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1. Introduction

Various generalizations of the Gronwall inequality [1, 2] are fundamental tools in the study
of existence, uniqueness, boundedness, stability, invariant manifolds, and other qualitative
properties of solutions of differential equations and integral equation. There are a lot of
papers investigating them (such as [3–8]). Along with the development of the theory of
integral inequalities and the theory of difference equations, more attentions are paid to some
discrete versions of Gronwall-Bellman-type inequalities (such as [9–11]). Some recent works
can be found, for example, in [12–17] and some references therein.

We first introduce two lemmas which are useful in our main result.

Lemma 1.1 (the Bernoulli inequality [18]). Let 0 ≤ α ≤ 1 and z ≥ −1, then (1 + z)α ≤ 1 + αz.

Lemma 1.2 (see [19]). Assume that u(n), a(n), b(n) are nonnegative functions and a(n) is
nonincreasing for all natural numbers, if for all natural numbers,

u(n) ≤ a(n) +
∞∑

s=n+1

b(s)u(s), (1.1)
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then for all natural numbers,

u(n) ≤ a(n)
∞∏

s=n+1

(1 + b(s)). (1.2)

Sheng and Li [16] considered the inequalities

up(n) ≤ a(n) + b(n)
∞∑

s=n+1

[
f(s)up(s) + g(s)uq(s)

]
,

up(n) ≤ a(n) + b(n)
∞∑

s=n+1

[
f(s)uq(s) + L(s, u(s))

]
,

up(n) ≤ a(n) + b(n)
∞∑

s=n+1

[
f(s)up(s) + L

(
s, uq(s)

)]
,

(1.3)

where 0 ≤ L(n, x) − L(n, y) ≤ K(n, y)(x − y) for x ≥ y ≥ 0.
In this paper, we investigate certain new nonlinear discrete inequalities in two

variables:

up(m,n) ≤ a(m,n) + b(m,n)
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)up(s, t) + g(s, t)uq(s, t)

]
, (1.4)

up(m,n) ≤ a(m,n) + b(m,n)
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)uq(s, t) + L(s, t, u(s, t))

]
, (1.5)

up(m,n) ≤ a(m,n) + b(m,n)
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)up(s, t) + L

(
s, t, uq(s, t)

)]
, (1.6)

where 0 ≤ L(m,n, x) − L(m,n, y) ≤ K(m,n, y)(x − y) for x ≥ y ≥ 0.
Furthermore, we apply our result to a boundary value problem of a partial difference

equation for estimation. Our paper gives, in some sense, an extension of a result of [16].

2. Main Result

Throughout this paper, let R denote the set of all real numbers, let R+ = [0,∞) be the given
subset of R, and N0 = {0, 1, 2, . . .} denote the set of nonnegative integers. For functions
w(m), z(m,n), m, n ∈ N0, their first-order differences are defined by Δw(m) = w(m + 1) −
w(m), Δ1w(m,n) = w(m + 1, n) − w(m,n), and Δ2z(m,n) = z(m,n + 1) − z(m,n). We use
the usual conventions that empty sums and products are taken to be 0 and 1, respectively.
In what follows, we assume all functions which appear in the inequalities to be real-value, p
and q are constants, and p ≥ 1, 0 ≤ q ≤ p.
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Lemma 2.1. Assume that v(m,n), h(m,n), and F(m,n) are nonnegative functions defined for
m,n ∈ N0, and h(m,n) is nonincreasing in each variable, if

v(m,n) ≤ h(m,n) +
∞∑

s=m+1

∞∑

t=n+1

F(s, t)v(s, t), m, n ∈ N0, (2.1)

then

v(m,n) ≤ h(m,n)
∞∏

s=m+1

(
1 +

∞∑

t=n+1

F(s, t)

)
, m, n ∈ N0. (2.2)

Proof. Define a function θ(m,n) by

θ(m,n) = h(m,n) +
∞∑

s=m+1

∞∑

t=n+1

F(s, t)v(s, t), m, n ∈ N0. (2.3)

The function h(m,n) is nonincreasing in each variable, so is θ(m,n), we have

θ(m,n) ≤ h(m,n) +
∞∑

s=m+1

( ∞∑

t=n+1

F(s, t)

)
θ(s, n), m, n ∈ N0. (2.4)

Using Lemma 1.2, the desired inequality (2.2) is obtained from (2.1), (2.3), and (2.4). This
completes the proof of Lemma 2.1.

Theorem 2.2. Suppose that a(m,n) ≥ 0 and b(m,n), f(m,n), g(m,n), u(m,n) are nonnegative
functions defined for m,n ∈ N0, u(m,n) satisfies the inequality (1.4). Then

u(m,n) ≤ a1/p(m,n) +
1
p
a1/p−1(m,n)b(m,n)h(m,n)

∞∏

s=m+1

(
1 +

∞∑

t=n+1

H(s, t)

)
, (2.5)

where

h(m,n) =
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)a(s, t) + g(s, t)aq/p(s, t)

]
,

H(m,n) = b(m,n)
[
f(m,n) +

q

p
aq/p−1(m,n)g(m,n)

]
.

(2.6)

Proof. Define a function v(m,n) by

v(m,n) =
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)up(s, t) + g(s, t)uq(s, t)

]
, m, n ∈ N0. (2.7)
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From (1.4), we have

up(m,n) ≤ a(m,n) + b(m,n)v(m,n)

= a(m,n)
(
1 +

b(m,n)v(m,n)
a(m,n)

)
.

(2.8)

By applying Lemma 1.1, from (2.8), we obtain

u(m,n) ≤ a1/p(m,n) +
1
p
a1/p−1(m,n)b(m,n)v(m,n), (2.9)

uq(m,n) ≤ aq/p(m,n) +
q

p
aq/p−1(m,n)b(m,n)v(m,n). (2.10)

It follows from (2.9) and (2.10) that

v(m,n) ≤
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)(a(s, t) + b(s, t)v(s, t))

+ g(s, t)
(
aq/p(s, t) +

q

p
aq/p−1(s, t)b(s, t)v(s, t)

)]

= h(m,n) +
∞∑

s=m+1

∞∑

t=n+1

H(s, t)v(s, t), m, n ∈ N0,

(2.11)

where we note the definitions of h(m,n) and H(m,n) in (2.6). From (2.6), we see
h(m,n) is nonnegative and nonincreasing in each variable. By applying Lemma 2.1, the
desired inequality (3.3) is obtained from (2.9) and (2.11). This completes the proof of
Theorem 2.2.

Theorem 2.3. Suppose that a(m,n) ≥ 0 and b(m,n), f(m,n), u(m,n) are nonnegative functions
defined form,n ∈ N0, L : N0 ×N0 × R+ → R+ satisfies

0 ≤ L(m,n, x) − L(m,n, y) ≤ K(m,n, y)(x − y), x ≥ y ≥ 0, (2.12)

where K : N0 ×N0 × R+ → R+, and u(m,n) satisfies the inequality (1.5). Then

u(m,n) ≤ a1/p(m,n) +
1
p
a1/p−1(m,n)b(m,n)G(m,n)

∞∏

s=m+1

(
1 +

∞∑

t=n+1

F(s, t)

)
, (2.13)

where

G(m,n) =
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)aq/p(s, t) + L

(
s, t, a1/p(s, t)

)]
, (2.14)

F(m,n) = b(m,n)
[
q

p
aq/p−1(m,n)f(m,n) +

1
p
K
(
m,n, a1/p(m,n)

)
a1/p−1(m,n)

]
. (2.15)
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Proof. Define a function v(m,n) by

v(m,n) =
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)uq(s, t) + L(s, t, u(s, t))

]
, m, n ∈ N0. (2.16)

Then, as in the proof of Theorem 2.2, we have (2.8), (2.9), and (2.10). By (2.12),

∞∑

s=m+1

∞∑

t=n+1

L(s, t, u(s, t))

≤
∞∑

s=m+1

∞∑

t=n+1

[
L

(
s, t, a1/p(s, t) +

1
p
a1/p−1(s, t)b(s, t)v(s, t)

)

− L
(
s, t, a1/p(s, t)

)
+ L

(
s, t, a1/p(s, t)

]

≤
∞∑

s=m+1

∞∑

t=n+1

L
(
s, t, a1/p(s, t)

)

+
∞∑

s=m+1

∞∑

t=n+1

K
(
s, t, a1/p(s, t)

)1
p
a1/p−1(s, t)b(s, t)v(s, t).

(2.17)

It follows from (2.8), (2.9), (2.10), and (2.17) that

v(m,n) ≤
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)aq/p(s, t) + L

(
s, t, a1/p(s, t)

)]

+
∞∑

s=m+1

∞∑

t=n+1

[
q

p
f(s, t)aq/p−1(s, t) +

1
p
K
(
s, t, a1/p(s, t)

)
a1/p−1(s, t)

]
b(s, t)v(s, t)

= G(m,n) +
∞∑

s=m+1

∞∑

t=n+1

F(s, t)v(s, t),

(2.18)

where we note the definitions of G(m,n) and F(m,n) in (2.14) and (2.15). From (2.14) we
see G(m,n) is nonnegative and nonincreasing in each variable. By applying Lemma 2.1,
the desired inequality (2.19) is obtained from (2.9) and (2.18). This completes the proof of
Theorem 2.3.

Theorem 2.4. Suppose that a(m,n), b(m,n), f(m,n), u(m,n), L(m,n, x), K(m,n, x) are the
same as in Theorem 2.3, u(m,n) satisfies the inequality (1.6). Then

u(m,n) ≤ a1/p(m,n) +
1
p
a1/p−1(m,n)b(m,n)G(m,n)

∞∏

s=m+1

(
1 +

∞∑

t=n+1

F(s, t)

)
, (2.19)
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where

J(m,n) =
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)a(s, t) + L

(
s, t, aq/p(s, t)

)]
, (2.20)

M(m,n) = b(m,n)
[
f(m,n) +

q

p
K
(
m,n, aq/p(m,n)

)
aq/p−1(m,n)

]
. (2.21)

Proof. Define a function v(m,n) by

v(m,n) =
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)up(s, t) + L

(
s, t, uq(s, t)

)]
, m, n ∈ N0. (2.22)

Then, as in the proof of Theorem 2.2, we have (2.8), (2.9), and (2.10). By (2.12),

∞∑

s=m+1

∞∑

t=n+1

L
(
s, t, uq(s, t)

)

≤
∞∑

s=m+1

∞∑

t=n+1

[
L

(
s, t, aq/p(s, t) +

q

p
aq/p−1(s, t)b(s, t)v(s, t)

)

− L
(
s, t, aq/p(s, t)

)
+ L

(
s, t, aq/p(s, t

)]

≤
∞∑

s=m+1

∞∑

t=n+1

L
(
s, t, aq/p(s, t)

)
+

∞∑

s=m+1

∞∑

t=n+1

K
(
s, t, aq/p(s, t)

)q
p
aq/p−1(s, t)b(s, t)v(s, t).

(2.23)

It follows from (2.8), (2.9), (2.10), and (2.23) that

v(m,n) ≤
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)a(s, t) + L

(
s, t, aq/p(s, t)

)]

+
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t) +

q

p
K
(
s, t, aq/p(s, t)

)
aq/p−1(s, t)

]
b(s, t)v(s, t)

= J(m,n) +
∞∑

s=m+1

∞∑

t=n+1

M(s, t)v(s, t),

(2.24)

where J(m,n) and M(m,n) are defined by (2.20) and (2.21), respectively. From (2.20), we
see J(m,n) is nonnegative and nonincreasing in each variable. By applying Lemma 2.1,
the desired inequality (2.19) is obtained from (2.9) and (2.24). This completes the of
Theorem 2.4.
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3. Applications to Boundary Value Problem

In this section, we apply our result to the following boundary value problem (simply called
BVP) for the partial difference equation:

Δ1Δ2z
p(m,n) = F(m,n, z(m,n)), m, n ∈ N0,

z(m,∞) = a1(m), z(∞, n) = a2(n), m, n ∈ N0,
(3.1)

F : Λ × R → R satisfies

|F(m,n, u)| ≤ f(m,n)
∣∣up

∣∣ + g(m,n)
∣∣uq

∣∣, (3.2)

where p and q are constants, p ≥ 1, 0 ≤ q ≤ p, functions f, g : N0 ×N0 → R+ are given, and
functions a1, a2 : N0 → R+ are nonincreasing. In what follows, we apply our main result to
give an estimation of solutions of (3.1).

Corollary 3.1. All solutions z(m,n) of BVP (3.1) have the estimate

u(m,n) ≤ a1/p(m,n) +
1
p
a1/p−1(m,n)h(m,n)

∞∏

s=m+1

(
1 +

∞∑

t=n+1

H(s, t)

)
, (3.3)

where

a(m,n) =
∣∣a1(m) + a2(n)

∣∣,

h(m,n) =
∞∑

s=m+1

∞∑

t=n+1

[
f(s, t)a(s, t) + g(s, t)aq/p(s, t)

]
,

H(m,n) = f(m,n) +
q

p
aq/p−1(m,n)g(m,n).

(3.4)

Proof. Clearly, the difference equation of BVP (3.1) is equivalent to

zp(m,n) = a1(m) + a2(n) +
∞∑

s=m

∞∑

t=n
F(s, t, z(s, t)). (3.5)

It follows from (3.2) and (3.5) that

∣∣zp(m,n)
∣∣ ≤ ∣∣a1(m) + a2(n)

∣∣ +
∞∑

s=m

∞∑

t=n

[
f(s, t)

∣∣zp(s, t)
∣∣ + g(s, t)

∣∣zq(s, t)
∣∣]. (3.6)

Let a(m,n) = |a1(m) + a2(n)|. Equation (3.6) is of the form (1.4), here b(m,n) = 1.
Applying our Theorem 2.2 to inequality (3.6), we obtain the estimate of z(m,n) as given in
Corollary 3.1.
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