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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] in 1940,
concerning the stability of group homomorphisms. Let (G1, ·) be a group, and let (G2, ∗) be
a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0, such that if a
mapping h : G1 → G2 satisfies the inequality d(h(x · y), h(x) ∗ h(y)) < δ for all x, y ∈ G1,
then there exists a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? In
other words, under what condition does there exist a homomorphism near an approximate
homomorphism?

In 1941, Hyers [2] gave a first affirmative answer to the question of Ulam for Banach
spaces. Let f : E → E′ be a mapping between Banach spaces such that

∥
∥f

(

x + y
) − f(x) − f(y)∥∥ ≤ δ, (1.1)

for all x, y ∈ E and for some δ > 0. Then there exists a unique additive mapping T : E → E′

such that

∥
∥f(x) − T(x)∥∥ ≤ δ, (1.2)
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for all x ∈ E. Moreover if f(tx) is continuous in t for each fixed x ∈ E, then T is linear (see
also [3]). In 1950, Aoki [4] generalized Hyers’ theorem for approximately additive mappings.
In 1978, Th. M. Rassias [5] provided a generalization of Hyers’ theorem which allows the
Cauchy difference to be unbounded. This new concept is known as Hyers-Ulam-Rassias
stability of functional equations (see [2–24]).

The functional equation

f
(

x + y
)

+ f
(

x − y) = 2f(x) + 2f
(

y
)

(1.3)

is related to symmetric biadditive function. In the real case it has f(x) = x2 among its
solutions. Thus, it has been called quadratic functional equation, and each of its solutions
is said to be a quadratic function. Hyers-Ulam-Rassias stability for the quadratic functional
equation (1.3) was proved by Skof for functions f : A → B, where A is normed space and B
Banach space (see [25–28]).

The following cubic functional equation was introduced by the third author of this
paper, J. M. Rassias [29, 30] (in 2000-2001):

f
(

x + 2y
)

+ 3f(x) = 3f
(

x + y
)

+ f
(

x − y) + 6f
(

y
)

. (1.4)

Jun and Kim [13] introduced the following cubic functional equation:

f
(

2x + y
)

+ f
(

2x − y) = 2f
(

x + y
)

+ 2f
(

x − y) + 12f(x), (1.5)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability
for the functional equation (1.5).

The function f(x) = x3 satisfies the functional equation (1.5), which explains why it is
called cubic functional equation.

Jun and Kim proved that a function f between real vector spaces X and Y is a solution
of (1.5) if and only if there exists a unique function C : X × X × X → Y such that f(x) =
C(x, x, x) for all x ∈ X, and C is symmetric for each fixed one variable and is additive for
fixed two variables (see also [31–33]).

We deal with the following functional equation deriving from additive, cubic and
quadratic functions:

f
(

x + 2y
) − f(x − 2y

)

= 2
(

f
(

x + y
) − f(x − y)) + 2f

(

3y
) − 6f

(

2y
)

+ 6f
(

y
)

. (1.6)

It is easy to see that the function f(x) = ax3 + bx2 + cx is a solution of the functional
equation (1.6). In the present paper we investigate the general solution and the generalized
Hyers-Ulam-Rassias stability of the functional equation (1.6).

2. General Solution

In this section we establish the general solution of functional equation (1.6).
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Theorem 2.1. Let X,Y be vector spaces, and let f : X → Y be a function. Then f satisfies (1.6) if
and only if there exists a unique additive function A : X → Y , a unique symmetric and biadditive
functionQ : X ×X → Y, and a unique symmetric and 3-additive function C : X ×X ×X → Y such
that f(x) = A(x) +Q(x, x) + C(x, x, x) for all x ∈ X.

Proof. Suppose that f(x) = A(x) + Q(x, x) + C(x, x, x) for all x ∈ X, where A : X → Y is
additive, Q : X ×X → Y is symmetric and biadditive, and C : X ×X ×X → Y is symmetric
and 3-additive. Then it is easy to see that f satisfies (1.6). For the converse let f satisfy (1.6).
We decompose f into the even part and odd part by setting

fe(x) =
1
2
(

f(x) + f(−x)), fo(x) =
1
2
(

f(x) − f(−x)), (2.1)

for all x ∈ X. By (1.6), we have

fe
(

x + 2y
) − fe

(

x − 2y
)

=
1
2
[

f
(

x + 2y
)

+ f
(−x − 2y

) − f(x − 2y
) − f(−x + 2y

)]

=
1
2
[

f
(

x + 2y
) − f(x − 2y

)]

+
1
2
[

f
(

(−x) + (−2y)) − f((−x) − (−2y))]

=
1
2
[

2f
(

x + y
) − 2f

(

x − y) + 2f
(

3y
) − 6f

(

2y
)

+ 6f
(

y
)]

+
1
2
[

2f
(−x − y) − 2f

(−x + y
)

+ 2f
(−3y) − 6f

(−2y) + 6f
(−y)]

= 2
[
1
2
(

f
(

x + y
)

+ f
(−x − y))

]

− 2
[
1
2
(

f
(

x − y) + f(−x + y
))
]

+ 2
[
1
2
(

f
(

3y
)

+ f
(−3y))

]

− 6
[
1
2
(

f
(

2y
)

+ f
(−2y))

]

+ 6
[
1
2
(

f
(

y
)

+ f
(−y))

]

= 2
(

fe
(

x + y
) − fe

(

x − y)) + 2fe
(

3y
) − 6fe

(

2y
)

+ 6fe
(

y
)

,

(2.2)

for all x, y ∈ X. This means that fe satisfies (1.6), that is,

fe
(

x + 2y
) − fe

(

x − 2y
)

= 2
(

fe
(

x + y
) − fe

(

x − y)) + 2fe
(

3y
) − 6fe

(

2y
)

+ 6fe
(

y
)

. (2.3)

Now putting x = y = 0 in (2.3), we get fe(0) = 0. Setting x = 0 in (2.3), by evenness of fe we
obtain

3fe
(

2y
)

= fe
(

3y
)

+ 3fe
(

y
)

. (2.4)

Replacing x by y in (2.3), we obtain

4fe
(

2y
)

= fe
(

3y
)

+ 7fe
(

y
)

. (2.5)
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Comparing (2.4) with (2.5), we get

fe
(

3y
)

= 9fe
(

y
)

. (2.6)

By utilizing (2.5)with (2.6), we obtain

fe
(

2y
)

= 4fe
(

y
)

. (2.7)

Hence, according to (2.6) and (2.7), (2.3) can be written as

fe
(

x + 2y
) − fe

(

x − 2y
)

= 2fe
(

x + y
) − 2fe

(

x − y). (2.8)

With the substitution x := x + y, y := x − y in (2.8), we have

fe
(

3x − y) − fe
(

x − 3y
)

= 8fe(x) − 8fe
(

y
)

. (2.9)

Replacing y by −y in above relation, we obtain

fe
(

3x + y
) − fe

(

x + 3y
)

= 8fe(x) − 8fe
(

y
)

. (2.10)

Setting x + y instead of x in (2.8), we get

fe
(

x + 3y
) − fe

(

x − y) = 2fe
(

x + 2y
) − 2fe(x). (2.11)

Interchanging x and y in (2.11), we get

fe
(

3x + y
) − fe

(

x − y) = 2fe
(

2x + y
) − 2fe

(

y
)

. (2.12)

If we subtract (2.12) from (2.11) and use (2.10), we obtain

fe
(

x + 2y
) − fe

(

2x + y
)

= 3fe
(

y
) − 3fe(x), (2.13)

which, by putting y := 2y and using (2.7), leads to

fe
(

x + 4y
) − 4fe

(

x + y
)

= 12fe
(

y
) − 3fe(x). (2.14)

Let us interchange x and y in (2.14). Then we see that

fe
(

4x + y
) − 4fe

(

x + y
)

= 12fe(x) − 3fe
(

y
)

, (2.15)

and by adding (2.14) and (2.15), we arrive at

fe
(

x + 4y
)

+ fe
(

4x + y
)

= 8fe
(

x + y
)

+ 9fe(x) + 9fe
(

y
)

. (2.16)
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Replacing y by x + y in (2.8), we obtain

fe
(

3x + 2y
) − fe

(

x + 2y
)

= 2fe
(

2x + y
) − 2fe

(

y
)

. (2.17)

Let us Interchange x and y in (2.17). Then we see that

fe
(

2x + 3y
) − fe

(

2x + y
)

= 2fe
(

x + 2y
) − 2fe(x). (2.18)

Thus by adding (2.17) and (2.18), we have

fe
(

2x + 3y
)

+ fe
(

3x + 2y
)

= 3fe
(

x + 2y
)

+ 3fe
(

2x + y
) − 2fe(x) − 2fe

(

y
)

. (2.19)

Replacing x by 2x in (2.11) and using (2.7)we have

fe
(

2x + 3y
) − fe

(

2x − y) = 8fe
(

x + y
) − 8fe(x), (2.20)

and interchanging x and y in (2.20) yields

fe
(

3x + 2y
) − fe

(

x − 2y
)

= 8fe
(

x + y
) − 8fe

(

y
)

. (2.21)

If we add (2.20) to (2.21), we have

fe
(

2x + 3y
)

+ fe
(

3x + 2y
)

= fe
(

2x − y) + fe
(

x − 2y
)

+ 16fe
(

x + y
) − 8fe(x) − 8fe

(

y
)

.
(2.22)

Interchanging x and y in (2.8), we get

fe
(

2x + y
) − fe

(

2x − y) = 2fe
(

x + y
) − 2fe

(

x − y), (2.23)

and by adding the last equation and (2.8) with (2.19), we get

fe
(

2x + 3y
)

+ fe
(

3x + 2y
) − fe

(

2x − y) − fe
(

x − 2y
)

= 2fe
(

x + 2y
)

+ 2fe
(

2x + y
)

+ 4fe
(

x + y
) − 4fe

(

x − y) − 2fe(x) − 2fe
(

y
)

.
(2.24)

Now according to (2.22) and (2.24), it follows that

fe
(

x + 2y
)

+ fe
(

2x + y
)

= 6fe
(

x + y
)

+ 2fe
(

x − y) − 3fe(x) − 3fe
(

y
)

. (2.25)

From the substitution y = −y in (2.25) it follows that

fe
(

x − 2y
)

+ fe
(

2x − y) = 6fe
(

x − y) + 2fe
(

x + y
) − 3fe(x) − 3fe

(

y
)

. (2.26)
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Replacing y by 2y in (2.25)we have

fe
(

x + 4y
)

+ 4fe
(

x + y
)

= 6fe
(

x + 2y
)

+ 2fe
(

x − 2y
) − 3fe(x) − 12fe

(

y
)

, (2.27)

and interchanging x and y yields

fe
(

4x + y
)

+ 4fe
(

x + y
)

= 6fe
(

2x + y
)

+ 2fe
(

2x − y) − 12fe(x) − 3fe
(

y
)

. (2.28)

By adding (2.27) and (2.28) and then using (2.25) and (2.26), we lead to

fe
(

x + 4y
)

+ fe
(

4x + y
)

= 32fe
(

x + y
)

+ 24fe
(

x − y) − 39fe(x) − 39fe
(

y
)

. (2.29)

If we compare (2.16) and (2.29), we conclude that

fe
(

x + y
)

+ fe
(

x − y) = 2fe(x) + 2fe
(

y
)

. (2.30)

This means that fe is quadratic. Thus there exists a unique quadratic functionQ : X ×X → Y
such that fe(x) = Q(x, x), for all x ∈ X. On the other hand we can show that fo satisfies (1.6),
that is,

fo
(

x + 2y
) − fo

(

x − 2y
)

= 2
(

fo
(

x + y
) − fo

(

x − y)) + 2fo
(

3y
) − 6fo

(

2y
)

+ 6fo
(

y
)

. (2.31)

Now we show that the mapping g : X → Y defined by g(x) := fo(2x) − 8fo(x) is additive
and the mapping h : X → Y defined by h(x) := fo(2x) − 2fo(x) is cubic. Putting x = 0 in
(2.31), then by oddness of fo, we have

4fo
(

2y
)

= 5fo
(

y
)

+ fo
(

3y
)

. (2.32)

Hence (2.31) can be written as

fo
(

x + 2y
) − fo

(

x − 2y
)

= 2fo
(

x + y
) − 2fo

(

x − y) + 2fo
(

2y
) − 4fo

(

y
)

. (2.33)

From the substitution y := −y in (2.33) it follows that

fo
(

x − 2y
) − fo

(

x + 2y
)

= 2fo
(

x − y) − 2fo
(

x + y
) − 2fo

(

2y
)

+ 4fo
(

y
)

. (2.34)

Interchange x and y in (2.33), and it follows that

fo
(

2x + y
)

+ fo
(

2x − y) = 2fo
(

x + y
)

+ 2fo
(

x − y) + 2fo(2x) − 4fo(x). (2.35)

With the substitutions x := x − y and y := x + y in (2.35), we have

fo
(

3x − y) + fo
(

x − 3y
)

= 2fo
(

2x − 2y
) − 4fo

(

x − y) + 2fo(2x) − 2fo
(

2y
)

. (2.36)
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Replace x by x − y in (2.34). Then we have

fo
(

x − 3y
) − fo

(

x + y
)

= 2fo
(

x − 2y
) − 2fo(x) − 2fo

(

2y
)

+ 4fo
(

y
)

. (2.37)

Replacing y by −y in (2.37) gives

fo
(

x + 3y
) − fo

(

x − y) = 2fo
(

x + 2y
) − 2fo(x) + 2fo

(

2y
) − 4fo

(

y
)

. (2.38)

Interchanging x and y in (2.38), we get

fo
(

3x + y
)

+ fo
(

x − y) = 2fo
(

2x + y
) − 2fo

(

y
)

+ 2fo(2x) − 4fo(x). (2.39)

If we add (2.38) to (2.39), we have

fo
(

x + 3y
)

+ fo
(

3x + y
)

= 2fo
(

x + 2y
)

+ 2fo
(

2x + y
)

+ 2fo(2x) + 2fo
(

2y
) − 6fo(x) − 6fo

(

y
)

.
(2.40)

Replacing y by −y in (2.36) gives

fo
(

x + 3y
)

+ fo
(

3x + y
)

= 2fo
(

2x + 2y
) − 4fo

(

x + y
)

+ 2fo(2x) + 2fo
(

2y
)

. (2.41)

By comparing (2.40) with (2.41), we arrive at

fo
(

x + 2y
)

+ fo
(

2x + y
)

= fo
(

2x + 2y
) − 2fo

(

x + y
)

+ 3fo(x) + 3fo
(

y
)

. (2.42)

Replacing y by −y in (2.42) gives

fo
(

x − 2y
)

+ fo
(

2x − y) = fo
(

2x − 2y
) − 2fo

(

x − y) + 3fo(x) − 3fo
(

y
)

. (2.43)

With the substitution y := x + y in (2.43), we have

fo
(

x − y) − fo
(

x + 2y
)

= −fo
(

2y
) − 3fo

(

x + y
)

+ 3fo(x) + 2fo
(

y
)

, (2.44)

and replacing −y by y gives

fo
(

x + y
) − fo

(

x − 2y
)

= fo
(

2y
) − 3fo

(

x − y) + 3fo(x) − 2fo
(

y
)

. (2.45)

Let us interchange x and y in (2.45). Then we see that

fo
(

x + y
)

+ fo
(

2x − y) = fo(2x) + 3fo
(

x − y) − 2fo(x) + 3fo
(

y
)

. (2.46)
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If we add (2.45) to (2.46), we have

fo
(

2x − y) − fo
(

x − 2y
)

= fo(2x) − 2fo
(

x + y
)

+ fo(x) + fo
(

2y
)

+ fo
(

y
)

. (2.47)

Adding (2.42) to (2.47) and using (2.33) and (2.35), we obtain

fo
(

2
(

x + y
)) − 8fo

(

x + y
)

=
[

fo(2x) − 8fo(x)
]

+
[

fo
(

2y
) − 8fo

(

y
)]

, (2.48)

for all x, y ∈ X. The last equality means that

g
(

x + y
)

= g(x) + g
(

y
)

, (2.49)

for all x, y ∈ X. Therefore the mapping g : X → Y is additive. With the substitutions x := 2x
and y := 2y in (2.35), we have

fo
(

4x + 2y
)

+ fo
(

4x − 2y
)

= 2fo
(

2x + 2y
)

+ 2fo
(

2x − 2y
)

+ 2fo(4x) − 4fo(2x). (2.50)

Let g : X → Y be the additive mapping defined above. It is easy to show that fo is cubic-
additive function. Then there exists a unique function C : X × X × X → Y and a unique
additive function A : X → Y such that fo(x) = C(x, x, x) + A(x), for all x ∈ X, and C is
symmetric and 3-additive. Thus for all x ∈ X, we have

f(x) = fe(x) + fo(x) = Q(x, x) + C(x, x, x) +A(x). (2.51)

This completes the proof of theorem.

The following corollary is an alternative result of Theorem 2.1.

Corollary 2.2. Let X,Y be vector spaces, and let f : X → Y be a function satisfying (1.6). Then the
following assertions hold.

(a) If f is even function, then f is quadratic.

(b) If f is odd function, then f is cubic-additive.

3. Stability

We now investigate the generalized Hyers-Ulam-Rassias stability problem for functional
equation (1.6). From now on, let X be a real vector space, and let Y be a Banach space.
Now before taking up the main subject, given f : X → Y , we define the difference operator
Df : X ×X → Y by

Df

(

x, y
)

=f
(

x+2y
)−f(x−2y)−2[f(x+y)−f(x−y)]−2f(3y) + 6f

(

2y
) − 6f

(

y
)

, (3.1)



Advances in Difference Equations 9

for all x, y ∈ X.We consider the following functional inequality:

∥
∥Df

(

x, y
)∥
∥ ≤ φ(x, y), (3.2)

for an upper bound φ : X ×X → [0,∞).

Theorem 3.1. Let s ∈ {1,−1} be fixed. Suppose that an even mapping f : X → Y satisfies f(0) = 0,
and

∥
∥Df

(

x, y
)∥
∥ ≤ φ(x, y), (3.3)

for all x, y ∈ X. If the upper bound φ : X ×X → [0,∞) is a mapping such that

∞∑

i=0

4si
[

φ
(

2−six, 2−six
)

+
1
2
φ
(

0, 2−six
)]

<∞ (3.4)

and that

lim
n

4snφ
(

2−snx, 2−sny
)

= 0, (3.5)

for all x, y ∈ X, then the limit

Q(x) := lim
n

4snf
(

2−snx
)

(3.6)

exists for all x ∈ X, and Q : X → Y is a unique quadratic function satisfying (1.6), and

∥
∥f(x) −Q(x)

∥
∥ ≤ 1

8

∞∑

i=(s+1)/2

4si
(

φ
(

2−six, 2−six
)

+
1
2
φ
(

0, 2−six
))

, (3.7)

for all x ∈ X.

Proof. Let s = 1. Putting x = 0 in (3.3), we get

∥
∥2

[

f
(

3y
) − 3f

(

2y
)

+ 3f
(

y
)]∥
∥ ≤ φ(0, y), (3.8)

for all y ∈ X. On the other hand by replacing y by x in (3.3), it follows that

∥
∥−f(3y) + 4f

(

2y
) − 7f

(

y
)∥
∥ ≤ φ(y, y), (3.9)

for all y ∈ X. Combining (3.8) and (3.9), we lead to

∥
∥2f

(

2y
) − 8f

(

y
)∥
∥ ≤ 2φ

(

y, y
)

+ φ
(

0, y
)

, (3.10)
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for all y ∈ X. With the substitution y := x/2 in (3.10) and then dividing both sides of
inequality by 2, we get

∥
∥
∥f(x) − 4f

(x

2

)∥
∥
∥ ≤ 1

2

[

2φ
(x

2
,
x

2

)

+ φ
(

0,
x

2

)]

. (3.11)

Now, using methods similar as in [8, 34, 35], we can easily show that the function
Q : X → Y defined by Q(x) = limn→∞4nf(x/2n) for all x ∈ X is unique quadratic function
satisfying (1.6) and (3.7). Let s = −1. Then by (3.10) we have

∥
∥
∥
∥

f(2x)
4

− f(x)
∥
∥
∥
∥
≤ 1

8
(

2φ(x, x) + φ(0, x)
)

, (3.12)

for all x ∈ X. And analogously, as in the case s = 1, we can show that the function Q : X →
Y defined by Q(x) := limn→∞4−nf(2nx) is unique quadratic function satisfying (1.6) and
(3.7).

Theorem 3.2. Let s ∈ {1,−1} be fixed. Let φ : X ×X → [0,∞) is a mapping such that

∞∑

i=1

2si
[

φ

(
x

2si
,
x

2si+1

)

+ φ
(

0,
x

2si+1

)]

<∞ (3.13)

and that

lim
n→∞

2snφ
( x

2sn
,
y

2sn
)

= 0, (3.14)

for all x, y ∈ X.
Suppose that an odd mapping f : X → Y satisfies

∥
∥Df

(

x, y
)∥
∥ ≤ φ(x, y), (3.15)

for all x, y ∈ X.
Then the limit

A(x) := lim
n→∞

2sn
[

f

(
x

2sn−1

)

− 8f
( x

2sn
)]

(3.16)

exists, for all x ∈ X, and A : X → Y is a unique additive function satisfying (1.6), and

∥
∥f(2x) − 8f(x) −A(x)

∥
∥ ≤

∞∑

i=|s−1|/2
2siφ

(
x

2si
,
x

2si+1

)

+ 2
∞∑

i=|s−1|/2
2siφ

(

0,
x

2si+1

)

, (3.17)

for all x ∈ X.
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Proof. Let s = 1. set x = 0 in (3.15). Then by oddness of f we have

∥
∥2f

(

3y
) − 8f

(

2y
)

+ 16f
(

y
)∥
∥ ≤ φ(0, y), (3.18)

for all y ∈ X. Replacing x by 2y in (3.15) we get

∥
∥f

(

4y
) − 4f

(

3y
)

+ 6f
(

2y
) − 4f

(

y
)∥
∥ ≤ φ(2y, y). (3.19)

Combining (3.18) and (3.19), we lead to

∥
∥f

(

4y
) − 10f

(

2y
)

+ 16f
(

y
)∥
∥ ≤ φ(2y, y) + 2φ

(

0, y
)

, (3.20)

for all y ∈ X. Putting y := x/2 and g(x) := f(2x) − 8f(x), for all x ∈ X. Then we get

∥
∥
∥g(x) − 2g

(x

2

)∥
∥
∥ ≤ φ

(

x,
x

2

)

+ 2φ
(

0,
x

2

)

, (3.21)

for all x ∈ X. Now, in a similar way as in [8, 34, 35], we can show that the limit A(x) :=
limn→∞2ng(x/2n) exists, for all x ∈ X, and A is the unique function satisfying (1.6) and
(3.17). If s = −1, then the proof is analogous.

Theorem 3.3. Let s ∈ {1,−1} be fixed. Suppose that an odd mapping f : X → Y satisfies

∥
∥Df

(

x, y
)∥
∥ ≤ φ(x, y), (3.22)

for all x, y ∈ X. If the upper bound φ : X ×X → [0,∞) is a mapping such that

∞∑

i=1

8siφ
(
x

2si
,
x

2si+1

)

+
∞∑

i=1

8siφ
(

0,
x

2si+1

)

<∞ (3.23)

and that limn→∞8snφ(x/2sn, y/2sn) = 0, for all x, y ∈ X, then the limit

C(x) := lim
n→∞

8sn
[

f

(
x

2sn−1

)

− 2f
( x

2sn
)]

(3.24)

exists, for all x ∈ X, and C : X → Y is a unique cubic function satisfying (1.6) and

∥
∥f(2x) − 2f(x) − C(x)∥∥ ≤

∞∑

i=|s−1|/2
8siφ

(
x

2si
,
x

2si+1

)

+ 2
∞∑

i=|s−1|/2
8siφ

(

0,
x

2si+1

)

, (3.25)

for all x ∈ X.
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Proof. We prove the theorem for s = 1.When s = −1 we have a similar proof. It is easy to see
that f satisfies (3.20). Set h(x) := f(2x) − 2f(x) then by putting y := x/2 in (3.20), it follows
that

∥
∥
∥h(x) − 8h

(x

2

)∥
∥
∥ ≤ φ

(

x,
x

2

)

+ 2φ
(

0,
x

2

)

, (3.26)

for all x ∈ X. By using (3.26), we may define a mapping C : X → Y as C(x) :=
limn→∞8nh(x/2n), for all x ∈ X. Similar to Theorem 3.1, we can show that C is the unique
cubic function satisfying (1.6) and (3.25).

Theorem 3.4. Suppose that an odd mapping f : X → Y satisfies

∥
∥Df

(

x, y
)∥
∥ ≤ φ(x, y), (3.27)

for all x, y ∈ X. If the upper bound φ : X ×X → [0,∞) is a mapping such that

∞∑

i=1

8iφ
(
x

2i
,
x

2i+1

)

+
∞∑

i=1

8iφ
(

0,
x

2i+1

)

<∞, (3.28)

and that limn→∞8nφ(x/2n, y/2n) = 0, for all x, y ∈ X, then there exists a unique cubic function
C : X → Y and a unique additive function A : X → Y such that

∥
∥f(x) − C(x) −A(x)

∥
∥ ≤ 1

6

∞∑

i=0

(

2i + 8i
)

φ

(
x

2i
,
x

2i+1

)

+
1
3

∞∑

i=0

(

2i + 8i
)

φ

(

0,
x

2i+1

)

, (3.29)

for all x ∈ X.

Proof. By Theorems 3.2 and 3.3, there exist an additive mapping Ao : X → Y and a cubic
mapping Co : X → Y such that

∥
∥f(2x) − 8f(x) −Ao(x)

∥
∥ ≤

∞∑

i=|s−1|/2
2siφ

(
x

2si
,
x

2si+1

)

+ 2
∞∑

i=|s−1|/2
2siφ

(

0,
x

2si+1

)

,

∥
∥f(2x) − 2f(x) − Co(x)

∥
∥ ≤

∞∑

i=|s−1|/2
8siφ

(
x

2si
,
x

2si+1

)

+ 2
∞∑

i=|s−1|/2
8siφ

(

0,
x

2si+1

)

,

(3.30)

for all x ∈ X. Combine the two equations of (3.30) to obtain

∥
∥
∥
∥
f(x) − 1

6
Co(x) +

1
6
Ao(x)

∥
∥
∥
∥
≤ 1

6

∞∑

i=0

(

2i + 8i
)

φ

(
x

2i
,
x

2i+1

)

+
1
3

∞∑

i=0

(

2i + 8i
)

φ

(

0,
x

2i+1

)

, (3.31)
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for all x ∈ X. So we get (3.29) by letting A(x) = −(1/6)Ao(x), and C(x) = (1/6)Co(x), for all
x ∈ X. To prove the uniqueness ofA and C, letA1, C1 : X → Y be another additive and cubic
maps satisfying (3.29). Let A′ = A −A1, and let C′ = C − C1. So

∥
∥A′(x) − C′(x)

∥
∥ ≤ ∥

∥f(x) −A(x) − C(x)∥∥ +
∥
∥f(x) −A1(x) − C1(x)

∥
∥

≤ 2

[

1
30

∞∑

i=0

(

2i + 8i
)

φ

(
x

2i
,
x

2i+1

)

+
1
15

∞∑

i=0

(

2i + 8i
)

φ

(

0,
x

2i+1

)]

,
(3.32)

for all x ∈ X. Since

lim
n→∞

{ ∞∑

i=1

8i+nφ
(

x

2i+n
,

x

2i+n+1

)

+
∞∑

i=1

8i+nφ
(

0,
x

2i+n+1

)}

= 0, (3.33)

then

lim
n→∞

{ ∞∑

i=1

2i+nφ
(

x

2i+n
,

x

2i+n+1

)

+
∞∑

i=1

2i+nφ
(

0,
x

2i+n+1

)}

= 0, (3.34)

for all x ∈ X.Hence (3.32) implies that

lim
n→∞

8n
∥
∥
∥A′

( x

2n
)

− C′
( x

2n
)∥
∥
∥ = 0, (3.35)

for all x ∈ X. On the other hand C and C1 are cubic, then C′(x/2n) = (1/8n)C′(x). Therefore
by (3.35) we obtain that A′(x) = 0, for all x ∈ X. Again by (3.35) we have C′(x) = 0, for all
x ∈ X.

Theorem 3.5. Suppose that an odd mapping f : X → Y satisfies

∥
∥Df

(

x, y
)∥
∥ ≤ φ(x, y), (3.36)

for all x, y ∈ X. If the upper bound φ : X ×X → [0,∞) is a mapping such that

∞∑

i=1

1
2i
φ
(

2ix, 2i−1x
)

+
∞∑

i=1

2iφ
(

0, 2i−1x
)

<∞ (3.37)

and that limn→∞(1/2n)φ(2nx, 2ny) = 0, for all x, y ∈ X, then there exist a unique cubic function
C : X → Y and a unique additive function A : X → Y such that

∥
∥f(x) − C(x) −A(x)

∥
∥

≤ 1
30

∞∑

i=1

(
1
2i

+
1
8i

)(

φ
(

2ix, 2i−1x
))

+
1
15

∞∑

i=1

(
1
2i

+
1
8i

)(

φ
(

0, 2i−1x
))

,
(3.38)

for all x ∈ X.
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Proof. The proof is similar to the proof of Theorem 3.4.

Nowwe establish the generalized Hyers-Ulam-Rassias stability of functional equation
(1.6) as follows.

Theorem 3.6. Suppose that a mapping f : X → Y satisfies f(0) = 0 and ‖Df(x, y)‖ ≤ φ(x, y), for
all x, y ∈ X. If the upper bound φ : X ×X → [0,∞) is a mapping such that

∞∑

i=0

{

8i
[

φ

(
x

2i
,
x

2i+1

)

+ φ
(

0,
x

2i+1

)]

+ 4iφ
(
x

2i
,
x

2i

)}

<∞ (3.39)

and that limn→∞8nφ(x/2n, y/2n) = 0, for all x, y ∈ X, then there exist a unique additive function
A : X → Y a unique quadratic function Q : X → Y and a unique cubic function C : X → Y such
that

∥
∥f(x) −A(x) −Q(x) − C(x)∥∥

≤ 1
6

∞∑

i=0

(

2i + 8i
)[

φ

(
x

2i
,
x

2i+1

)

+ 2φ
(

0,
x

2i+1

)]

+
1
8

∞∑

i=1

4i
[

φ

(
x

2i
,
x

2i

)

+
1
2
φ

(

0,
x

2i

)]

,

(3.40)

for all x ∈ X.

Proof. Let fe(x) = (1/2)(f(x) + f(−x)), for all x ∈ X. Then fe(0) = 0, fe(−x) = fe(x), and
‖Dfe(x, y)‖ ≤ (1/2)[φ(x, y) + φ(−x,−y)], for all x, y ∈ X. Hence in view of Theorem 3.1 there
exists a unique quadratic function Q : X → Y satisfying (3.7). Let fo(x) = (1/2)(f(x) −
f(−x)), for all x ∈ X. Then fo(0) = 0, fo(−x) = −fo(x), and ‖Dfo(x, y)‖ ≤ (1/2)[φ(x, y) +
φ(−x,−y)], for all x, y ∈ X. From Theorem 3.4, it follows that there exist a unique cubic
function C : X → Y and a unique additive function A : X → Y satisfying (3.29). Now
it is obvious that (3.40) holds true for all x ∈ X, and the proof of theorem is complete.

Corollary 3.7. Let p + q > 3, θ ≥ 0. Suppose that a mapping f : X → Y satisfies f(0) = 0, and

∥
∥Df

(

x, y
)∥
∥ ≤ θ(‖x‖p∥∥y∥∥q), (3.41)

for all x, y ∈ X. Then there exist a unique additive function A : X → Y, a unique quadratic function
Q : X → Y, and a unique cubic function C : X → Y satisfying

∥
∥f(x) −A(x) −Q(x) − C(x)∥∥ ≤ θ‖x‖p+q

[(
1

6 × 2q

)(
2

2 − 2p+q
+

8
8 − 2p+q

)

+
1
8

(
2p+q

4 − 2p+q

)]

,

(3.42)

for all x ∈ X.

Proof. It follows from Theorem 3.6 by taking φ(x, y) = θ(‖x‖p‖y‖q), for all x, y ∈ X.
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Theorem 3.8. Suppose that f : X → Y satisfies f(0) = 0, and ‖Df(x, y)‖ ≤ φ(x, y), for all
x, y ∈ X. If the upper bound φ : X ×X → [0,∞) is a mapping such that

∞∑

i=1

{
1
2i
[

φ
(

2ix, 2i−1x
)

+ φ
(

0, 2i−1x
)]

+
1
4i
φ
(

2ix, 2ix
)}

<∞ (3.43)

and that limn→∞(1/2n)φ(2nx, 2ny) = 0, for all x, y ∈ X, then there exists a unique additive function
A : X → Y, a unique quadratic function Q : X → Y, and a unique cubic function C : X → Y such
that

∥
∥f(x) −A(x) −Q(x) − C(x)∥∥

≤ 1
6

[ ∞∑

i=1

(
1
2i

+
1
8i

)(

φ
(

2ix, 2i−1x
)

+ 2φ
(

0, 2i−1x
))

]

+
1
8

∞∑

i=0

1
4i

[

φ
(

2ix, 2ix
)

+
1
2
φ
(

0, 2ix
)]

,

(3.44)

for all x ∈ X.

By Theorem 3.8, we are going to investigate the following stability problem for
functional equation (1.6).

Corollary 3.9. Let p + q < 1, θ > 0. Suppose that f : X → Y satisfies f(0) = 0, and

∥
∥Df

(

x, y
)∥
∥ ≤ θ(‖x‖p∥∥y∥∥q), (3.45)

for all x, y ∈ X, then there exist a unique additive function A : X → Y, a unique quadratic function
Q : X → Y, and a unique cubic function C : X → Y satisfying

∥
∥f(x) −A(x) −Q(x) − C(x)∥∥

≤ θ‖x‖p+q
{(

1
6 × 2q

)(
2p+q

2 − 2p+q
+

2p+q

8 − 2p+q

)

+
1

8 − 2p+q+3

}

,
(3.46)

for all x ∈ X.

By Corollary 3.9, we solve the following Hyers-Ulam stability problem for functional
equation (1.6).

Corollary 3.10. Let ε be a positive real number. Suppose that a mapping f : X → Y satisfies f(0) =
0, and ‖Df(x, y)‖ ≤ ε, for all x, y ∈ X, then there exist a unique additive function A : X → Y, a
unique quadratic function Q : X → Y, and a unique cubic function C : X → Y such that

∥
∥f(x) −A(x) −Q(x) − C(x)∥∥ ≤ 5

14
ε, (3.47)

for all x ∈ X.
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