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1. Introduction

In a recent paper [1], by applying a fixed-point index theorem in cones, Jiang and Weng
studied the existence of positive solutions for the boundary value problems described by
second-order functional differential equations of the form

y′′(x) + r(x)f
(
y
(
ω(x)

))
= 0, 0 < x < 1,

αy(x) − βy′(x) = ξ(x), a ≤ x ≤ 0,

γy(x) + δy′(x) = η(x), 1 ≤ x ≤ b.
(1.1)

Aykut [2] applied a cone fixed-point index theorem in cones and obtained sufficient
conditions for the existence of positive solutions of the boundary value problems of
functional difference equations of the form

−Δ2y(n − 1) = f
(
n, y

(
ω(n)

))
, n ∈ [a, b],

αy(n − 1) − βΔy(n − 1) = ξ(n), n ∈ [
τ1, a

]
,

γy(n) + δΔy(n) = η(n), n ∈ [
b, τ2

]
.

(1.2)
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In this article, we are interested in proving the existence and multiplicity of positive
solutions for the boundary value problems of a second-order functional dynamic equation of
the form

−yΔ∇(t) + q(t)y(t) = f
(
t, y

(
ω(t)

))
, t ∈ [a, b],

αy
(
ρ(t)

) − βyΔ(ρ(t)
)
= ξ(t), t ∈ [

τ1, a
]
,

γy(t) + δyΔ(t) = η(t), t ∈ [
b, τ2

]
.

(1.3)

Throughout this paper we let T be any time scale (nonempty closed subset of R) and [a, b]
be a subset of T such that [a, b] = {t ∈ T, a ≤ t ≤ b}, and for t ∈ [τ1, a], t is not right scattered
and left dense at the same time.

Some preliminary definitions and theorems on time scales can be found in books [3, 4]
which are excellent references for calculus of time scales.

We will assume that the following conditions are satisfied.

(H1) q(t) ∈ C[a, b], q(t) ≥ 0.

(H2) f : [a, b] × R → R is continuous with respect to y and f(t, y) ≥ 0 for y ∈ R
+, where

R
+ denotes the set of nonnegative real numbers.

(H3) ω(t) defined on [a, b] satisfies

c = inf
{
ω(t) : a ≤ t ≤ b} < b,

d = sup
{
ω(t) : a ≤ t ≤ b} > a. (1.4)

Let E1 := {t ∈ E : a ≤ ω(t) ≤ ρ(b)} be nonempty subset of

E :=
{
t ∈ [a, b] : a ≤ ω(t) ≤ b}. (1.5)

(H4) α, β, γ, δ ≥ 0, α + β > 0, γ + δ > 0;

if q(t) ≡ 0 (a ≤ t ≤ b), then α + γ > 0; −γ/δ ∈ R+ for δ > 0, where R+ denotes the set
of all positively regressive and rd-continuous functions.

(H5) ξ(t) and η(t) are defined on [τ1, σ(a)] and [b, σ(τ2)], respectively, where τ1 :=
min{a, c}, τ2 := max{b, d}; furthermore, ξ(a) = η(b) = 0;

ξ
(
σ(t)

) ≥ 0, for t ∈ [
τ1, a

]
as β = 0;

∫a

t

ξ(s)e	(α/β)(s, 0)∇s ≥ 0, for t ∈ [
τ1, a

]
as β > 0;

η(t) ≥ 0, for t ∈ [
b, τ2

]
as δ = 0;

e−γ/δ(t, 0)
∫ t

b

η(s)e	(−γ/δ)
(
σ(s), 0

)
Δs ≥ 0, for t ∈ [

b, τ2
]
as δ > 0.

(1.6)
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There have been a number of works concerning of at least one and multiple positive
solutions for boundary value problems recent years. Some authors have studied the problem
for ordinary differential equations, while others have studied the problem for difference
equations, while still others have considered the problem for dynamic equations on a time
scale [5–10]. However there are fewer research for the existence of positive solutions of
the boundary value problems of functional differential, difference, and dynamic equations
[1, 2, 11–13].

Our problem is a dynamic analog of the BVPs (1.1) and (1.2). But it is more general
than them. Moreover, conditions for the existence of at least one positive solution were
studied for the BVPs (1.1) and (1.2). In this paper, we investigate the conditions for the
existence of at least one or three positive solutions for the BVP (1.3). The key tools in our
approach are the following fixed-point index theorem [14], and Leggett-Williams fixed-point
theorem [15].

Theorem 1.1 (see [14]). Let E be Banach space and K ⊂ E be a cone in E. Let r > 0, and define
Ωr = {x ∈ K : ‖x‖ < r}. AssumeA : Ωr → K is a completely continuous operator such thatAx/=x
for x ∈ ∂Ωr .

(i) If ‖Au‖ ≤ ‖u‖ for u ∈ ∂Ωr , then i(A,Ωr , K) = 1.

(ii) If ‖Au‖ ≥ ‖u‖ for u ∈ ∂Ωr , then i(A,Ωr , K) = 0.

Theorem 1.2 (see [15]). Let P be a cone in the real Banach space E. Set

Pr :=
{
x ∈ P : ‖x‖ < r},

P(ψ, p, q) :=
{
x ∈ P : p ≤ ψ(x), ‖x‖ ≤ q}.

(1.7)

Suppose that A : Pr → Pr is a completely continuous operator and ψ is a nonnegative continuous
concave functional on P with ψ(x) ≤ ‖x‖ for all x ∈ Pr . If there exists 0 < p < q < s ≤ r such that
the following conditions hold:

(i) {x ∈ P(ψ, q, s) : ψ(x) > q}/= {} and ψ(Ax) > q for all x ∈ P(ψ, q, s);

(ii) ‖Ax‖ < p for ‖x‖ ≤ p;

(iii) ψ(Ax) > q for x ∈ P(ψ, q, r) with ‖Ax‖ > s.

Then A has at least three fixed points x1, x2, andx3 in Pr satisfying

‖x1‖ < p, ψ(x2) > q, p < ‖x3‖ with ψ(x3) < q. (1.8)
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2. Preliminaries

First, we give the following definitions of solution and positive solution of BVP (1.3).

Definition 2.1. We say a function y(t) is a solution of BVP (1.3) if it satisfies the following.

(1) y(t) is nonnegative on [ρ(τ1), σ(τ2)].

(2) y(t) = y(τ1; t) as t ∈ [ρ(τ1), a], where y(τ1; t) : [ρ(τ1), a] → [0,∞) is defined as

y
(
τ1; t

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eα/β(t, 0)
[
1
β

∫a

t

ξ(s)e	(α/β)(s, 0)∇s + e	(α/β)(a, 0)y(a)
]
, if β > 0,

1
α
ξ
(
σ(t)

)
, if β = 0.

(2.1)

(3) y(t) = y(τ2; t) as t ∈ [b, σ(τ2)], where y(τ2; t) : [b, σ(τ2)] → [0,∞) is defined as

y
(
τ2; t

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−γ/δ(t, 0)
[
1
δ

∫ t

b

η(s)e	(−γ/δ)
(
σ(s), 0

)
Δs + e	(−γ/δ)(b, 0)y(b)

]
, if δ > 0,

1
γ
η(t), if δ = 0.

(2.2)

(4) y is Δ-differentiable, yΔ : [ρ(a), b] → R is ∇-differentiable on [a, b] and (yΔ)∇ :
[a, b] → R is continuous.

(5) −yΔ∇(t) + q(t)y(t) = f(t, y(ω(t))), for t ∈ [a, b].

Furthermore, a solution y(t) of (1.3) is called a positive solution if y(t) > 0 for t ∈ [a, b].
Denote by ϕ(t) and ψ(t) the solutions of the corresponding homogeneous equation

−yΔ∇(t) + q(t)y(t) = 0, t ∈ [a, b], (2.3)

under the initial conditions

ϕ
(
ρ(a)

)
= β, ϕΔ(ρ(a)

)
= α,

ψ(b) = δ, ψΔ(b) = −γ.
(2.4)

Set

D =Wt(ψ, ϕ) = ψ(t)ϕΔ(t) − ψΔ(t)ϕ(t). (2.5)

Since the Wronskian of any two solutions of (2.3) is independent of t, evaluating at t =
ρ(a), t = b and using the initial conditions (2.4) yield

D = αψ
(
ρ(a)

) − βψΔ(ρ(a)
)
= γϕ(b) + δϕΔ(b). (2.6)
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Using the initial conditions (2.4), we can deduce from (2.3) for ϕ(t) and ψ(t), the following
equations:

ϕ(t) = β + α
(
t − ρ(a)) +

∫ t

ρ(a)

∫ τ

ρ(a)
q(s)ϕ(s)∇sΔτ, (2.7)

ψ(t) = δ + γ(b − t) +
∫b

t

∫b

τ

q(s)ψ(s)∇sΔτ. (2.8)

(See [8].)

Lemma 2.2 (see [8]). Under the conditions (H1) and the first part of (H4) the solutions ϕ(t) and
ψ(t) possess the following properties:

ϕ(t) ≥ 0, t ∈ [
ρ(a), σ(b)

]
, ψ(t) ≥ 0, t ∈ [

ρ(a), b
]
,

ϕ(t) > 0, t ∈ (
ρ(a), σ(b)], ψ(t) > 0, t ∈ [

ρ(a), b
)
,

ϕΔ(t) ≥ 0, t ∈ [
ρ(a), b

]
, ψΔ(t) ≤ 0, t ∈ [

ρ(a), b
]
.

(2.9)

Let G(t, s) be the Green function for the boundary value problem:

−yΔ∇(t) + q(t)y(t) = 0, t ∈ [a, b],

αy
(
ρ(a)

) − βyΔ(ρ(a)
)
= 0,

γy(b) + δyΔ(b) = 0,

(2.10)

given by

G(t, s) =
1
D

{
ψ(t)ϕ(s), if ρ(a) ≤ s ≤ t ≤ σ(b),
ψ(s)ϕ(t), if ρ(a) ≤ t ≤ s ≤ σ(b), (2.11)

where ϕ(t) and ψ(t) are given in (2.7) and (2.8), respectively. It is obvious from (2.6), (H1)
and (H4), that D > 0 holds.

Lemma 2.3. Assume the conditions (H1) and (H4) are satisfied. Then

(i) 0 ≤ G(t, s) ≤ G(s, s) for t, s ∈ [ρ(a), b],

(ii) G(t, s) ≥ ΓG(s, s) for t ∈ [a, ρ(b)] and s ∈ [ρ(a), b],

where

Γ = min
{
I1, I2

}
, (2.12)
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in which

I1 =
{
δ +

(
b − ρ(b))[γ + δq(b)(b − ρ(b))]} ·

{
δ + γ

(
b − ρ(a)) +

∫b

ρ(a)

∫b

τ

q(s)ψ(s)∇sΔτ
}−1

,

I2 =
{
β + α

(
a − ρ(a))} ·

{
β + α

(
b − ρ(a)) +

∫b

ρ(a)

∫ τ

ρ(a)
q(s)ϕ(s)∇sΔτ

}−1
.

(2.13)

Proof. ϕ(t) ≥ 0, for t ∈ [ρ(a), σ(b)], and ψ(t) ≥ 0, for t ∈ [ρ(a), b]. Besides, ϕ(t) is
nondecreasing and ψ(t) is nonincreasing, for t ∈ [ρ(a), b]. Therefore, we have

0 ≤ 1
D

⎧
⎨

⎩

ψ(t)ϕ(s), if ρ(a) ≤ s ≤ t ≤ σ(b)
ψ(s)ϕ(t), if ρ(a) ≤ t ≤ s ≤ σ(b)

≤ G(s, s). (2.14)

So statement (i) of the lemma is proved. IfG(s, s) = 0, for a given s ∈ [ρ(a), b], then statement
(ii) of the lemma is obvious for such values. Now, s ∈ [ρ(a), b] and G(s, s)/= 0. Consequently,
G(s, s) > 0, for all such s. Let us take any t ∈ [a, ρ(b)]. Then we have for s ∈ [ρ(a), t],

G(t, s)
G(s, s)

=
ψ(t)
ψ(s)

≥ ψ
(
ρ(b)

)

ψ
(
ρ(a)

)

=
{
δ +

(
b − ρ(b))[γ + δq(b)(b − ρ(b))]}

·
{
δ + γ

(
b − ρ(a)) +

∫b

ρ(a)

∫b

τ

q(s)ψ(s)∇sΔτ
}−1

,

(2.15)

and we have for s ∈ [t, b],

G(t, s)
G(s, s)

=
ϕ(t)
ϕ(s)

≥ ϕ(a)
ϕ(b)

=
{
β + α

(
a − ρ(a))} ·

{
β + α

(
b − ρ(a)) +

∫b

ρ(a)

∫ τ

ρ(a)
q(s)ϕ(s)∇sΔτ

}−1
.

(2.16)

Let B = C[ρ(τ1), σ(τ2)] be endowed with maximum norm ‖y‖ := maxρ(τ1)≤t≤σ(τ2)|y(t)|
for y ∈ B, and let K ⊂ B be a cone defined by

K =
{
y ∈ B : min

a≤t≤ρ(b)
y(t) ≥ Γ‖y‖

}
, (2.17)

where Γ is as in (2.12).
Suppose that y(t) is a solution of (1.3), then it can be written as

y(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y
(
τ1; t

)
, if ρ

(
τ1
) ≤ t ≤ a,

∫b

ρ(a)
G(t, s)f

(
s, y

(
ω(s)

))∇s, if a ≤ t ≤ b,

y
(
τ2; t

)
, if b ≤ t ≤ σ(τ2

)
,

(2.18)
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where

y
(
τ1; t

)
=

⎧
⎪⎪⎨

⎪⎪⎩

eα/β(t, 0)
[
1
β

∫a

t

ξ(s)e	(α/β)(s, 0)∇s + e	(α/β)(a, 0)y(a)
]
, if ρ(τ1) ≤ t ≤ a, β > 0,

1
α
ξ
(
σ(t)

)
, if ρ(τ1) ≤ t ≤ a, β = 0,

y
(
τ2; t

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e−γ/δ(t, 0)
[
1
δ

∫ t

b

η(s)e	(−γ/δ)(σ(s), 0)Δs

+ e	(−γ/δ)(b, 0)y(b)
]
, if b ≤ t ≤ σ(τ2

)
, δ > 0,

1
γ
η(t), if b ≤ t ≤ σ(τ2

)
, δ = 0.

(2.19)

Throughout this paper we assume that u0(t) is the solution of (1.3)with f ≡ 0. Clearly,
u0(t) can be expressed as follows:

u0(t) =

⎧
⎪⎪⎨

⎪⎪⎩

u0
(
τ1; t

)
, if ρ

(
τ1
) ≤ t ≤ a,

0, if a ≤ t ≤ b,
u0
(
τ2; t

)
, if b ≤ t ≤ σ(τ2

)
,

(2.20)

where

u0
(
τ1; t

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1
β
eα/β(t, 0)

∫a

t

ξ(s)e	(α/β)(s, 0)∇s, if ρ
(
τ1
) ≤ t ≤ a, β > 0,

1
α
ξ
(
σ(t)

)
, if ρ

(
τ1
) ≤ t ≤ a, β = 0,

u0
(
τ2; t

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
δ
e−γ/δ(t, 0)

∫ t

b

η(s)e	(−γ/δ)
(
σ(s), 0

)
Δs, if b ≤ t ≤ σ(τ2

)
, δ > 0,

1
γ
η(t), if b ≤ t ≤ σ(τ2

)
, δ = 0.

(2.21)

Let y(t) be a solution of (1.3) and u(t) = y(t) − u0(t). Noting that u(t) ≡ y(t) for
t ∈ [a, b], we have

u(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u
(
τ1; t

)
, if ρ

(
τ1
) ≤ t ≤ a,

∫b

ρ(a)
G(t, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s, if a ≤ t ≤ b,

u
(
τ2; t

)
, if b ≤ t ≤ σ(τ2

)
,

(2.22)
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where

u
(
τ1; t

)
=

{
eα/β(t, a)y(a), if ρ

(
τ1
) ≤ t ≤ a, β > 0,

0, if ρ
(
τ1
) ≤ t ≤ a, β = 0,

u
(
τ2; t

)
=

{
e−γ/δ(t, b)y(b), if b ≤ t ≤ σ(τ2

)
, δ > 0,

0, if b ≤ t ≤ σ(τ2
)
, δ = 0.

(2.23)

Define an operator A : K → K as follows:

(Au)(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
A1u

)
(t), if ρ

(
τ1
) ≤ t ≤ a,

∫b

ρ(a)
G(t, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s, if a ≤ t ≤ b,
(
A2u

)
(t), if b ≤ t ≤ σ(τ2

)
,

(2.24)

where

(
A1u

)
(t) :=

⎧
⎪⎨

⎪⎩

eα/β(t, a)
∫b

ρ(a)
G(a, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s, if ρ
(
τ1
) ≤ t ≤ a, β > 0,

0, if ρ
(
τ1
) ≤ t ≤ a, β = 0,

(
A2u

)
(t) :=

⎧
⎪⎨

⎪⎩

e−γ/δ(t, b)
∫b

ρ(a)
G(b, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s, if b ≤ t ≤ σ(τ2
)
, δ > 0,

0, if b ≤ t ≤ σ(τ2
)
, δ = 0.

(2.25)

It is easy to derive that y is a positive solution of BVP (1.3) if and only if u = y − u0 is
a nontrivial fixed point u of A : K → K, where u0 be defined as before.

Lemma 2.4. A(K) ⊂ K.

Proof. For u ∈ K, we have Au(t) ≥ 0, t ∈ [ρ(τ1), σ(τ2)]. Moreover, we have from definition of
A that Au(t) ≤ Au(a) and Au(t) ≤ Au(b), for t ∈ [ρ(τ1), a] and t ∈ [b, σ(τ2)], respectively.
Thus, ‖Au‖ = ‖Au‖[a,b], where ‖Au‖[a,b] = max{|Au(t)| : a ≤ t ≤ b}. It follows from the
definition K and Lemma 2.3 that

min
a≤t≤ρ(b)

(Au)(t) = min
a≤t≤ρ(b)

∫b

ρ(a)
G(t, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s

≥ Γ
∫b

ρ(a)
G(s, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s

≥ Γmax
a≤t≤b

∫b

ρ(a)
G(t, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s

≥ Γ‖Au‖[a,b] = Γ‖Au‖, t ∈ [a, b].

(2.26)

Thus, A(K) ⊂ K.
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Lemma 2.5. A : K → K is completely continuous.

Lemma 2.6. If

lim
v→ 0+

f(t, v)
v

= ∞, lim
v→+∞

f(t, v)
v

= ∞, (2.27)

for all t ∈ [a, b], then there exist 0 < r0 < R0 < ∞ such that i(A,Kr,K) = 0, for 0 < r ≤ r0 and
i(A,KR,K) = 0, for R ≥ R0.

Proof. ChooseM > 0 such that

Γ2M
∫

E1

G(s, s)∇s > 1. (2.28)

By using the first equality of (2.27), we can choose r0 > 0 such that

f(t, v) ≥Mv, 0 ≤ v ≤ r0. (2.29)

If u ∈ ∂Kr (0 < r ≤ r0), then for t0 ∈ [a, ρ(b)], we have

(Au)(t0) =
∫b

ρ(a)
G
(
t0, s

)
f
(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s

≥ Γ
∫b

ρ(a)
G(s, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s

≥ Γ
∫

E1

G(s, s)f
(
s, u

(
ω(s)

))∇s

≥ ΓM
∫

E1

G(s, s)u
(
ω(s)

)∇s

≥ Γ2‖u‖M
∫

E1

G(s, s)∇s

> ‖u‖.

(2.30)

Therefore we get

‖Au‖ > ‖u‖, ∀u ∈ ∂Kr. (2.31)

Thus, we have from Theorem 1.1, i(A,Kr,K) = 0, for 0 < r ≤ r0. On the other hand, the
second equality of (2.27) implies for everyM > 0, there is an R0 > r0, such that

f(t, v) ≥Mv, v ≥ ΓR0. (2.32)
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Here we chooseM > 0 satisfying (2.28). For u ∈ ∂KR, R ≥ R0, we have definition of KR that

u(t) ≥ Γ‖u‖ = ΓR, t ∈ [a, ρ(b)]. (2.33)

It follows from (2.32) that

(Au)(t0) =
∫b

ρ(a)
G
(
t0, s

)
f
(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s

≥ Γ
∫b

ρ(a)
G(s, s)f

(
s, u

(
ω(s)

)
+ u0

(
ω(s)

))∇s

≥ Γ
∫

E1

G(s, s)f
(
s, u

(
ω(s)

))∇s

≥ ΓM
∫

E1

G(s, s)u
(
ω(s)

))∇s

≥ Γ2MR

∫

E1

G(s, s)∇s

> R = ‖u‖.

(2.34)

This shows that

‖Au‖ > ‖u‖, ∀u ∈ KR. (2.35)

Thus, by Theorem 1.1, we conclude that i(A,KR,K) = 0 for R ≥ R0. The proof is therefore
complete.

3. Existence of One Positive Solution

In this section, we investigate the conditions for the existence of at least one positive solution
of the BVP (1.3).

In the next theorem, we will also assume that the following condition on f(t, v).
(H6):

lim inf
v→ 0+

min
t∈[a,b]

f(t, v)
v

> kλ1, lim sup
v→+∞

max
t∈[a,b]

f(t, v)
v

< qλ1, (3.1)

where k > 0 is large enough such that

kΓ
∫

E1

ϕ1(s)∇s ≥
∫b

ρ(a)
ϕ1(s)∇s, (3.2)



Advances in Difference Equations 11

and q > 0 is small enough such that

Γ
∫ρ(b)

ρ(a)
ϕ1(s)∇s ≥ q

∫b

ρ(a)
ϕ1(s)∇s, (3.3)

where ϕ1(t) (ϕ1(t) > 0, t ∈ [a, b]) is the eigenfunction related to the smallest eigenvalue
λ1 (λ1 > 0) of the eigenvalue problem:

−ϕΔ∇
1 (t) + q(t)ϕ1(t) = λϕ1(t),

αϕ1
(
ρ(a)

) − βϕΔ
1

(
ρ(a)

)
= 0, γϕ1(b) + δϕΔ

1 (b) = 0.
(3.4)

Theorem 3.1. If (H1)–(H6) are satisfied, then the BVP (1.3) has at least one positive solution.

Proof. Fix 0 < m < 1 < m1 and let f1(u) = um+um1 for u ≥ 0. Then, f1(u) satisfies (2.27). Define
Ã : K → K by

(
Ãu

)
(t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
Ã1u

)
(t), if ρ

(
τ1
) ≤ t ≤ a,

∫b

ρ(a)
G(t, s)f1

(
u
(
ω(s)

)
+ u0

(
ω(s)

))∇s, if a ≤ t ≤ b,
(
Ã2x

)
(t), if b ≤ t ≤ σ(τ2

)
,

(3.5)

where

(
Ã1u

)
(t) =

⎧
⎪⎨

⎪⎩

eα/β(t, a)
∫b

ρ(a)
G(a, s)f1

(
u
(
ω(s)

)
+ u0

(
ω(s)

))∇s, if ρ
(
τ1
) ≤ t ≤ a, β > 0,

0, if ρ
(
τ1
) ≤ t ≤ a, β = 0,

(
Ã2u

)
(t) =

⎧
⎪⎨

⎪⎩

e−γ/δ(t, b)
∫b

ρ(a)
G(b, s)f1

(
u
(
ω(s)

)
+ u0

(
ω(s)

))∇s, if b ≤ t ≤ σ(τ2
)
, δ > 0,

0, if b ≤ t ≤ σ(τ2
)
, δ = 0.

(3.6)

Then Ã is a completely continuous operator. One has from Lemma 2.6 that there exist 0 < r0 <
R0 <∞ such that

0 < r ≤ r0 implies i
(
Ã,Kr,K

)
= 0, (3.7)

R ≥ R0 implies i
(
Ã,KR,K

)
= 0. (3.8)

Define H : [0, 1] ×K → K by H(t, u) = (1 − t)Au + tÃu then H is a completely continuous
operator. By the first equality in (H6) and the definition of f1, there are ε > 0 and 0 < r1 ≤ r0
such that

f(t, u) ≥ (
kλ1 + ε

)
u, ∀t ∈ [a, b], 0 ≤ u ≤ r1,

f1(u) ≥
(
kλ1 + ε

)
u, 0 ≤ u ≤ r1.

(3.9)
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We now prove that H(t, u)/=u for all t ∈ [0, 1] and u ∈ ∂Kr1 . In fact, if there exists t0 ∈ [0, 1]
and u1 ∈ ∂Kr1 such thatH(t0, u1) = u1, then u1(t) satisfies the equation

− uΔ∇
1 (t) + q(t)u1(t)

=
(
1 − t0

)
f
(
t, u1

(
ω(t)

)
+ u0

(
ω(t)

))
+ t0f1

(
u1
(
ω(t)

)
+ u0

(
ω(t)

))
, a ≤ t ≤ b (3.10)

and the boundary conditions

αu1
(
ρ(t)

) − βuΔ1
(
ρ(t)

)
= 0, t ∈ [

τ1, a
]
,

γu1(t) + δuΔ1 (t) = 0, t ∈ [
b, τ2

]
.

(3.11)

Multiplying both sides of (3.10) by ϕ1(t), then integrating from a to b, and using integration
by parts in the left-hand side two times, we obtain

λ1

∫b

ρ(a)
ϕ1(s)u1(s)∇s

=
∫b

ρ(a)

[(
1 − t0

)
f
(
s, u1

(
ω(s)

)
+ u0

(
ω(s)

))
+ t0f1

(
u1
(
ω(s)

)
+ u0

(
ω(s)

))]
ϕ1(s)∇s

=
(
1 − t0

)
∫b

ρ(a)
f
(
s, u1

(
ω(s)

)
+ u0

(
ω(s)

))
ϕ1(s)∇s

+ t0

∫b

ρ(a)
f1
(
u1
(
ω(s)

)
) + u0

(
ω(s)

))
ϕ1(s)∇s.

(3.12)

Combining (3.9) and (3.12), we get

λ1

∫b

ρ(a)
ϕ1(s)u1(s)∇s ≥

(
1 − t0

)
∫

E1

f
(
s, u1

(
ω(s)

))
ϕ1(s)∇s + t0

∫

E1

f1
(
u1
(
ω(s)

))
ϕ1(s)∇s

≥ (
1 − t0

)(
kλ1 + ε

)
∫

E1

u1
(
ω(s)

)
ϕ1(s)∇s

+ t0
(
kλ1 + ε

)
∫

E1

u1
(
ω(s)

)
ϕ1(s)∇s

=
(
λ1 +

ε

k

)
k

∫

E1

ϕ1(s)u1
(
ω(s)

)∇s

≥
(
λ1 +

ε

k

)
kΓ

∥∥u1
∥∥
∫

E1

ϕ1(s)∇s

≥
(
λ1 +

ε

k

)∥∥u1
∥∥
∫b

ρ(a)
ϕ1(s)∇s.

(3.13)
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We also have

λ1

∫b

ρ(a)
ϕ1(s)u1(s)∇s ≤ λ1

∥
∥u1

∥
∥
∫b

ρ(a)
ϕ1(s)∇s. (3.14)

Equations (3.13) and (3.14) lead to

λ1 ≥ λ1 + ε

k
. (3.15)

This is impossible. Thus H(t, u)/=u for u ∈ ∂Kr1 and t ∈ [0, 1]. By (3.7) and the homotopy
invariance of the fixed-point index (see [11]), we get that

i
(
A,Kr1 , K

)
= i

(
H(0, ·), Kr1 , K

)
= i

(
H(1, ·), Kr1 , K

)
= i

(
Ã,Kr1 , K

)
= 0. (3.16)

On the other hand, according to the second inequality of (H6), there exist ε > 0 and R′ > R0

such that

f(t, u) ≤ (
qλ1 − ε

)
u, u > R′, t ∈ [a, b]. (3.17)

We define

C := max
a≤t≤b, 0≤u≤R′

∣∣f(t, u) − (
qλ1 − ε

)
u
∣∣ + 1, (3.18)

then it follows that

f(t, u) ≤ (
qλ1 − ε

)
u + C, u ≥ 0, t ∈ [a, b]. (3.19)

DefineH1 : [0, 1] ×K → K byH1(t, u) = tAu, thenH1 is a completely continuous operator.
We claim that there exists R1 ≥ R′ such that

H1(t, u)/=u, for t ∈ [0, 1], u ∈ K, ‖u‖ ≥ R1. (3.20)
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In fact, ifH1(t0, u1) = u1 for some u1 ∈ K and 0 ≤ t0 ≤ 1, then

λ1

∫b

ρ(a)
u1(s)ϕ1(s)∇s ≤

∫b

ρ(a)
f
(
s, u1

(
ω(s)

)
+ u0

(
ω(s)

))
ϕ1(s)∇s

≤ q
(
λ1 − ε

q

)∥
∥u1 + u0

∥
∥
∫b

ρ(a)
ϕ1(s)∇s + C

∫b

ρ(a)
ϕ1(s)∇s

≤ q
(
λ1 − ε

q

)∥
∥u1

∥
∥
∫b

ρ(a)
ϕ1(s)∇s + C1

∫b

ρ(a)
ϕ1(s)∇s,

(3.21)

λ1

∫b

ρ(a)
u1(s)ϕ1(s)∇s ≥ λ1

∫ρ(b)

ρ(a)
u1(s)ϕ1(s)∇s

≥ λ1Γ
∥
∥u1

∥
∥
∫ρ(b)

ρ(a)
ϕ1(s)∇s

≥ λ1q
∥∥u1

∥∥
∫b

ρ(a)
ϕ1(s)∇s,

(3.22)

where C1 = q(λ1 − ε/q)‖u0‖ + C. Combining (3.21) with (3.22), we have

∥∥u1
∥∥ ≤ C1

ε
= R̃1. (3.23)

Let R1 = max{R′, R̃1} + 1. Then we get

H1(t, u)/=u, for t ∈ [0, 1], u ∈ K, ‖u‖ ≥ R1. (3.24)

Consequently, by the homotopy invariance of the fixed-point index, we have

i
(
A,KR1 , K

)
= i

(
H1(1, ·), KR1 , K

)
= i

(
H1(0, ·), KR1 , K

)
= i

(
Θ, KR1 , K

)
= 1, (3.25)

where Θ is zero operator. Use (3.16) and (3.25) to conclude that

i
(
A,KR1 \Kr1 , K

)
= i

(
A,KR1 , K

) − i(A,Kr1 , K
)
= 1 − 0 = 1. (3.26)

Hence, A has a fixed point in (KR1 \Kr1).
Let y(t) = u(t) + u0(t). Since y(t) = u(t) for t ∈ [a, b] and 0 < r1 ≤ ‖u‖ = ‖u‖[a,b] =

‖y‖[a,b] ≤ R1.
(H7)

lim sup
v→ 0+

max
t∈[a,b]

f(t, v)
v

< qλ1,

lim inf
v→+∞

min
t∈[a,b]

f(t, v)
v

> kλ1, ξ(t) ≡ 0, η(t) ≡ 0.

(3.27)
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Theorem 3.2. If (H1)–(H5) and (H7) are satisfied, then the BVP (1.3) has at least one positive
solution.

Proof. Define H1 : [0, 1] × K → K by H1(t, u) = tAu, then H1 is a completely continuous
operator. By the first inequality in (H7), there exist ε > 0 and 0 < r1 ≤ r0 such that

f(t, v) ≤ (
qλ1 − ε

)
v, ∀t ∈ [a, b], 0 ≤ v ≤ r1. (3.28)

We claim that H1(t, u)/=u for 0 ≤ t ≤ 1 and u ∈ ∂Kr1 . In fact, if there exist 0 ≤ t0 ≤ 1 and
u1 ∈ ∂Kr1 such that H1(t0, u1) = u1, then u1(t) satisfies the boundary condition (3.11). Since
ξ(t) ≡ 0, η(t) ≡ 0, we have u0(t) ≡ 0. Then we have

−uΔ∇
1 (t) + q(t)u1(t) = t0f

(
t, u1

(
ω(t)

))
, a ≤ t ≤ b. (3.29)

Multiplying the last equation by ϕ1(t) integrating from a to b, by (3.28), we obtain

λ1

∫b

ρ(a)
ϕ1(s)u1(s)∇s = t0

∫b

ρ(a)
f
(
s, u1

(
ω(s)

))
ϕ1(s)∇s

≤
∫b

ρ(a)
f
(
s, u1

(
ω(s)

))
ϕ1(s)∇s

≤ (
qλ1 − ε

)∥∥u1
∥∥
∫b

ρ(a)
ϕ1(s)∇s,

(3.30)

then we have

λ1

∫b

ρ(a)
u1(s)ϕ1(s)∇s ≥ λ1

∫ρ(b)

ρ(a)
u1(s)ϕ1(s)∇s

≥ λ1Γ
∥∥u1

∥∥
∫ρ(b)

ρ(a)
ϕ1(s)∇s

≥ λ1q
∥∥u1

∥∥
∫b

ρ(a)
ϕ1(s)∇s.

(3.31)

Equations (3.30) and (3.31) lead to

λ1q ≤ λq1 − ε. (3.32)

This is impossible. By homotopy invariance of the fixed-point index, we get that

i
(
A,Kr1 , K

)
= i

(
H1(1, ·), Kr1 , K

)
= i

(
H1(0, ·), Kr1 , K

)
= i

(
Θ, Kr1 , K

)
= 1. (3.33)
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DefineH : [0, 1] ×K → K byH(t, u) = (1 − t)Au + tÃu, thenH is a completely continuous
operator. By the second inequality in (H7), and definition of f1, there exist ε > 0 and R′ > R0

such that

f(t, u) ≥ (
kλ1 + ε

)
u, u > R′, t ∈ [a, b],

f1(u) ≥
(
kλ1 + ε

)
u, u > R′.

(3.34)

We define

C := max
a≤t≤b, 0≤u≤R′

∣
∣f(t, u) − (

kλ1 + ε
)
u
∣
∣ + max

0≤u≤R′

∣
∣f1(u) −

(
kλ1 + ε

)
u
∣
∣ + 1, (3.35)

then, it is obvious that

f(t, u) ≥ (
kλ1 + ε

)
u − C, ∀t ∈ [a, b], u ≥ 0,

f1(u) ≥
(
kλ1 + ε

)
u − C, u ≥ 0.

(3.36)

We claim that there exists R1 ≥ R′ such that

H(t, u)/=u, for t ∈ [0, 1], u ∈ K, ‖u‖ ≥ R1. (3.37)

In fact, if H(t0, u1) = u1 for some u1 ∈ K and 0 ≤ t0 ≤ 1, then using (3.36), it is analogous to
the argument of (3.13) and (3.14) that

λ1

∫b

ρ(a)
ϕ1(s)u1(s)∇s =

∫b

ρ(a)

[(
1 − t0

)
f
(
s, u1

(
ω(s)

)
+ t0f1

(
u1
(
ω(s)

)))]
ϕ1(s)∇s

≥
∫

E1

[(
1 − t0

)
f
(
s, u1

(
ω(s)

)
+ t0f1

(
u1
(
ω(s)

)))]
ϕ1(s)∇s

≥
∫

E1

{(
1 − t0

)[(
kλ1 + ε

)
u1
(
ω(s)

) − C] + t0
[(
kλ1 + ε

)
u1
(
ω(s)

) − C]}

× ϕ1(s)∇s

=
∫

E1

[(
kλ1 + ε

)
u1
(
ω(s)

) − C]ϕ1(s)∇s

≥
(
λ1 +

ε

k

)
kΓ

∥∥u1
∥∥
∫

E1

ϕ1(s)∇s − C
∫

E1

ϕ1(s)∇s,

λ1

∫b

ρ(a)
ϕ1(s)u1(s)∇s ≤ λ1

∥∥u1
∥∥
∫b

ρ(a)
ϕ1(s)∇s ≤ λ1

∥∥u1
∥∥kΓ

∫

E1

ϕ1(s)∇s.

(3.38)

Equation (3.38) leads to ‖u1‖ ≤ C/εΓ = R̃1. Let R1 = max{R′, R̃1} + 1. Then we get

H1(t, u)/=u, for t ∈ [0, 1], u ∈ K, ‖u‖ ≥ R1. (3.39)
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Consequently, by (3.8) and the homotopy invariance of the fixed-point index, we have

i
(
A,KR1 , K

)
= i

(
H(0, ·), KR1 , K

)
= i

(
H(1, ·), KR1 , K

)
= i

(
Ã,KR1 , K

)
= 0. (3.40)

In view of (3.33) and (3.40), we obtain

i
(
A,KR1 \Kr1 , K

)
= i

(
A,KR1 , K

) − i(A,Kr1 , K
)
= 0 − 1 = −1. (3.41)

Therefore, A has a fixed point in (KR1 \Kr1). The proof is completed.

Corollary 3.3. Using the following (H8) or (H9) instead of (H6) or (H7), the conclusions of Theorems
3.1 and 3.2 are true. For t ∈ [a, b],

(H8)

lim
v→ 0+

(
f(t, v)
v

)
= +∞, lim

v→+∞

(
f(t, v)
v

)
= 0 (sublinear); (3.42)

(H9)

lim
v→ 0+

(
f(t, v)
v

)
= 0, lim

v→+∞

(
f(t, v)
v

)
= +∞ (superlinear), ξ(t) ≡ 0, η(t) ≡ 0. (3.43)

4. Existence of Three Positive Solutions

In this section, using Theorem 1.2 (the Leggett-Williams fixed-point theorem) we prove the
existence of at least three positive solutions to the BVP (1.3).

Define the continuous concave functional ψ : K → [0,∞) to be ψ(u) :=
mint∈[a,ρ(b)]u(t), and the constants

M :=
[

min
t∈[a,ρ(b)]

∫ρ(b)

ρ(a)
G(t, s)∇s

]−1
, (4.1)

N :=
∫b

ρ(a)
G(s, s)∇s. (4.2)

Theorem 4.1. Suppose there exists constants 0 < p < q < q/Γ ≤ r such that

(D1) f(t, v) < p/N for t ∈ [a, b], v ∈ [0, p];

(D2) f(t, v) ≥ qM for t ∈ [a, ρ(b)], v ∈ [q, q/Γ];

(D3) one of the following is satisfied:

(a) lim supv→∞maxt∈[a,b](f(t, v)/v) < 1/N,

(b) there exists a constant r > q/Γ such that f(t, v) ≤ r/N for t ∈ [a, b] and v ∈ [0, r],
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where Γ, M, and R, are as defined in (2.12), (4.1), (4.2), respectively. Then the boundary value
problem (1.3) has at least three positive solutions u1, u2, and u3 satisfying

∥
∥u1

∥
∥ < p, min

t∈[a,ρ(b)]
(u2)(t) > q, p <

∥
∥u3

∥
∥ with min

t∈[a,ρ(b)]
(u3)(t) < q. (4.3)

Proof. The technique here similar to that used in [5] Again the cone K, the operator A is the
same as in the previous sections. For all u ∈ K we have ψ(u) ≤ ‖u‖. If u ∈ Kr , then ‖u‖ ≤ r
and the condition (a) of (D3) imply that

lim sup
v→∞

max
t∈[a,b]

f(t, v)
v

<
1
N
. (4.4)

Thus there exist a ζ > 0 and ε < 1/R such that if v > ζ, then maxt∈[a,b] (f(t, v)/v) < ε. For
λ := max{f(t, v) : v ∈ [0, ζ], t ∈ [a, b]}, we have f(t, v) ≤ εv + λ for all v ≥ 0, for all t ∈ [a, b].
Pick any

r > max
{
q

Γ
,

λ

1/N − ε
}
. (4.5)

Then u ∈ Kr implies that

‖Au‖ = max
t∈[a,b]

∫b

ρ(a)
G(t, s)f

(
s, u

(
ω(s)

))∇s

≤ (
ε‖u‖ + λ)N < εrN + r(1 − εN) = r.

(4.6)

Thus A : Kr → Kr.
The condition (b) of (D3) implies that there exists a positive number r such that

f(t, v) ≤ r/N for t ∈ [a, b] and v ∈ [0, r]. If u ∈ Kr , then

‖Au‖ = max
t∈[a,b]

∫b

ρ(a)
G(t, s)f

(
s, u

(
ω(s)

))∇s ≤
(
r

N

)
N ≤ r. (4.7)

Thus A : Kr → Kr. Consequently, the assumption (D3) holds, then there exist a number r
such that r > q/Γ and A : Kr → Kr.

The remaining conditions of Theorem 1.2 will now be shown to be satisfied.
By (D1) and argument above, we can get that A : Kp → Kp. Hence, condition (ii) of

Theorem 1.2 is satisfied.
We now consider condition (i) of Theorem 1.2. Choose uK(t) ≡ (s + q)/2 for t ∈ [a, b],

where s = q/Γ. Then uK(t) ∈ K(ψ, q, q/Γ) and ψ(uK) = ψ((s+q)/2) > q, so that {K(ψ, p, q/Γ) :
ψ(u) > q}/= {}. For u ∈ K(ψ, q, q/Γ), we have q ≤ u(t) ≤ q/Γ, t ∈ [a, ρ(b)]. Combining with
(D2), we get

f(t, u) ≥ qM, (4.8)
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for t ∈ [a, ρ(b)]. Thus, we have

ψ(Au) = min
t∈[a,ρ(b)]

∫b

ρ(a)
G(t, s)f

(
s, u

(
ω(s)

))∇s

> min
t∈[a,ρ(b)]

∫ρ(b)

ρ(a)
G(t, s)f

(
s, u

(
ω(s)

))∇s ≥ qM

M
= q.

(4.9)

As a result, u ∈ K(ψ, q, s) yields ψ(Au) > q.
Lastly, we consider Theorem 1.2(iii). Recall that A : K → K. If u ∈ K(ψ, q, r) and

‖Au‖ > q/Γ, then

ψ(Au) = min
t∈[a,ρ(b)]

Au(t) ≥ Γ‖Au‖ > Γ
q

Γ
= q. (4.10)

Thus, all conditions of Theorem 1.2 are satisfied. It implies that the TPBVP (1.3) has at least
three positive solutions u1, u2, u3 with

∥∥u1
∥∥ < p, ψ(u2) > q, p <

∥∥u3
∥∥ with ψ(u3) < q. (4.11)

5. Examples

Example 5.1. Let T = {(n/2) : n ∈ N0}. Consider the BVP:

−yΔ∇(t) + y(t) =
√
y(2t − 1), t ∈ [0, 3] ⊂ T,

y
(
ρ(t)

) − 2yΔ(ρ(t)
)
= t2, t ∈ [−1, 0],

3y(t) + 4yΔ(t) = t − 3, t ∈ [3, 5].

(5.1)

Then a = 0, b = 3, τ1 = −1, τ2 = 5, α = 1, β = 2, γ = 3, δ = 4, and

q(t) = 1, ξ(t) = t2, η(t) = t − 3, f(t, v) =
√
v, ω(t) = 2t − 1. (5.2)

Since limv→ 0+(f(t, v)/v) = +∞, limv→+∞(f(t, v)/v) = 0. It is clear that (H1)–(H5) and (H8)
are satisfied. Thus, by Corollary 3.3, the BVP (5.1) has at least one positive solution.

Example 5.2. Let us introduce an example to illustrate the usage of Theorem 4.1. Let

T =
{

4n2

n2 + 9
: n ∈ N0

}
∪ {4}. (5.3)
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Consider the TPBVP:

−yΔ∇(t) =
500y2(t2 + 1

)

y2
(
t2 + 1

)
+ 300

, t ∈
[
2
5
, 2
]
,

y(0) = 0,

yΔ(t) = 0, t ∈ [2, 5].

(5.4)

Then a = 2/5, b = 2, τ1 = 2/5, τ2 = 5, α = 1, β = 0, δ = 1, γ = 0, and

ω(t) = t2 + 1, ξ(t) =
(
t − 2

5

)2

, η(t) = 0, f(t, v) =
500v2

v2 + 300
. (5.5)

The Green function of the BVP (5.4) has the form

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

s, if 0 ≤ s ≤ t ≤ 64
25
,

t, if 0 ≤ t ≤ s ≤ 64
25
.

(5.6)

Clearly, f is continuous and increasing [0,∞). We can also see that α + γ > 0. By (2.12), (4.1),
and (4.2), we get Γ = 1/5, M = 65/32, andN = 11496/4225.

Now we check that (D1), (D2), and (b) of (D3) are satisfied. To verify (D1), as
f(1/10) = 0.01666611113, we take p = 1/10, then

f(y) <
p

N
= 0.03675191371, y ∈ [0, p] (5.7)

and (D1) holds. Note that f(3/2) = 3.722084367, when we set q = 3/2,

f(y) ≥ qM = 3.046875000, y ∈ [q, 5q] (5.8)

holds. It means that (D2) is satisfied. Let r = 1500, we have

f(y) ≤ 500 <
r

N
= 551.2787056, y ∈ [0, r], (5.9)

from limy→∞ f(y) = 500, so that (b) of (D3) is met. Summing up, there exist constants p =
1/10, q = 3/2, and r = 1500 satisfying

0 < p < q <
q

Γ
< r. (5.10)

Thus, by Theorem 4.1, the TPBVP (5.4) has at least three positive solutions y1, y2, y3 with

‖y1‖ < 1
10
, ψ(y2) >

3
2
,

1
10

< ‖y3‖ with ψ(y3) <
3
2
. (5.11)
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Mass, USA, 2003.

[5] D. R. Anderson, “Existence of solutions for nonlinear multi-point problems on time scales,” Dynamic
Systems and Applications, vol. 15, no. 1, pp. 21–33, 2006.

[6] D. R. Anderson, R. Avery, J. Davis, J. Henderson, and W. Yin, “Positive solutions of boundary value
problems,” in Advances in Dynamic Equations on Time Scales, pp. 189–249, Birkhäuser, Boston, Mass,
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