay)]

= a2
[
f(2x + y) + f(2x − y)] + 2a2f(y) − 4

(
a2 − 1

)
f(x)

+ 2a2
(
a2 − 1

)[
f(x + y) + f(x − y)].

(2.11)

Replacing x and y by 2x and ay in (1.4), respectively, we get

a4f(2x + y) + a4f(2x − y)
= a2f(2x + ay) + a2f(2x − ay) + 2a2

(
a2 − 1

)
f(2x) − 2a4

(
a2 − 1

)
f(y).

(2.12)

Setting y by ay in (1.4) and dividing by a2 we obtain

a2f(x + y) + a2f(x − y)
= f(x + ay) + f(x − ay) + 2

(
a2 − 1

)
f(x) − 2a2

(
a2 − 1

)
f(y).

(2.13)

It follows from (2.12) and (2.13) that (2.11) can be rewritten in the form

f(2x + y) + f(2x − y) = 4f(x + y) + 4f(x − y) + 2f(2x) − 8f(x) − 6f(y). (2.14)
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Using an induction argument in (2.14), it is easy to see that f satisfies the following functional
equation

f(bx + y) + f(bx − y) = b2f(x + y) + b2f(x − y) + 1
6
b2
(
b2 − 1

)
f(2x)

− 2
3
b2
(
b2 − 1

)
f(x) − 2

(
b2 − 1

)
f(y)

(2.15)

for each fixed integer b /= 0,±1. Replacing b by a in (2.15), and comparing (1.4)with (2.15)we
have f(2x) = 16f(x). Thus (2.14) implies (1.3). This completes the proof.

3. Stability of (1.4)

Nowwe are going to prove the Hyers-Ulam-Rassias stability for quartic functional equations.
Let X be a real vector space and let Y be a Banach space.

Theorem 3.1. Let φ : X2 → R
+ := [0,∞) be a mapping such that

∞∑

j=0

φ
(
ajx, 0

)

a4j
,

( ∞∑

j=1

a4jφ

(
x

aj
, 0
))

(3.1)

converges and

lim
k→∞

φ
(
akx, aky

)

a4k
= 0,

(
lim
k→∞

a4kφ

(
x

ak
,
y

ak

)
= 0

)
(3.2)

for all x, y ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

∥∥f(ax + y) + f(ax − y) − a2f(x + y) − a2f(x − y)
− 2a2

(
a2 − 1

)
f(x) + 2

(
a2 − 1

)
f(y)

∥∥ ≤ φ(x, y)
(3.3)

for all x, y ∈ X. Then there exists a unique quartic mapping T : X → Y which satisfies quartic
functional equation (1.4) and the inequality

∥∥∥∥f(x) −
f(0)
a2 + 1

− T(x)
∥∥∥∥ ≤ 1

2a4

∞∑

j=0

φ
(
ajx, 0

)

a4j
,

(∥∥∥∥f(x) −
f(0)
a2 + 1

− T(x)
∥∥∥∥ ≤ 1

2a4

∞∑

j=1

a4jφ

(
x

aj
, 0
)) (3.4)

for all x ∈ X. The mapping T is given by

T(x) = lim
k→∞

f
(
akx

)

a4k
,

(
T(x) = lim

k→∞
a4kf

(
x

ak

))
(3.5)
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for all x ∈ X. Also, if for each fixed x ∈ X the mapping t �→ f(tx) from R to Y is continuous, then
T(rx) = r4T(x) for all r ∈ R.

Proof. Putting y = 0 in (3.3) and then dividing the result by 2a4 we have

∥
∥
∥
∥
f(ax)
a4

− f(x) +
(
a2 − 1

)

a4
f(0)

∥
∥
∥
∥ ≤ 1

2a4
φ(x, 0) (3.6)

which is rewritten as

∥
∥
∥
∥g(x) −

g(ax)
a4

∥
∥
∥
∥ ≤ 1

2a4
φ(x, 0) (3.7)

for all x ∈ X, where g(x) := f(x) − (1/(a2 + 1))f(0). Making use of induction arguments and
triangle inequalities we have

∥∥∥∥g(x) −
g
(
akx

)

a4k

∥∥∥∥ ≤ 1
2a4

k−1∑

j=0

φ
(
ajx, 0

)

a4j
(3.8)

for all k ∈ N, x ∈ X. Now we prove the sequence {g(akx)/a4k} is a Cauchy sequence.
Replacing x by alx in (3.8) and then dividing by a4l we see that for k ≥ l > 0,

∥∥∥∥
g
(
alx

)

a4l
− g

(
ak+lx

)

a4(k+l)

∥∥∥∥ ≤ 1
2a4

k−1∑

j=0

φ
(
aj+lx, 0

)

a4(j+l)
. (3.9)

Since the right-hand side of (3.9) tends to 0 as l → ∞, the sequence {g(akx)/a4k} is a Cauchy
sequence. Therefore we may define

T(x) := lim
k→∞

g
(
akx

)

a4k
(3.10)

for all x ∈ X. Replacing x, y by akx, aky, respectively, in (3.3) and then dividing by a4k we
have

a−4k
∥∥f

(
ak(ax + y)

)
+ f

(
ak(ax − y)) − a2f(ak(x + y)

) − a2f(ak(x − y))

− 2a2
(
a2 − 1

)
f
(
akx

)
+ 2

(
a2 − 1

)
f
(
aky

)∥∥ ≤ a−4kφ(akx, aky).
(3.11)

Taking the limit as k → ∞, we verify that T satisfies (1.4) for all x, y ∈ X. Now letting k → ∞
in (3.8) we have

∥∥g(x) − T(x)∥∥ ≤ 1
2a4

∞∑

j=0

φ
(
ajx, 0

)

a4j
(3.12)
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for all x ∈ X. To prove the uniqueness, let us assume that there exists another quartic mapping
S : X → Y which satisfies (1.4) and the inequality (3.12). Obviously, we have T(akx) =
a4kT(x) and S(akx) = a4kS(x) for all k ∈ N, x ∈ X. Thus, we have

∥
∥T(x) − S(x)∥∥ = a−4k

∥
∥T

(
akx

) − S(akx)∥∥

≤ a−4k(∥∥T(akx) − g(akx)∥∥ +
∥
∥g

(
akx

) − S(akx)∥∥)

≤ a−4
∞∑

j=k

φ
(
ajx, 0

)

a4j

(3.13)

for all x ∈ X. Letting k → ∞, we must have S(x) = T(x) for all x. This completes the
proof.

Corollary 3.2. Let a be fixed integer with a/= 0,±1 and let ε, p, q be real numbers such that ε ≥ 0 and
either 0 ≤ p, q < 4 or p, q > 4. Suppose that a mapping f : X → Y satisfies the inequality

∥∥f(ax + y) + f(ax − y) − a2f(x + y) − a2f(x − y)
− 2a2

(
a2 − 1

)
f(x) + 2

(
a2 − 1

)
f(y)

∥∥ ≤ ε(‖x‖p + ‖y‖q)
(3.14)

for all x, y ∈ X. Then there exists a unique quartic mapping T : X → Y which satisfies (1.4) and the
inequality

∥∥∥∥f(x) −
f(0)
a2 + 1

− T(x)
∥∥∥∥ ≤ ε

2
∣∣a4 − |a|p∣∣‖x‖

p (3.15)

for all x ∈ X and for all x ∈ X \ {0} if p < 0. The mapping T is given by

T(x) = lim
k→∞

f
(
akx

)

a4k
if p, q < 4,

(
T(x) = lim

k→∞
a4kf

(
x

ak

)
if p, q > 4

) (3.16)

for all x ∈ X.

Corollary 3.3. Let a be fixed integer with a/= 0,±1 and ε ≥ 0 be a real number. Suppose that a
mapping f : X → Y satisfies the inequality

∥∥f(ax + y) + f(ax − y) − a2f(x + y) − a2f(x − y)
− 2a2

(
a2 − 1

)
f(x) + 2

(
a2 − 1

)
f(y)

∥∥ ≤ ε
(3.17)

for all x, y ∈ X. Then there exists a unique quartic mapping T : X → Y defined by

T(x) = lim
k→∞

f
(
akx

)

a4k
(3.18)
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which satisfies (1.4) and the inequality

∥
∥
∥
∥f(x) −

f(0)
a2 + 1

− T(x)
∥
∥
∥
∥ ≤ ε

2
(
a4 − 1

) (3.19)

for all x ∈ X.

4. Stability of (1.4) in Generalized Functions

In this section, we reformulate and prove the stability theorem of the quartic functional
equation (1.4) in the spaces of some generalized functions such as S′(Rn) of tempered
distributions and F′(Rn) of Fourier hyperfunctions. We first introduce briefly spaces of some
generalized functions. Here we use the multi-index notations, |α| = α1+ · · ·+αn, α! = α1! · · ·αn!,
xα = xα11 · · ·xαnn and ∂α = ∂α11 · · · ∂αnn , for x = (x1, . . . , xn) ∈ R

n, α = (α1, . . . , αn) ∈ N
n
0 , where N0 is

the set of non-negative integers and ∂j = ∂/∂xj .

Definition 4.1 (see [20, 21]). We denote by S(Rn) the Schwartz space of all infinitely
differentiable functions ϕ in R

n satisfying

‖ϕ‖α,β = sup
x∈Rn

∣∣xα∂βϕ(x)
∣∣ <∞ (4.1)

for all α, β ∈ N
n
0 , equipped with the topology defined by the seminorms ‖·‖α,β. A linear form

u on S(Rn) is said to be tempered distribution if there is a constant C ≥ 0 and a nonnegative
integerN such that

∣∣〈u, ϕ〉∣∣ ≤ C
∑

|α|,|β|≤N
sup
x∈Rn

∣∣xα∂βϕ
∣∣ (4.2)

for all ϕ ∈ S(Rn). The set of all tempered distributions is denoted by S′(Rn).

Imposing growth conditions on ‖·‖α,β in (4.1) a new space of test functions has emerged
as follows.

Definition 4.2 (see [22]). We denote by F(Rn) the Sato space of all infinitely differentiable
functions ϕ in R

n such that

‖ϕ‖A,B = sup
x,α,β

∣∣xα∂βϕ(x)
∣∣

A|α|B|β|α!β!
<∞ (4.3)

for some positive constants A,B depending only on ϕ. We say that ϕj → 0 as j → ∞ if
‖ϕj‖A,B → 0 as j → ∞ for someA,B > 0, and denote by F′(Rn) the strong dual of F(Rn) and
call its elements Fourier hyperfunctions.
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It can be verified that the seminorms (4.3) are equivalent to

‖ϕ‖h,k = sup
x∈Rn, α∈N

n
0

∣
∣∂αϕ(x)

∣
∣ exp k|x|

h|α|α!
<∞ (4.4)

for some constants h, k > 0. It is easy to see the following topological inclusions:

F(Rn) ↪→ S(Rn), S′(
R
n) ↪→ F′(

R
n). (4.5)

From the above inclusions it suffices to say that we consider (1.4) in the space F′(Rn). Note
that (3.14) itself makes no sense in the spaces of generalized functions. Following the notions
as in [23–25], we reformulate the inequality (3.14) as

∥∥u ◦A1 + u ◦A2 − a2u ◦ B1 − a2u ◦ B2

− 2a2
(
a2 − 1

)
u ◦ P1 + 2

(
a2 − 1

)
u ◦ P2

∥∥ ≤ ε(|x|p + |y|q),
(4.6)

where A1(x, y) = ax + y, A2(x, y) = ax − y, B1(x, y) = x + y, B2(x, y) = x − y, P1(x, y) =
x, P2(x, y) = y. Here ◦ denotes the pullbacks of generalized functions. Also |·| denotes the
Euclidean norm and the inequality ‖v‖ ≤ ψ(x, y) in (4.6) means that |〈v, ϕ〉| ≤ ‖ψϕ‖L1 for all
test functions ϕ(x, y) defined on R

2n. We refer to (see [20, Chapter VI]) for pullbacks and to
[21, 23–26] for more details of S′(Rn) and F′(Rn).

If p < 0, q < 0, the right side of (4.6) does not define a distribution. Thus, the inequality
(4.6) makes no sense in this case. Also, if p = 4, q = 4, it is not known whether Hyers-Ulam-
Rassias stability of (1.4) holds even in the classical case. Thus, we consider only the case
0 ≤ p, q < 4 or p, q > 4.

In order to prove the stability problems of quartic functional equations in the space of
F′(Rn) we employ the n-dimensional heat kernel, that is, the fundamental solution Et(x) of
the heat operator ∂t −Δx in R

n
x × R

+
t given by

Et(x) =

{
(4πt)−n/2 exp

( − |x|2/4t), t > 0,
0, t ≤ 0.

(4.7)

Since for each t > 0, Et(·) belongs to F(Rn), the convolution

ũ(x, t) =
(
u ∗ Et

)
(x) =

〈
uy, Et(x − y)〉, x ∈ R

n, t > 0 (4.8)

is well defined for each u ∈ F′(Rn), which is called the Gauss transform of u. In connection
with the Gauss transform it is well known that the semigroup property of the heat kernel

(
Et ∗ Es

)
(x) = Et+s(x) (4.9)

holds for convolution. Semigroup property will be useful to convert inequality (3.3) into the
classical functional inequality defined on upper-half plane. Moreover, the following result
called heat kernel method holds [27].
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Let u ∈ S′(Rn). Then its Gauss transform ũ(x, t) is a C∞-solution of the heat equation

(
∂

∂t
−Δ

)
ũ(x, t) = 0 (4.10)

satisfying

(i) There exist positive constants C,M andN such that

∣
∣ũ(x, t)

∣
∣ ≤ Ct−M(

1 + |x|)N in R
n × (0, δ). (4.11)

(ii) ũ → u as t → 0+ in the sense that for every ϕ ∈ S(Rn),

〈u, ϕ〉 = lim
t→ 0+

∫
ũ(x, t)ϕ(x)dx. (4.12)

Conversely, every C∞-solution U(x, t) of the heat equation satisfying the growth condition
(4.11) can be uniquely expressed as U(x, t) = ũ(x, t) for some u ∈ S′(Rn). Similarly, we can
represent Fourier hyperfunctions as initial values of solutions of the heat equation as a special
case of the results (see [28]). In this case, the estimate (4.11) is replaced by the following.

For every ε > 0 there exists a positive constant Cε such that

∣∣ũ(x, t)
∣∣ ≤ Cε exp

(
ε

(
|x| + 1

t

))
in R

n × (0, δ). (4.13)

We note that the Gauss transform

ψp(x, t) :=
∫
|ξ|pEt(x − ξ)dξ (4.14)

is well defined and ψp(x, t) → |x|p locally uniformly as t → 0+. Also ψp(x, t) satisfies semi-
homogeneity property

ψp
(
rx, r2t

)
= |r|pψp(x, t) (4.15)

for all r ∈ R.
We are now in a position to state and prove the main result of this paper.

Theorem 4.3. Let a be fixed integer with a/= 0,±1 and let ε, p, q be real numbers such that ε ≥ 0 and
either 0 ≤ p, q < 4 or p, q > 4. Suppose that u in S′(Rn) or F′(Rn) satisfies the inequality (4.6). Then
there exists a unique quartic mapping T(x) which satisfies (1.4) and the inequality

∥∥∥∥u − c

a2 + 1
− T(x)

∥∥∥∥ ≤ ε

2
∣∣a4 − |a|p∣∣ |x|

p, (4.16)

where c := lim supt→ 0+ ũ(0, t).
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Proof. Define v := u ◦ A1 + u ◦ A2 − a2u ◦ B1 − a2u ◦ B2 − 2a2(a2 − 1)u ◦ P1 + 2(a2 − 1)u ◦ P2.
Convolving the tensor product Et(ξ)Es(η) of n-dimensional heat kernels in v we have

∣
∣[v ∗ (Et(ξ)Es(η)

)]
(x, y)

∣
∣ =

∣
∣〈v, Et(x − ξ)Es(y − η)〉∣∣

≤ ε∥∥(|ξ|p + |η|q)Et(x − ξ)Es(y − η)∥∥L1

= ε
(
ψp(x, t) + ψq(y, s)

)
.

(4.17)

On the other hand, we figure out

[(
u ◦A1

) ∗ (Et(ξ)Es(η)
)]
(x, y) =

〈
u ◦A1, Et(x − ξ)Es(y − η)〉

=
〈
uξ, |a|−n

∫
Et

(
x − ξ − η

a

)
Es(y − η)dη

〉

=
〈
uξ, |a|−n

∫
Et

(
ax + y − ξ − η

a

)
Es(η)dη

〉

=
〈
uξ,

∫
Ea2t(ax + y − ξ − η)Es(η)dη

〉

= 〈uξ,
(
Ea2t ∗ Es

)
(ax + y − ξ)〉

=
〈
uξ, Ea2t+s(ax + y − ξ)〉

= ũ
(
ax + y, a2t + s

)

(4.18)

and similarly we get

[(
u ◦A2

) ∗ (Et(ξ)Es(η)
)]
(x, y) = ũ

(
ax − y, a2t + s),

[(
u ◦ B1

) ∗ (Et(ξ)Es(η)
)]
(x, y) = ũ(x + y, t + s),

[(
u ◦ B2

) ∗ (Et(ξ)Es(η)
)]
(x, y) = ũ(x − y, t + s),

[(
u ◦ P1

) ∗ (Et(ξ)Es(η)
)]
(x, y) = ũ(x, t),

[(
u ◦ P2

) ∗ (Et(ξ)Es(η)
)]
(x, y) = ũ(y, s),

(4.19)

where ũ is the Gauss transform of u. Thus, inequality (4.6) is converted into the classical
functional inequality

∣∣ũ
(
ax + y, a2t + s

)
+ ũ

(
ax − y, a2t + s) − a2ũ(x + y, t + s)

− a2ũ(x − y, t + s) − 2a2
(
a2 − 1

)
ũ(x, t) + 2

(
a2 − 1

)
ũ(y, s)

∣∣

≤ ε(ψp(x, t) + ψq(y, s)
)

(4.20)
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for all x, y ∈ R
n, t, s > 0. In view of (4.20), it can be verified that

c := lim sup
s→ 0+

ũ(0, s) (4.21)

exists.
We first prove the case 0 ≤ p, q < 4. Choose a sequence {sj} of positive numbers which

tends to 0 as j → ∞ such that ũ(0, sj) → c as j → ∞. Letting y = 0, s = sj → 0+ in (4.20)
and dividing the result by 2a4 we get

∣
∣∣
∣
ũ
(
ax, a2t

)

a4
− ũ(x, t) +

(
a2 − 1

)

a4
c

∣
∣∣
∣ ≤

ε

2a4
ψp(x, t) (4.22)

which is written in the form

∣∣∣∣ṽ(x, t) −
ṽ
(
ax, a2t

)

a4

∣∣∣∣ ≤
ε

2a4
ψp(x, t) (4.23)

for all x ∈ R
n, t > 0, where ṽ(x, t) := ũ(x, t)− (c/(a2+1)). By virtue of the semi-homogeneous

property of ψp, substituting x, t by ax, a2t, respectively, in (4.23) and dividing the result by a4

we obtain

∣∣∣∣
ṽ
(
ax, a2t

)

a4
− ṽ

(
a2x, a4t

)

a8

∣∣∣∣ ≤
ε

2a4
|a|p−4ψp(x, t). (4.24)

Using induction arguments and triangle inequalities we have

∣∣∣∣ṽ(x, t) −
ṽ
(
akx, a2kt

)

a4k

∣∣∣∣ ≤
ε

2a4
ψp(x, t)

k−1∑

j=0

|a|(p−4)j (4.25)

for all k ∈ N, x ∈ R
n, t > 0. Let us prove the sequence {a−4kṽ(akx, a2kt)} is convergent for all

x ∈ R
n, t > 0. Replacing x, t by alx, a2lt, respectively, in (4.25) and dividing the result by a4l

we see that

∣∣∣∣
ṽ
(
alx, a2lt

)

a4l
− ṽ

(
ak+lx, a2(k+l)t

)

a4(k+l)

∣∣∣∣ ≤
ε

2a4
ψp(x, t)

k−1∑

j=0

|a|(p−4)(j+l). (4.26)

Letting l → ∞, we have {a−4kṽ(akx, a2kt)} is a Cauchy sequence. Therefore we may define

g(x, t) = lim
k→∞

a−4kṽ
(
akx, a2kt

)
(4.27)
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for all x ∈ R
n, t > 0. On the other hand, replacing x, y, t, s by akx, aky, a2kt, a2ks in (4.20),

respectively, and then dividing the result by a4k we get

a−4k
∣
∣ũ
(
ak(ax + y), a2k

(
a2t + s

))
+ ũ

(
ak(ax − y), a2k(a2t + s))

− a2ũ(ak(x + y), a2k(t + s)
) − a2ũ(ak(x + y), a2k(t + s)

)

− 2a2
(
a2 − 1

)
ũ
(
akx, a2kt

)
+ 2

(
a2 − 1

)
ũ
(
aky, a2ks

)∣∣

≤ a−4kε(ψp
(
akx, a2kt

)
+ ψq

(
aky, a2ks

))

= ε
(|a|(p−4)kψp(x, t) + |a|(q−4)kψq(y, s)

)
.

(4.28)

Now letting k → ∞ we see by definition of g that g satisfies

g
(
ax + y, a2t + s

)
+ g

(
ax − y, a2t + s)

= a2g(x + y, t + s) + a2g(x − y, t + s)
+ 2a2

(
a2 − 1

)
g(x, t) − 2

(
a2 − 1

)
g(y, s)

(4.29)

for all x, y ∈ R
n, t, s > 0. Letting k → ∞ in (4.25) yields

∣∣ṽ(x, t) − g(x, t)∣∣ ≤ ε

2
(
a4 − |a|p)ψp(x, t). (4.30)

To prove the uniqueness of g(x, t), we assume that h(x, t) is another function satisfying (4.29)
and (4.30). Setting y = 0 and s → 0+ in (4.29)we have

g
(
akx, a2kt

)
= a4kg(x, t), h

(
akx, a2kt

)
= a4kh(x, t) (4.31)

for all k ∈ R, x ∈ R
n, t > 0. Then it follows from (4.30) and (4.31) that

∣∣g(x, t) − h(x, t)∣∣ = a−4k∣∣g(akx, a2kt) − h(akx, a2kt)∣∣

≤ a−4k∣∣g(akx, a2kt) − ṽ(akx, a2kt)∣∣

+ a−4k
∣∣ṽ
(
akx, a2kt

) − h(akx, a2kt)∣∣

≤ ε

|a|(4−p)k(a4 − |a|p)ψp(x, t)

(4.32)

for all k ∈ N, x ∈ R
n, t > 0. Letting k → ∞, we have g(x, t) = h(x, t) for all x ∈ R

n, t > 0.
This proves the uniqueness.

It follows from the inequality (4.30) that we get

∣∣〈ṽ(x, t) − g(x, t), ϕ〉∣∣ ≤ ε

2
(
a4 − |a|p)

〈
ψp(x, t), ϕ

〉
(4.33)
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for all test functions ϕ. Since g(x, t) is given by the uniform limit of the sequence
a−4kṽ(akx, a2kt), g(x, t) is also continuous on R

n × (0,∞). In view of (4.29), it follows from
the continuity of g that for each x ∈ R

n

T(x) := lim
t→ 0+

g(x, t) (4.34)

exists. Letting t = s → 0+ in (4.29) we have T(x) satisfies quartic functional equation (1.4).
Letting t → 0+ we have the inequality

∥
∥
∥
∥u − c

a2 + 1
− T(x)

∥
∥
∥
∥ ≤ ε

2
(
a4 − |a|p) |x|

p. (4.35)

Now we consider the case p, q > 4. For this case, replacing x, t by x/a, t/a2 in (4.23),
respectively, and letting s → 0+ and then multiplying the result by a4 we have

∣∣∣∣ṽ(x, t) − a4ṽ
(
x

a
,
t

a2

)∣∣∣∣ ≤
ε

2a4
|a|4−pψp(x, t). (4.36)

Using induction argument and triangle inequality we obtain

∣∣∣∣ṽ(x, t) − a4kṽ
(
x

ak
,
t

a2k

)∣∣∣∣ ≤ ε

2a4
ψp(x, t)

k∑

j=1

|a|(4−p)j (4.37)

for all k ∈ N, x ∈ R
n, t > 0. Following the similar method in case of 0 < p, q < 4, we see that

g(x, t) := lim
k→∞

a4kṽ

(
x

ak
,
t

a2k

)
(4.38)

is the unique function satisfying (4.29) so that T(x) := limt→ 0+g(x, t) exists. Letting k → ∞
in (4.37)we get

∣∣ṽ(x, t) − g(x, t)∣∣ ≤ ε

2
(|a|p − a4)ψp(x, t). (4.39)

Now letting t → 0+ in (4.39) we have the inequality

∥∥∥∥u − c

a2 + 1
− T(x)

∥∥∥∥ ≤ ε

2
(|a|p − a4) |x|

p. (4.40)

This completes the proof.
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As an immediate consequence, we have the following corollary.

Corollary 4.4. Let a be fixed integer with a/= 0,±1 and ε ≥ 0 be a real number. Suppose that u in
S′(Rn) or F′(Rn) satisfies the inequality

∥
∥u ◦A1 + u ◦A2 − a2u ◦ B1 − a2u ◦ B2 − 2a2

(
a2 − 1

)
u ◦ P1 + 2

(
a2 − 1

)
u ◦ P2

∥
∥ ≤ ε. (4.41)

Then there exists a unique quartic mapping T(x) which satisfies (1.4) and the inequality

∥
∥
∥
∥u − c

a2 + 1
− T(x)

∥
∥
∥
∥ ≤ ε

2
(
a4 − 1

) , (4.42)

where c := lim supt→ 0+ ũ(0, t).
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