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1. Introduction

Initiated by Hilger in his Ph.D. thesis [1] in 1988, the theory of time scales has been
improved greatly ever since. In particular, considerable works have been made in the
existence problems of solutions of dynamic systems on time scales, for details, see [2-12]
and the references therein. The reason for that lies in two aspects. On one hand, the time
scales approach not only unifies differential and difference equations, but also solves other
problems that are a mix of stop-start and continuous behavior. On the other hand, the time
scales calculus has a tremendous potential for application, for example, Hoffacker et al.
have used the theory to model how students suffering from the eating disorder bulimia are
influenced by their college friends. With the theory on time scales, they can model how the
number of sufferers changes during the continuous college term as well as during long breaks
[13]. Moreover, the theory is widely applied to the research of biology, heat transfer, stock
market, wound healing and epidemic models [3, 13-16], and so forth.
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Here and hereafter, we denote ¢,(u) as p-Laplacian operator, that is, ¢, (u) = [ulPu
for p > 1 and (,)"" = ¢,, where 1/p +1/q = 1. We make the blanket assumption that 0, T
are points in T, by an interval (0, T) we always mean (0, T) N T. Other types of interval are
defined similarly.

In [17], Su et al. concerned with the m-point singular p-Laplacian boundary value
problem of the form

(ro (w2 ®))" +aOfEu®) =0, te©T),

L (1.1)

w0 =0,  w(l)- Y ¢iu) =0,
i1

and obtained some existence criteria for positive solutions of boundary value problem (1.1).
Yet, the singularity of nonlinear term of boundary value problem (1.1) is only occur at u = 0.
As a result, they failed to further provide comprehensible results of the singularity that may
occuratu =0, t =0, or t = T. Now, it is natural to consider the existence of positive solutions
of p-Laplacian dynamic equations with the singularity that may occur at u = 0, t = 0, and
t =T in all respects.

For the existence problems of positive solutions of singular p-Laplacian boundary
value problem with sign changing nonlinearity on time scales, some authors have obtained
a few results, for details, see [17-20] and the references therein. It is also noted that the
above-mentioned references [17-20] only considered the existence of positive solutions
of boundary value problems with nonlinear terms that are not involved with first-order
derivative explicitly. Naturally, it is quite necessary to consider that the existence of positive
solutions for p-Laplacian dynamic equations with the nonlinear term is involved with the
first-order derivative explicitly.

Motivated by the above-mentioned ideas, we all-sidedly consider the multiple point
singular p-Laplacian boundary value problem on time scales of the form

(q;,,<uA(t)>)v +af (Lu®,ut®) =0, te(O,T)y, (1.2)

w=0, 3¢ (u(g)) - f:q;i(uA(gi)) =0, myme{l2,...]), (1.3)
j=1 i=1

where ¢, (u) = lufPu forp > 1, $;,¢i : R — R are continuous, nondecreasing and ¢;, ¢s;
may be nonlinear, 0 < & < ¢ < -+ < ¢  <¢§, =T, and0<é <& <+ <&m <T.
The singularity may occur at u = 0, t = 0, or t = T, and the nonlinearity is allowed to change
sign and is involved with the first-order derivative explicitly. In particular, the boundary
condition (1.3) includes the Dirichlet boundary condition and Robin boundary condition. By
applying a monotone iterative method, we obtain some new existence criteria for positive
solutions of the boundary value problem (1.2) and (1.3). Our results are even new for the
corresponding differential (T = R) and difference equations (T = Z) as well as in general
time scales setting. It has been well known that a second-order dynamic derivative does not
approximate a second-order derivative nor a conventional difference; see [21-23]. Thus, it
would be interesting that the mathematical results obtained in our article can be conveniently
extended for differential or difference equations.
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As an application, an example is given to illustrate these results. In particular, our
results improve and generalize some known works of Agarwal et al. [24], O'Regan [25] (p =
2), Lu et al. [26, 27] when T = R; extend and include the results of Lii et al. [28] in the case
of T = R;if f(t,u, ut) = f(t,u), then the works of [17, 19] are only the special cases of our
results.

For the convenience of statements, we present some basic definitions and lemmas
concerning the calculus on time scales that one needs to read this paper, which can be found
in [2, 3]. One of another excellent sources on dynamical systems on time scales is from the
book in [29].

A time scale T is a nonempty closed subset of R. It follows that the jump operators
o,p: T — Tdefinedbyo(t) =inf{r € T: 7>t} and p(t) =sup{r € T : T < t} (supplemented
by inf@ := sup T and sup@ := infT ) are well defined. The point t € T is left dense, left
scattered, right dense, right scattered if p(t) = ¢, p(t) < t, o(t) = t, o(t) > t, respectively. If T
has a right-scattered minimum m, define T, = T — {m}; otherwise, set Tc = T. If T has a left-
scattered maximum M, define T* = T — { M}; otherwise, set T* = T. The forward graininess
is p(t) := o(t) — t. Similarly, the backward graininess is v(t) := t — p(t).

A function f : T — R is ld-continuous provided that it is continuous at left-dense
points in T and its right-sided limit exists (finite) at right-dense points in T. It is known [3]
that if f is Id-continuous, then there is a function F(t) such that F¥ (t) = f(). In this case, we
define [ f(7)VT = F(b) - F(a).

Throughout this paper, it is assumed that

(H1) f(t,x,y) : (0,T) x (0,00) x (=00, 0) — Ris continuous;

(H2) q(t) € C((0,T)y, (0,00)) and [, () V# < oo;

(H3) ¢;,¢i : R — R are continuous and nondecreasing, where j = 1,2,...,m; and i =
1, 2, e, M.

2. Existence Results

Let E = C([0,T]y,R) N C2((0,T]1«, R), and define the norm with

||2e]| :max{ sup |u(t)|, sup |uA(t)|}, (2.1)

te[0,T] te[0,T]px

then E is a Banach space.

To demonstrate existence of positive solutions to problem (1.2) and (1.3), we firstly
approximate the singular problem by means of a sequence of nonsingular problems, and
by using the lower and upper solutions for nonsingular problem together with Schauders
fixed point theorem, and then we establish the existence of solutions to each approximating
problem. We remark here that the singularity of the following results occurs atu =0, = 0, or
t=T.



4 Advances in Difference Equations

Now we state and prove our main result.

Theorem 2.1. Let ng € {1,2,...} be fixed. Assume that (H1)-(H3) hold and the following conditions
are satisfied:

(A1) for each n € {ng,ng +1,...} = Ny, there exists a constant sequence p,, such that {p,} is
a strictly monotone decreasing sequence with lim,, _, ,p, = 0, and q(t) f(t, p,,0) > 0 for
te[1/2m, T - (1/2"Y)];

(A2) there exists a function a(t) € C[0,T]y N CA(0,T]y, ¢p(a®(t)) € CY(0,T)y such that
a(0) = 0, a(t) > 0on (0,T]y, Z].";’l (])]-(a(g})) - S gi(ah (&) < 0 together with
~(gp(a® (M) < qOf (t alt), a®(®)) for t € (0,T);

(A3) there exists a function B(t) € C[0,T]y N CA(0, Tlpe, p(B2(t)) € CV(0,T)y such that
P(t) > a(t) and p(t) > pu, for t € [0,Tly, X7 ¢;(BE)) — ZZ5 ¢i(B°(&)) > 0 and
~(gp(B* 1)) > a(®)f (£, B(t), B () for t € [1/27%, T = (1/271) ], with

(9 (P°0))" 2007 (g BP0 ) forte (0,555)

22)
~(p(p°®)) " = q(t)f<T - %,ﬁ(t),ﬂ%t)) for te (T - %T)T

Then the boundary value problem (1.2) and (1.3) has a positive solution u(t) € C[0, T]xNC*(0, T]yx,
wp(ut(t)) € CY(0,T)y, with u(t) > a(t) for t € [0,T]y.

Proof. Let ¢ = min{¢;, & }. Without loss of generality, fix n € N;, we suppose that
minger 1), a(t) > py, lett, € (0,¢)7 be such that

alty) =pn, a(t) <p, forte]0,t,]y. (2.3)
Let
w, if € [0, ],
a,(t) = P " here a(ty) = pn. (2.4)
a(t), iftelt, Tl

Assume that e,, = [1/2™,T - (1/2")],

1 1
max{ﬁ,t}, forte [O,T - ﬁ] o

min{T—L,t}, fort e [T—L,T] , (2.5)
2n+1 2n+1 T

fa(t,x,y) = max{f(t,x,y), f(walt), x,y)}

wy(t) =

We define a sequence hy, (¢, x,y) = fn,(t,x,y) and

ha(t,x,y) =min{ fo,, (t, x,v),..., fu(t,x,y)}, n=ng+1,n9+2,.... (2.6)
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Then

f(t,x/]/) <---< hn+l(trx/y) < hn(t/x/y) <--- < hno(trxry)l
for (t,x,y) € (0,T) x (0,00) x (-0, +0),
ha(t,x,y) = f(t,x,y), for (t,x,y) € ey x (0,00) x (—o0, 00).

Consider the boundary value problem
(oo (12 ®)) " + a0y, (t,u), w2 1) =0, te©,1)y,
w0 =pus 305(u(8)) - St (4 @) =,
i= is
where

( hno (t, arlo (t)/ aﬁo(t)) + r(ano (t) - u(t))/ u(t) S ano (t)/

b (), 4 ) = 4 by (4 u(t), 12 ), (1) < u(t) < B),

Ly (£, B(E), B2 (1)) + 7 (B(E) — u(w)), u(t) = p(t),
(0i(a(8)) % <an(y)=a(8).

() =10 () $5<hE) qmtomt
#i(p(5)) = 2p(8):

wi(a® (&), zi <ad (&) =a’(&),

;i (zi) = 4 gi(zi), an (&) <z <PA(&), i=1,...,m,

Lo (B2 (&), zi > BA(&),

and r(u) : R — [-1,1] is the radial retraction function defined by
u, |u[<1,
r(u) =
(w) 21
|u]

Assume that

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Co[0,T]y = {u € C[0,T]y : u(0) =0}, cﬁnﬂ [0,T]px = {u € CA[0, T]p : u(0) = pno}.

(2.14)
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We define the mappings Ly, F : C5, 10, T]pe — Col0, Ty x R to be such that

Lyu(t) = (wp (2 ) -0 (@), 35 (u(2) >
j=1
Fu(t) = <—ﬂq(x)hflo (x,u(x),uA(x)>Vx,g(p;k <uA(§,~)> +pn0>.
i=1

(2.15)

It follows from the Arzela-Ascoli theorem on time scales [30] that F is continuous and
compact. Also if

m §; m
va _ (u/ Y)' for u € Co[0, T]T/Y = Z(i); <pn0 + JO Vg <u(x) - Zd); <u(§;> > Ax>,
i=1 j=1

(2.16)

then we have v(t) = p,,, + fo(pq(u(x) Z (j) (u(é])))Ax Hence L, ! exists and is continuous.
It is clear that solving the boundary Value problem (2.8) and (2. 9) is equ1valer1t to finding a
fixed point of u = L' Fu = Nu, where N = L,'F : Cj, 0, T]pe — Ca [0, Ty« is compact. It
follows from Schauder’s fixed point theorem that the boundary Value problem (2.8) and (2.9)
has a solution u,, (t) € C*[0, T]p. with ¢, (up, (£)) € CY(0,T)r.

In the following, we will show that

Ay, (F) < Uy, (£), for t € [0,T]y. (2.17)

Assume that (2.17) is not true, then the function u,, (t) — a,, (t) has a negative minimum for
some T € (0, T]y. We consider two cases, thatis, 7 € (0,T)pand 7 = T.

Case 1. Assume that 7 € (0, T), then we claim

(o0 (4 )) (1) > (yp <ﬁo))v(7). (2.18)

Since uy, (t) —ay,, (t) has a negative minimum for some 7 € (0 T);, we have u2 (T) = ak (1) >0,
and there exists a 6 with 7 - 6 € [0, 7) such that uj, () — ap (t) <O fort € [T 6, T)T Thus

00 (145,0) - 9o (ad,0) < 9y (u () ~ 9o (el (1)), fortelr-67)r, (219

which leads to

Pp (urAlg(t)) ~Pp (”ﬁo (1)) ‘PP (“nn(t)) Pp (“no( 7))

— 2.20
- - , forte[r—-06,7)p. (2.20)
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If T is left dense, then

v . uby (1) = ¢@p (uf (1)
(o)) @) = tim ) =00 T)
' (2.21)

> lim op(an (H) = @p(an (7)) _ <<Pp<“ﬁo>>v(7')-

- te[r-6,1) > t—1
If 7 is left scattered, then, by means of (2.20) we obtain

A - A
<(pp (uﬁ(]))V (7) = Pp (1, (T)Z- - Z’,El(-l;no (p(7)))

(a, (1)) — g, (@ (p(7))) —
lp ana T — ()0 ano p T v
> = T-— pFET) - <(P” (aﬁ‘))) (7).

Hence, (2.18) is true.
However, by (2.4), (2.10), and u,,(7) < ay,(T), we obtain

( (@) - ((am))"
=- [q(ﬂhno (7 @, (), 5, (7)) + OV (0 (7) = 10, (7)) + (55 (aﬁo<r>))v]

: {—[q(r)hm(ww),aw)+q<7>r<a<r>—um<r>>+(go,,(zxA(T)))"], ™€ [t T,

- [q(T)h"O (T’ p"o’o) + q(T)r(P"O - uno (T)>]/ T E (Or tno)’ﬂ"
(2.23)

Assume that 7 € [1/2™*1, T - (1/2*1)],, then hy, (1,x,y) = f(1,x,y) for (x,y) €
(0, 00) % (=00, +00). It follows from (A1) and (A2) that

(oo (u2,™)) " = (et 0))’

i {—[q(r)f(r,a(T),aA(T)) +q(O)r(@() = uny (1) + (9p (@ (1)))7], 7€ [uyy )y
_[q(T)f(T’ P"lo’o) + q(T)r(PTlo — Up, (T))]’ T E (O, tno)’]I"

<0.
(2.24)

This is a contraction.
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Assume that 7 € (0, (1/2"*1)); U (T - (1/2™*1), T), then
My (7,%,y) = fuo (T, %, y) = max{f (7, x,y), f (wn,(7), %, y) }
1 1
= mm{f(w,x,y),f(T - 2n0+1,x,y),f(r,x,y) },

in view of (Al), (A2) and q(7) > 0, we have

(‘Pp (“ﬁo (7)))V - <<.0p (aﬁg(T)»v
r_[‘J(T)f(’r,ot(T),ocA(T)) + (‘Pp(“A(T)))V]

1
() (alr) - sy (7)), re |t T =50 )

) -|ams (Gapnr0) #aron - ma)], Tt

(2.25)

- [q(T)f<T - ;T,pno,0> + (7)1 (pny = “no(T))]' TE [T - 2"17’T>T’

<0.
(2.26)

This is a contraction.

Case 2. Assume that T = T. That s, a, (T) —u,, (T) > 0, this implies ¢, (an, (T)) =P, (U, (T)) >
0.

From (2.4), (2.9), (2.11), (2.12), and Z]r."zll (i)j(a(g})) < 3™ gi(a®(é)), we have the
following three subcases.

(@) If uy, (§;) < zx(g;) forj=1,2,..., my —1and uy (&) < a®(&) fori=1,2,..., my, then

0 < Pmy (any (T)) = Py (g (T)) = P, (a(T)) = Pomy (14 (T))
< _§1¢j <a<§;)> + 2‘[’1’ (aA (‘.31)) + mlz;lgb}k <un0 (g})) - ﬁ([)l* <uﬁo (§,)> — P
J= j= j= i=

(2.27)

m1—1

S (a(5) + S @) + S (o(47)) - S (e @) -0
j=1 i=1 j=1 i=1

this is a contradiction.

(b) If a(g}) < uno(cj;.) forj=1,2,...,m —1and a®(&) < up (&) fori=1,2,...,my, then
we discuss the four subcases.

Assume that u,, (§}) < p(g}) forj=1,2,..., my — 1, then

mi—1 my—1

JE; ¢ (n(8)) = 2 di(une(8))): (2.28)
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Assume that p(g;.) < Up, (g}) fori=1,2,...,m; — 1, then

mq -1 mq -1

> 9 (m()) = X 9i(p(8))- (2.29)

j=1 j=1

Assume that u3 (&) < p2(&) fori=1,2,...,my, then

g]q;; (un @) = gqfi(uﬁo &)). (2.30)
Assume that 2 (&) < u2 (&) fori =1,2,...,m,, then

g]qr;‘ (u2&) = g]qa (B @). 231)

Now, if there exist sequences {j,} = {1,2,...,1} and {ji,} = {1,2,...,k1} such that
ﬂ(g}ll) < Up, (§;.l) and uy, (§}k1) < ﬂ(é}kl ), here I; + k; = my — 1, then

47 (1 (87)) = Z¢m< (n))fi D, (0 (8,))- (2.32)

j=1 n =1 Jky =1

m1—1

If there exist sequences {i,} = {1,2,...,L} and {ix,} = {1,2,..., kz} such that ﬁA(gi,z) <
up (&,) and ugy (&, ) < p*(&;,), here I + ky = my, then

2‘/’? (uh@)) = éqfi,z (8 (&,)) + Z% (uh, (8,))- (2.33)

Hence, by (2.32) and (2.33) together with the monotonicity of ¢; and ¢;, we have

0< (i)ml (e, (T)) = ¢m1 (uny(T)) = d’ml (a(T)) - (i)ml (uny (T))

m1—1

B ]Zl di(a(s)) + g‘l’i@A@l ) + Z ¢ (un(8)) - Z% (12 @) =P (234)

<0,

which implies a contradiction.

(c) For j = 1,2,...,my — 1, if there exist sequences {j,} = {1,2,...,13} and {ji,} =
{1, ks} such that a(§ ) uno(gﬂ ) and uno(g]k ) < a(g ) here I3 + ks = m; — 1. For
i= 1,2,. ., my, if there ex1st sequences {i;} = {1,2,...,1} and {ix} = {1,2,...,k} such that
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at () < uﬁo(éi,) and uﬁo (¢i,) < a®(&;,), here I + k = m,. Essentially, with the same reasoning
as before, we have

0 < P, (g (T)) = Py (g (T)) = Py (2(T)) = Py (1 (T)) <0, (2.35)

which implies a contradiction.

Thus, Cases 1 and 2 imply that (2.17) is established. In particular, since a(t) < ay,, (t)
fort € [0, T]y, we obtain a(t) < ay, (t) < uy,(t) for t € [0, T].

Essentially, with the same reasoning as the proof of inequality (2.17), we obtain u,, (t) <
p(t) for t € [0, T].

Hence

a(t) < ap(t) <uy(t) <P(t) for t e [0,T]y. (2.36)

Now, we discuss the boundary value problem

(¢r <uA(t)>>V R, (Lu®),ut (1) =0, te(O,T)y,

" o (2.37)
w0 =put, 205 (1(8)) = Dot (42 @) = puwsn,
j=1 i=1
where
h;o+1 <t/ u(t)/ uA (t)>
hi’l0+1 (t/ Xng+1 (t)/ aﬁ(ﬁ.] (t)> + T(dn0+1 (t) - u(t))/ u(t) < Xny+1 (t),
hng+1 (t, u(t), uA (t))/ Xng+1 (t) < u(t) < Up, (t)l
g1 (b, 1y (8), upy (£)) + 7 (1, (£) = u(t)), u(t) > up, (1),
#(a())  Z<ana(g)=a(s) 238)

5(z)=19:(z)  awa(§)<Z<un(g) =1 m-1,
(91 (e (8))): 22w (8).

(4i(a® (&), zi<ad, (&) =a(),

i (zi) = 1 gi(z:), ad (@) <z <ub (&), i=1...,m.

L (un (&), zi 2 up, (&),

It follows from Schauder’s fixed point theorem that the boundary value problem (2.37) has a
solution 1,41 (t) € CA[0, T]p with (pp(uﬁoﬂ(t)) €CY(0,T).
Essentially, with the same reasoning as the proof of inequality (2.36), we have

a(t) < apyr1 () < upyr1 () < upy(t) fort e [0,T]y. (2.39)
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Assume that we have uy (t) for some k € {ng +1,n9 +2,...} satisfying a (t) < ui(t) <
uy-1(t) for t € [0,T], then we investigate the boundary value problem

(pp (2 (1)) + q(t) s, (tu(t), u(£) =0, te (0,T)y,

m m 2.40
wO) =pea, 2bi(u(g)) - Do (42 @) = pra, (240)
j=1 i=1
where
KL (t,u(t),uA(t)>
B (t aga (), ap (B) + r(ara (8) —u(t)), u(t) < aa(t),
= hia (tu(t), u(t)), a1 () < u(t) <uk(t),
B (F uic (), u (8)) + r (i () — u(t)), u(t) > uk(t),
#1(a(5))  Zsaa(g)=a(g) (2.41)

#(Z) =10  wa(E)<Fu) i=temo,
[i(()), 22 u(

(gi(a®(&)), zi<ab (&) =a®(&),

w7 (zi) =  ¢i(zi), ap,, (&) <z <up(é), i=1,...,m.

Lol (ui (&), zi > ug (&),

Schauder’s fixed point theorem guarantees that the boundary value problem (2.40) has a
solution .1 (£) € CA[0, T« with ¢p (g, (£)) € CY(0,T)y.
By proceeding to this process as above, we have

a(t) < ags (t) < g (t) <ur(t) for t € [0,T]y. (2.42)

Hence, for n € {ng,np+1,...}, by proceeding to this process by induction, we obtain sequence
{un(t)} e, with

a(t) < an(t) <un(t) Supa(t) <--- <upy(8) <P(t)  for t € [0, Ty (2.43)

Since [0,T]t is compact, the convergence is monotone and bounded, there exist a
subsequence N, of integers and a function z,,(t) € C[1/2™*,T]; with u,(t) converging
uniformly to z,, (t) on [1/2™*,T]; as n — oo through N,,. Similarly

1
{un(t)};2,,41 is @ bounded, monotoneon compact interval [W'T] K (2.44)
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Thus there exist a subsequence N,, ;1 of N, and a function z,+1(t) € C[1/ 2m0+2 T with u, (t)
converging uniformly to z,,.1(t) on [1/ 22 Tlpasn — o through Ny, 1. Since N, C
Ny, we have z,,1(t) = zn(t) on [1/2"*,T];. Proceed inductively to obtain subsequence
of integers N,y 2 Nyy1 2 --- 2 N, D -+ and functions z,(t) € C[1/2", T]; with u,(t)
converging uniformly to z,(t) on [1/ 2" Tlprasn — oo through N, and z,(t) = z,-1(f) on
[1/2",T].

Now, we define a function u : [0,T]y — [0,00) with u(t) = z,(t) on [1/2"},T];
and u(0) = 0. Notice, u(t) is well defined and a(t) < u(t) < u,,(t) < p(t) fort € (0,T)y.
Nextly, fix t € (0,T)r and let I € {ng,ny +1,...} be such that t € (1/2’+1,T)T, assume that
Ny = {n€N;:n >1}, we have

¢ (un<g;>) = ¢ (un (g})) forj=1,2,...,m,
¢ (un (&) = gi(ua(g)) fori=1,2,...,my, (2.45)

By (b 100 (5,145 (0)) = (b0 (5, (8)) = £ (£ un(B), 43 (1)) for n e Ny,

Hence, for n € N;, we have u, as the positive solution of the following boundary value
problem:

(0 (u29))" +af (Lm0 u30) =0, te (7.7)

- - (2.46)
w0 =pr - 25 (un(§)) = 2 (12 @) =
i= iz
Letn — oo through N7, we obtain that u(t) satisfies
(9 (2 ®)) " +a@ f(Lu®),u®®) =0, te©T),
(2.47)

u(0) =0, f;qu (u(g)) - fijwi(u%;i)) = 0.
=

It remains to show that u(t) is continuous at 0.

First, it follows from lim,, _, ., 1, (0) = 0 that there exists n; € {ng, no+1, ...} with u,, (0) <
€/2. Since uy, (t) € C[0,T], there exists 6,, € (0,T); with u,, (t) < /2 for t € [0,6,,)r. By
the monotonicity of {u,(t)},ey, for each t € [0,T]y, we have a(t) < u,(t) < uy,, () < /2 for
t € [0,64,)1 and n > ny, which means a(t) < u(t) < /2 fort € [0, 6,, ). So u(t) is continuous
at 0. O

If we replace [1/2™!,T — (1/2"1)]; with t € [0,T — (1/2™1)];, then the singularity
occursatu=0and t =T.

If we replace [1/2™1,T — (1/2"1)] with t € [1/2™*1, T] ., then the singularity occurs
atu=0andt=0.
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If we replace [1/2"1,T — (1/2"1)]; with t € [0, T]y«, then the singularity occurs at
u=0.

So we easily obtain the analogue of Theorem 2.1 in this section; see the following
remark.

Remark 2.2. (A3) is appropriately adjusted, then we can replace t € [1/2"*1, T — (1/2"1)]; in
(A1) by

1
te |0,T - —| , 2.48
o7 5] 248)
1
te |5 T - (2.49)
or
€ [0, ]y (2.50)

For example, if (2.49) occurs, then (A3) is replaced by the following.

(A3’) There exists a function p(t) € C[0,T]y N C2(0, T]px, %(ﬂA(t)) € CY(0,T)y satisfies
Bt) 2 alt), () 2 pu for t € [0,T]y and 377 ¢;(B(6)) - T 0B (2)) > 0,
with —(p,(82(1))" > q()f(t,B(1), BA(t)) for t € (0,T)y, and (¢, (B2(1)))"
qt) f(1/2", B(t), B (#)) for t € (0,1/2*)p.

Assume that (H1)-(H3), (A1), and (A2) hold, and in addition suppose that the
following conditions are satisfied.

(A4) —(‘Pp(“A(t)))v < qO)f(tu),ut(t) for (tu(t),u*(t)) € (0,T)y x (0,a(t)] x
(~o0, +0), here u(t) € C[0,T]y N CA(0, T] .

(A5) There exists a function p(t) € C[0,T]; N CA(O Tl @p(B2(t)) € CY(0,T)y such
that (t) > pu, for t € [0, T]z, I gi(BE)) - 1% 4B &) > 0, ~(pp (B> (H))" 2
g(t)f (&, p(t), B (1)) for t € (0,T); and

1 1
(0" 2 g0 (G POP 0 ) Forte (0,257) -

(P 0))7 2 407 (T = 57 B0, 5 1)) for te (T 0T

(A6) B(T) > a(T).

Then the result in Theorem 2.1 is also true. This follows immediately from Theorem 2.1 if we
show that (A3) holds. That is to say, if we show f(t) > a(t) for t € [0,T], then the result
holds. Assume that it is not true, in view of (A6), we obtain that §(t) — a(t) has a negative
minimum for some 75 € (0,T)y, so (f - LI)A(T6) > 0 and essentially the same reasoning as
the proof of inequality (2.18), we have ((Pp((XA))V(Té) < ((pp(ﬂA))V(T6). However, by (A4),

(A5), and a(7s) > P(16) > 0, we obtain —((pp(aA))V(T6) < q(T6)f(T6,ﬁ(T6),ﬁA(T6)). Hence
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(@p(@))7 (76) = (9 (B*)) " (76) > (9p(a®)) (76) + q(76) f (6, B(76), B* (76)) > O, which implies a
contradiction.

Corollary 2.3. Let ny € {1,2,...} be fixed, suppose that (H1)-(H3), (A1), (A2) and (A4)-(A6)
hold, then the boundary value problem (1.2) and (1.3) has a solution u(t) € C[0,T]y N C2(0, T]yx,
wp(ut(t)) € CY(0,T)y with u(t) > a(t) for t € [0,T]y.

3. Construction of a(t) and f(t)

In this section, we consider how to construct a lower solution a(t) and an upper solution (t)
in certain conditions. In this section, we assume that

m mi—1
qufi(xi) -9 <x;> >0 for x;,x; €R. (3.1)
i=1 j=1

Lemma 3.1. If there exists a nonincreasing positive sequence {e,} with lim, _, €, = 0, then there
exists a function A(t) € CA[0, T]y satisfying

(i) @p (A1) € C[0, Tly, A(8) > O for t € (0, Tly and maxiepo;ry, |y A* (1)) 7| > 0;
(ii) 1(0) = 0, 37 (M) = % ¢ri(A4 (&) < 0and 0 < A(t) < e for t € (0, T)y.

Proof. Let e, = [1/2™1,T - (1/2"Y)]y (n > ng). Assume that r : [0,T]; — [0,00) is
continuous function such that 7(0) = 0, r(t) = sﬁ_l/ (2"1")’7+1 fort € e, \ ey-1, n > np, and
r(t) = éh ' /QT)P* for t € [1/27,T —1/2"].. Let u(t) = [yr(s)As, () = [[ou(s)Vs]/ P,
w(t) = fgv(s)As. Assume that 77 € e, \e,—1 forn > ng, 75 € (0, T) with 77 < 13 and 275—T > 77.
It is easy to show that u,v,w : [0,77]r — [0, o0) are continuous and increasing. Denote

a(t) = [co(ms — t) + c1t]/ PV for t € [17, Ty,

3.2)
- 1 p-1 -7 1 p-1 (
here ¢y = = u(ty) + - (v(m))', c = P u(ty) + P (o(m7)F .
Hence, a(t) > 0 for t € [17, T]y and is nondecreasing. Define
t
b(t) = J‘ a(s)As +w(t;) for t € [17, 78],
b(t) t € [17, %] t), telo,m] 43
p € (77, 8]/ w(t), te |V, 17,
P(t) = RENYTOE §
b(2rs -t), te [, Ty, P(t), te€[r7,Tly.

We can easily prove that w(77) = P(17), w” (17) = P2(17), (¢, (ZUA))V(T7) = ((pp(PA))V(T7) and
w € C4[0,77]y, P € C[r7, Tly, ¢p(w?) € CY[0,77]y, ¢p(P?) € CV[17,T]y. Thus, we have
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A € C2[0,T]y and ¢, (A*) € CY[0,T] with maxoStSTl((pp(AA))v(t)| > 0. Now since w(t) > 0
fort € (0,77]y and P(t) > 0 for t € [17, T], we have A(t) > 0 for ¢ € (0, T]y. On the other hand,

p-1 Pl

En
"y < @IV

u(ry;) = er(s)As

7 V(p-1) L1\ Ve . c c
= n __mm _mm . on
v(m) = ,[0 ”(S)VS] < <T7 (2T)P> B R e Y
(3.4)
by the monotonicity of P(t) on [77, 7s]y, [7s, Ty, respectively, we have
8
ATg) = max /\(t) I a(s)As +w(ty)
T7
< (15 —77) max [co(ts —1t) + c1t]Y PV + w(Ty)
l’E[T7,T3 T
(3.5)
11/ (p-1)
< (15 =) [(7s ~ Tu(ry) + ()] + ()

! T I
<T|T2- + 2L + <2+ =g,
[ ] 2 2 2 "

@2T)?  202T)P !

Consequently, 0 < A(t) < &5, t € (0, T)y, which implies 0 < ¢y, -1 (A(£)) < Ppy-1(€n), t € (0, T]r.
Without loss of generality, one has

S0(0@) - £0(5) 2 400> OGD) =gt 09
i=1
We have ¢y, (A(&,,) + S §5(87) = X1 (A4 (¢0)) <. =

Now we discuss how to construct a lower solution a(t) in (A2) and (A4).

(A7) For each n € {1,2,...}, there exist a constant ky and a strictly monotone decreasing
sequence {p,} with lim,,_,.p, =0, and q(t) f (t,u(t), u” (t)) > ko for (t,u(t), u®(t)) €
[1/2"1, T = (1/2"1)]p x {u(t) € C[0, ]y N CA(0, T]pe : 0 < u(t) < pu} x (—00, +0).

(A8) There exists a function p(t) € C[0,T]y N CA(O Tl @p(B2(t)) € CY(0,T)y such
that p(t) > 0 for t € [0,Tly, X7 ¢;(B()) — X775 ¢i(B* (&) > 0, ~(gp(B* ()" >

() f(t, B(t), B (1)) for t € (0, T)y and —(, (B2(1)))" > () f(1/27*1, (), B2 (1)) for
t € (0,(1/2m*1)),, and

-(% (ﬂA(t)))v 2 q(t)f<T - %ﬂ(&ﬁ%)) for t € <T - %,T)T. (3.7)
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Theorem 3.2. Let ng € {3,4,...} be fixed. If (H1)-(H3), (3.1), and (A7)-(A8) hold, then boundary
value problem (1.2) and (1.3) has a solution u(t) € C[0,T]y N C2(0, T]pe with ¢, (u(t)) €
CY(0,T)y and u(t) > 0 for t € (0, T]y.

Proof. By Corollary 2.3, we need only to show that conditions (A1), (A2), (A4)-(A6) are
satisfied. Without loss of generality, suppose that

pO>pu fortel0Th,  S9(p(2)) - (B @) > pu (3.8)
j=1 i=1

by (A7), (A8), and (3.8), we obtain that (A1) and (A5) hold.
From Lemma 3.1 there exists a function A(t) € C2[0, T]; satisfying

(i) gop()LA(t)) € CV[0,T]y, A(t) > O for t € (0, T]y together with
((1*®))"

(i) 1(0) = 0, =7 ¢;(A(&)) - S ¢(A2 (&) <0and 0 < A(t) < p, for £ € (0,T)-.

Assume that m = min{1, (ko/2R;)" P, p,. /|A|}. Let a(t) = mA(t) for t € [0, T];. Then
a(t) € C[0,T]y N CA(0, Ty, pp(a’(t)) € CY(0,T)y, a(0) = 0 with 0 < a(t) < A(t) < p, for
te(1/ o+l T]y. Without loss of generality, we have

Ry = ma>]< >0, (3.9)
T

te[0,T

gd’j (a(3)) - fq& (a*@)) <. (3.10)
j=1 =1
For arbitrary
<t,u(t),uA(t)> € (0, Ty x {0 < u(t) <a(t)) x {—oo <ub(t) < +oo}, (3.11)

there exists n € {ng,ny +1,...} such that

1 1

on+l’ - on+l

(t,u(t),uA(t)> €

] x {0 <u(t) < a(t)) x {—oo <ub(t) < +oo}. (3.12)
T

We have
q() f (tu),u®) + (o (zxA(t)>>v > ko + <(pp(m)LA(t)>>v = ko +mP! (%()LA(t)))V
(0 (2 0))| 20 52| (o (12 ))"|

<tpp<AA(t)>>v‘ = % > 0.

> ko - m”_l

ko
> ko — —2
=07 ORI ielo)

(3.13)
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Thus (A4) holds and (A2) is also true if u(t) = a(t). Further, since a(T) < sup[O,T]T|a(t)| =
m supte[O’T]Tl)L(t)l < Ppny, we have B(T) 2 py, > a(T), then (A6) is fulfilled. By Corollary 2.3, the
boundary value problem (1.2) and (1.3) has a solution u(t) € C[0, T];NC*(0, T]p«, ¢, (u® (1)) €
CY(0,T)p with u(t) >0 for t € (0, T]. O

According to Theorem 2.1, it is difficult for us to discuss examples in constructing f in
(A8). The following theorem removes (A8) and replaces it with an easy verified condition.

Theorem 3.3. Let ng € {1,2,...} be fixed. If (H1)-(H3), (A1), and (A2) hold, in addition suppose
that the following conditions are satisfied:

My >0, M,> max{ sup a(t),pno}, here M, M, are constants, (3.14)
te[0,T]
qt) f(t, Myt + My, M;) <0 forte (0,T)y,
1 1
q(t)f<W/Mlt+M2/M1> SO for tE <O,W)T, (315)

1 1
q(t)f(W,Mﬁ + M2,M1) <0 forte <T— WlT)qr’

Zldv (Mlé} + Mz) - Zz(lri(Ml) > 0. (3.16)
j=1 i=1

Then boundary value problem (1.2) and (1.3) has a solution u(t) € C[0,T]y N CA(0, T]p with
¢p(ut(t)) € CY(0,T)p and u(t) > 0 for t € (0,T]y.

Proof. Denote B(t) = Myt + M, for t € [0,T]y, then (t) € C[0,T]x N CA(0, Tl p (B2 (1)) €
CY(0,T)y together with B(t) > a(t) and B(t) > pn, for t € [0,T]y, 2?31 qfi(ﬂ(g})) -

72 (B2 (&) > 0, with

(pp(B*®))" 2 a1 (1.0, > 1) for 1 O,T)s,

()" a0 (G b8 0) forte (T-zmms) . Gy

(o ()" = a0 (G pOP0)) Forte (0,557)

then (A3) holds. By Theorem 2.1 the result holds. O
From Theorems 2.1 and 3.2 we have the following theorem.

Theorem 3.4. Let ng € {1,2,...} be fixed. If (H1)-(H3), (3.1), and (A7) hold, in addition suppose
that there exist constants M1, My > 0 such that (3.15) and (3.16) are true. Then the problem (1.2)
and (1.3) has a solution u(t) € C[0, T]y N C2(0, T]px with ¢, (u”(t)) € CY(0,T)y and u(t) > 0 for
te (0,T]y.
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Proof. Without loss of generality, suppose that p,, < M, by (A7), (Al) holds and

Mo > puy > Prgs1 >0, lim p, = 0. (3.18)

n—oo

By the similar way as the proof of Theorem 3.2, there exists a function a(t) € C[0,T]; N
C2(0, T]re, pp(a®(t)) € CY(0,T)y with a(0) = 0, 7, ¢;(a(¢) — 75 gri(a® (&) < 0, a(t) >

0 for t € (0,T]y, such that —((;),L,((JcA(i,‘)))V < g f(ta(t),a®)) for t € (0,T); and a(t) <
supte[O,T]T|a(t)| < pn,- By this together with (3.18), we have M, > max{supte[O,T]Ta(t),pnO}.
Thus all the conditions of Theorem 3.3 are fulfilled. O

4. An Example

In this section, we present an example to illustrate our results.

N
LetT={0}uU {(%) JUl ! ]- Consider the following boundary value problem:

2,1

—<|uA(t)|2uA(t)>v - q(t)f(t,u(t),uA(t)> for t € (0,1),
u(0) =0, u(l) + %u(%) - %uA<é) - 11—0uA<}I> - %uA<?I> - %uA(l) =0.

1
It is obvious that T = 1, p = 4, p1(x) = ¢1(x) = (é)x, go(x) = (%O)x, y3(x) = (g)x, and

@1(x) = x. Denote g(t) = t*+4 and f(t, u(t),u®(t)) = £/147 (£) +uB () + (buP (£))* = 12, here A2 > 10
is constant. Let ng € {1,2,...}, pp, = (1 /2" (A% + al))1/7, and ko = a; > 0is a constant, we have
pn, < 1. Note that (H1)-(H3) and (3.1) hold. Forn € {1,2,...},t € [1/2™1,1 - (1/2™*1)];, and
0 <u < p,, we have

(4.1)

a f(tuut) 2 (¢ +4) <2n+11p7 - )@> > (Fra)(VRra-212)>a, @2

which implies that (A7) is satisfied.
Now we show that (A8) holds with g(t) = t'/7.
Notice that if t € (1/2,1]y, then pA(t) = f/(t) = (1/7)t°/7,

|ﬂA(t)|2ﬂA(t) = 3}1—3)}‘18/7, <'ﬂA(t)'2ﬂA(t)>v = —%t-m <0. (4.3)

If t = 1/2, then BA(t) = (1/7)t°%/7 and |2 (£)| B2 () = (1/343)+718/7,

<|[5A(t)|2ﬁA(t)>V = % G)_M - % Gl)_lw ~-0.1714 < 0. (44)
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Ift=1/2"(n=2,3,...), theno(t) =2t p(t) =t/2, u(t) = t, v(t) = t/2, we have
Ay _ 1 1/7 _ /7 A Paagy - L 17 _ 17712
pro = slen -7, |pro| pro = 5en' -1, (45)

by induction, one gets

<|ﬁA(t)|2ﬂA(t)>v = p4n+l [(%)1/7 _ <%)1/7]3 - 24n+4[<21n>1/7 — (%)1/7]3 <0.

(4.6)
Thus, for t € (0,1], we have
(|ﬁA(t)|2ﬁA(t))V +q®)f (1, A1), B 1))
(t* +4)< +18/7 4 (;tw)z —)LZ>, te [%1] ,
T
R <Z #8574 (207 - t1/7>2 - )3), te {% n=23,..., }
< <t4 + 4) (10 - )3) <0, (4.7)

v

<|ﬁA(t)| 0 +q(t)f<2no+1 PP

2
t4+4 ( 1 t1/7 <(2t)1/7—t1/7> _)L2>

2o

< <t4+4> 10—)3) < forte (0’%%

In addition

pr+p((3)) -0 (p(5)) ~(p(3) ) - (s (3) ) ~matpa) >0. 49)

Hence, all conditions of Theorem 3.2 are satisfied. As a result, the problem (4.1) has a positive
solution.
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