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1. Introduction

Initiated by Hilger in his Ph.D. thesis [1] in 1988, the theory of time scales has been
improved greatly ever since. In particular, considerable works have been made in the
existence problems of solutions of dynamic systems on time scales, for details, see [2–12]
and the references therein. The reason for that lies in two aspects. On one hand, the time
scales approach not only unifies differential and difference equations, but also solves other
problems that are a mix of stop-start and continuous behavior. On the other hand, the time
scales calculus has a tremendous potential for application, for example, Hoffacker et al.
have used the theory to model how students suffering from the eating disorder bulimia are
influenced by their college friends. With the theory on time scales, they can model how the
number of sufferers changes during the continuous college term as well as during long breaks
[13]. Moreover, the theory is widely applied to the research of biology, heat transfer, stock
market, wound healing and epidemic models [3, 13–16], and so forth.
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Here and hereafter, we denote ϕp(u) as p-Laplacian operator, that is, ϕp(u) = |u|p−2u
for p > 1 and (ϕp)

−1 = ϕq, where 1/p + 1/q = 1. We make the blanket assumption that 0, T
are points in T, by an interval (0, T)

T
we always mean (0, T) ∩ T. Other types of interval are

defined similarly.
In [17], Su et al. concerned with the m-point singular p-Laplacian boundary value

problem of the form

(
ϕp
(
uΔ(t)

))∇
+ q(t)f(t, u(t)) = 0, t ∈ (0, T)

T
,

u(0) = 0, u(T) −
m−2∑
i=1

ψi(u(ξi)) = 0,
(1.1)

and obtained some existence criteria for positive solutions of boundary value problem (1.1).
Yet, the singularity of nonlinear term of boundary value problem (1.1) is only occur at u = 0.
As a result, they failed to further provide comprehensible results of the singularity that may
occur at u = 0, t = 0, or t = T . Now, it is natural to consider the existence of positive solutions
of p-Laplacian dynamic equations with the singularity that may occur at u = 0, t = 0, and
t = T in all respects.

For the existence problems of positive solutions of singular p-Laplacian boundary
value problem with sign changing nonlinearity on time scales, some authors have obtained
a few results, for details, see [17–20] and the references therein. It is also noted that the
above-mentioned references [17–20] only considered the existence of positive solutions
of boundary value problems with nonlinear terms that are not involved with first-order
derivative explicitly. Naturally, it is quite necessary to consider that the existence of positive
solutions for p-Laplacian dynamic equations with the nonlinear term is involved with the
first-order derivative explicitly.

Motivated by the above-mentioned ideas, we all-sidedly consider the multiple point
singular p-Laplacian boundary value problem on time scales of the form

(
ϕp
(
uΔ(t)

))∇
+ q(t)f

(
t, u(t), uΔ(t)

)
= 0, t ∈ (0, T)

T
, (1.2)

u(0) = 0,
m1∑
j=1

φj
(
u
(
ξ′j
))

−
m2∑
i=1

ψi
(
uΔ(ξi)

)
= 0, m1, m2 ∈ {1, 2, . . .}, (1.3)

where ϕp(u) = |u|p−2u for p > 1, φj, ψi : R → R are continuous, nondecreasing and φj , ψi
may be nonlinear, 0 < ξ′1 < ξ′2 < · · · < ξ′m1−1 < ξ′m1

= T , and 0 < ξ1 < ξ2 < · · · < ξm2 ≤ T .
The singularity may occur at u = 0, t = 0, or t = T, and the nonlinearity is allowed to change
sign and is involved with the first-order derivative explicitly. In particular, the boundary
condition (1.3) includes the Dirichlet boundary condition and Robin boundary condition. By
applying a monotone iterative method, we obtain some new existence criteria for positive
solutions of the boundary value problem (1.2) and (1.3). Our results are even new for the
corresponding differential (T = R) and difference equations (T = Z) as well as in general
time scales setting. It has been well known that a second-order dynamic derivative does not
approximate a second-order derivative nor a conventional difference; see [21–23]. Thus, it
would be interesting that the mathematical results obtained in our article can be conveniently
extended for differential or difference equations.
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As an application, an example is given to illustrate these results. In particular, our
results improve and generalize some known works of Agarwal et al. [24], O’Regan [25] (p =
2), Lü et al. [26, 27] when T = R; extend and include the results of Lü et al. [28] in the case
of T = R; if f(t, u, uΔ) = f(t, u), then the works of [17, 19] are only the special cases of our
results.

For the convenience of statements, we present some basic definitions and lemmas
concerning the calculus on time scales that one needs to read this paper, which can be found
in [2, 3]. One of another excellent sources on dynamical systems on time scales is from the
book in [29].

A time scale T is a nonempty closed subset of R. It follows that the jump operators
σ, ρ : T → T defined by σ(t) = inf{τ ∈ T : τ > t} and ρ(t) = sup{τ ∈ T : τ < t} (supplemented
by inf ∅ := supT and sup ∅ := infT ) are well defined. The point t ∈ T is left dense, left
scattered, right dense, right scattered if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t, respectively. If T

has a right-scattered minimum m, define Tκ = T − {m}; otherwise, set Tκ = T. If T has a left-
scattered maximumM, define T

κ = T − {M}; otherwise, set T
κ = T. The forward graininess

is μ(t) := σ(t) − t. Similarly, the backward graininess is ν(t) := t − ρ(t).
A function f : T → R is ld-continuous provided that it is continuous at left-dense

points in T and its right-sided limit exists (finite) at right-dense points in T. It is known [3]
that if f is ld-continuous, then there is a function F(t) such that F∇(t) = f(t). In this case, we
define

∫b
af(τ)∇τ = F(b) − F(a).
Throughout this paper, it is assumed that

(H1) f(t, x, y) : (0, T)
T
× (0,∞) × (−∞,∞) → R is continuous;

(H2) q(t) ∈ C((0, T)
T
, (0,∞)) and

∫T
0 q(t)∇t <∞;

(H3) φj, ψi : R → R are continuous and nondecreasing, where j = 1, 2, . . . , m1 and i =
1, 2, . . . , m2.

2. Existence Results

Let E = C([0, T]
T
,R) ∩ CΔ((0, T]

Tκ ,R), and define the norm with

‖u‖ = max

{
sup

t∈[0,T]
T

|u(t)|, sup
t∈[0,T]

Tκ

∣∣∣uΔ(t)
∣∣∣
}
, (2.1)

then E is a Banach space.
To demonstrate existence of positive solutions to problem (1.2) and (1.3), we firstly

approximate the singular problem by means of a sequence of nonsingular problems, and
by using the lower and upper solutions for nonsingular problem together with Schauders
fixed point theorem, and then we establish the existence of solutions to each approximating
problem. We remark here that the singularity of the following results occurs at u = 0, t = 0, or
t = T.
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Now we state and prove our main result.

Theorem 2.1. Let n0 ∈ {1, 2, . . .} be fixed. Assume that (H1)–(H3) hold and the following conditions
are satisfied:

(A1) for each n ∈ {n0, n0 + 1, . . .} ≡ N1, there exists a constant sequence ρn such that {ρn} is
a strictly monotone decreasing sequence with limn→∞ρn = 0, and q(t)f(t, ρn, 0) ≥ 0 for
t ∈ [1/2n+1, T − (1/2n+1)]

T
;

(A2) there exists a function α(t) ∈ C[0, T]
T
∩ CΔ(0, T]

T
, ϕp(αΔ(t)) ∈ C∇(0, T)

T
such that

α(0) = 0, α(t) > 0 on (0, T]
T
,
∑m1

j=1 φj(α(ξ
′
j)) − ∑m2

i=1 ψi(α
Δ(ξi)) ≤ 0 together with

−(ϕp(αΔ(t)))∇ ≤ q(t)f(t, α(t), αΔ(t)) for t ∈ (0, T)
T
;

(A3) there exists a function β(t) ∈ C[0, T]
T
∩ CΔ(0, T]

Tκ , ϕp(βΔ(t)) ∈ C∇(0, T)
T
such that

β(t) ≥ α(t) and β(t) ≥ ρn0 for t ∈ [0, T]
T
,
∑m1

j=1 φj(β(ξ
′
j)) −

∑m2
i=1 ψi(β

Δ(ξi)) > 0 and

−(ϕp(βΔ(t)))∇ ≥ q(t)f(t, β(t), βΔ(t)) for t ∈ [1/2n0+1, T − (1/2n0+1)]
T
, with

−
(
ϕp
(
βΔ(t)

))∇ ≥ q(t)f
(

1
2n0+1

, β(t), βΔ(t)
)

for t ∈
(
0,

1
2n0+1

)

T

,

−
(
ϕp
(
βΔ(t)

))∇ ≥ q(t)f
(
T − 1

2n0+1
, β(t), βΔ(t)

)
for t ∈

(
T − 1

2n0+1
, T

)

T

.

(2.2)

Then the boundary value problem (1.2) and (1.3) has a positive solution u(t) ∈ C[0, T]
T
∩CΔ(0, T]

Tκ ,
ϕp(uΔ(t)) ∈ C∇(0, T)

T
, with u(t) ≥ α(t) for t ∈ [0, T]

T
.

Proof. Let ξ = min{ξ1, ξ′1}. Without loss of generality, fix n ∈ N1, we suppose that
mint∈[ξ,T]

T
α(t) ≥ ρn, let tn ∈ (0, ξ)

T
be such that

α(tn) = ρn, α(t) ≤ ρn for t ∈ [0, tn]T
. (2.3)

Let

αn(t) =

⎧
⎨
⎩
ρn, if t ∈ [0, tn]T

,

α(t), if t ∈ [tn, T]T
,

here α(tn) = ρn. (2.4)

Assume that en = [1/2n+1, T − (1/2n+1)]
T
,

ωn(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
{

1
2n+1

, t

}
, for t ∈

[
0, T − 1

2n+1

]

T

,

min
{
T − 1

2n+1
, t

}
, for t ∈

[
T − 1

2n+1
, T

]

T

,

fn
(
t, x, y

)
= max

{
f
(
t, x, y

)
, f
(
ωn(t), x, y

)}
.

(2.5)

We define a sequence hn0(t, x, y) = fn0(t, x, y) and

hn
(
t, x, y

)
= min

{
fn0
(
t, x, y

)
, . . . , fn

(
t, x, y

)}
, n = n0 + 1, n0 + 2, . . . . (2.6)
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Then

f
(
t, x, y

) ≤ · · · ≤ hn+1
(
t, x, y

) ≤ hn
(
t, x, y

) ≤ · · · ≤ hn0
(
t, x, y

)
,

for
(
t, x, y

) ∈ (0, T)
T
× (0,∞) × (−∞,+∞),

hn
(
t, x, y

)
= f
(
t, x, y

)
, for

(
t, x, y

) ∈ en × (0,∞) × (−∞,∞).

(2.7)

Consider the boundary value problem

(
ϕp
(
uΔ(t)

))∇
+ q(t)h∗n0

(
t, u(t), uΔ(t)

)
= 0, t ∈ (0, T)

T
, (2.8)

u(0) = ρn0 ,
m1∑
j=1

φ∗
j

(
u
(
ξ′j
))

−
m2∑
i=1

ψ∗
i

(
uΔ(ξi)

)
= ρn0 , (2.9)

where

h∗n0
(
t, u(t), uΔ(t)

)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

hn0
(
t, αn0(t), α

Δ
n0(t)

)
+ r(αn0(t) − u(t)), u(t) ≤ αn0(t),

hn0
(
t, u(t), uΔ(t)

)
, αn0(t) ≤ u(t) ≤ β(t),

hn0
(
t, β(t), βΔ(t)

)
+ r
(
β(t) − u(u)), u(t) ≥ β(t),

(2.10)

φ∗
j

(
z′j
)
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φj
(
α
(
ξ′j
))
, z′j ≤ αn0

(
ξ′j
)
= α
(
ξ′j
)
,

φj
(
z′j
)
, αn0

(
ξ′j
)
≤ z′j ≤ β

(
ξ′j
)
,

φj
(
β
(
ξ′j
))
, z′j ≥ β

(
ξ′j
)
,

j = 1, . . . , m1 − 1, (2.11)

ψ∗
i (zi) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψi
(
αΔ(ξi)

)
, zi ≤ αΔn0(ξi) = αΔ(ξi),

ψi(zi), αΔn0(ξi) ≤ zi ≤ βΔ(ξi),
ψi
(
βΔ(ξi)

)
, zi ≥ βΔ(ξi),

i = 1, . . . , m2, (2.12)

and r(u) : R → [−1, 1] is the radial retraction function defined by

r(u) =

⎧
⎪⎨
⎪⎩
u, |u| ≤ 1,
u

|u| , |u| > 1.
(2.13)

Assume that

C0[0, T]T
= {u ∈ C[0, T]

T
: u(0) = 0}, CΔ

ρn0
[0, T]

Tκ =
{
u ∈ CΔ[0, T]

Tκ : u(0) = ρn0
}
.

(2.14)
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We define the mappings Lp, F : CΔ
ρn0

[0, T]
Tκ → C0[0, T]T

× R to be such that

Lpu(t) =

⎛
⎝ϕp

(
uΔ(t)

)
− ϕp

(
uΔ(0)

)
,
m1∑
j=1

φ∗
j

(
u
(
ξ′j
)
⎞
⎠,

Fu(t) =

(
−
∫ t
0
q(x)h∗n0

(
x, u(x), uΔ(x)

)
∇x,

m2∑
i=1

ψ∗
i

(
uΔ(ξi)

)
+ ρn0

)
.

(2.15)

It follows from the Arzela-Ascoli theorem on time scales [30] that F is continuous and
compact. Also if

Lpv =
(
u, γ
)
, for u ∈ C0[0, T]T

, γ =
m1∑
i=1

φ∗
j

⎛
⎝ρn0 +

∫ ξ′j
0
ϕq

⎛
⎝u(x) −

m1∑
j=1

φ∗
j

(
u
(
ξ′j
)
⎞
⎠Δx

⎞
⎠,

(2.16)

then we have v(t) = ρn0 +
∫ t
0ϕq(u(x) −

∑m1
j=1 φ

∗
j (u(ξ

′
j)))Δx.Hence L−1

p exists and is continuous.
It is clear that solving the boundary value problem (2.8) and (2.9) is equivalent to finding a
fixed point of u = L−1

p Fu ≡ Nu, where N = L−1
p F : CΔ

ρn0
[0, T]

Tκ → CΔ
ρn0

[0, T]
Tκ is compact. It

follows from Schauder’s fixed point theorem that the boundary value problem (2.8) and (2.9)
has a solution un0(t) ∈ CΔ[0, T]

Tκ with ϕp(uΔn0(t)) ∈ C∇(0, T)
T
.

In the following, we will show that

αn0(t) ≤ un0(t), for t ∈ [0, T]
T
. (2.17)

Assume that (2.17) is not true, then the function un0(t) − αn0(t) has a negative minimum for
some τ ∈ (0, T]

T
.We consider two cases, that is, τ ∈ (0, T)

T
and τ = T.

Case 1. Assume that τ ∈ (0, T)
T
, then we claim

(
ϕp
(
uΔn0

))∇
(τ) ≥

(
ϕp
(
αΔn0

))∇
(τ). (2.18)

Since un0(t)−αn0(t) has a negative minimum for some τ ∈ (0, T)
T
,we have uΔn0(τ)−αΔn0(τ) ≥ 0,

and there exists a δ with τ − δ ∈ [0, τ)
T
such that uΔn0(t) − αΔn0(t) ≤ 0 for t ∈ [τ − δ, τ)

T
. Thus

ϕp
(
uΔn0(t)

)
− ϕp

(
αΔn0(t)

)
≤ ϕp

(
uΔn0(τ)

)
− ϕp

(
αΔn0(τ)

)
, for t ∈ [τ − δ, τ)

T
, (2.19)

which leads to

ϕp
(
uΔn0(t)

) − ϕp
(
uΔn0(τ)

)

t − τ ≥ ϕp
(
αΔn0(t)

) − ϕp
(
αΔn0(τ)

)

t − τ , for t ∈ [τ − δ, τ)
T
. (2.20)
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If τ is left dense, then

(
ϕp
(
uΔn0

))∇
(τ) = lim

t∈[τ−δ,τ)→ τ

ϕp
(
uΔn0(t)

) − ϕp
(
uΔn0(τ)

)

t − τ

≥ lim
t∈[τ−δ,τ)→ τ

ϕp
(
αΔn0(t)

) − ϕp
(
αΔn0(τ)

)

t − τ =
(
ϕp
(
αΔn0

))∇
(τ).

(2.21)

If τ is left scattered, then, by means of (2.20)we obtain

(
ϕp
(
uΔn0

))∇
(τ) =

ϕp
(
uΔn0(τ)

) − ϕp
(
uΔn0
(
ρ(τ)

))

τ − ρ(τ)

≥ ϕp
(
αΔn0(τ)

) − ϕp
(
αΔn0
(
ρ(τ)

))

τ − ρ(τ) =
(
ϕp
(
αΔn0

))∇
(τ).

(2.22)

Hence, (2.18) is true.
However, by (2.4), (2.10), and un0(τ) < αn0(τ),we obtain

(
ϕp
(
uΔn0(τ)

))∇ −
(
ϕp
(
αΔn0(τ)

))∇

= −
[
q(τ)hn0

(
τ, αn0(τ), α

Δ
n0(τ)

)
+ q(τ)r(αn0(τ) − un0(τ)) +

(
ϕp
(
αΔn0(τ)

))∇]

=

⎧
⎨
⎩
−
[
q(τ)hn0

(
τ, α(τ), αΔ(τ)

)
+ q(τ)r(α(τ) − un0(τ)) +

(
ϕp
(
αΔ(τ)

))∇]
, τ ∈ [tn0 , T)T

,

−[q(τ)hn0
(
τ, ρn0 , 0

)
+ q(τ)r

(
ρn0 − un0(τ)

)]
, τ ∈ (0, tn0)T

.

(2.23)

Assume that τ ∈ [1/2n0+1, T − (1/2n0+1)]
T
, then hn0(τ, x, y) = f(τ, x, y) for (x, y) ∈

(0,∞) × (−∞,+∞). It follows from (A1) and (A2) that

(
ϕp
(
uΔn0(τ)

))∇ −
(
ϕp
(
αΔn0(τ)

))∇

=

⎧
⎨
⎩
−
[
q(τ)f

(
τ, α(τ), αΔ(τ)

)
+ q(τ)r(α(τ) − un0(τ)) +

(
ϕp
(
αΔ(τ)

))∇]
, τ ∈ [tn0 , T)T

,

−[q(τ)f(τ, ρn0 , 0
)
+ q(τ)r

(
ρn0 − un0(τ)

)]
, τ ∈ (0, tn0)T

,

< 0.
(2.24)

This is a contraction.
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Assume that τ ∈ (0, (1/2n0+1))
T
∪ (T − (1/2n0+1), T)

T
, then

hn0
(
τ, x, y

)
= fn0

(
τ, x, y

)
= max

{
f
(
τ, x, y

)
, f
(
ωn0(τ), x, y

)}

= max
{
f

(
1

2n0+1
, x, y

)
, f

(
T − 1

2n0+1
, x, y

)
, f
(
τ, x, y

)}
,

(2.25)

in view of (A1), (A2) and q(τ) > 0, we have

(
ϕp
(
uΔn0(τ)

))∇ −
(
ϕp
(
αΔn0(τ)

))∇

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[
q(τ)f

(
τ, α(τ), αΔ(τ)

)
+
(
ϕp
(
αΔ(τ)

))∇]

−q(τ)r(α(τ) − un0(τ)), τ ∈
[
tn0 , T − 1

2n0+1

)

T

,

−
[
q(τ)f

(
1

2n0+1
, ρn0 , 0

)
+ q(τ)r

(
ρn0 − un0(τ)

)]
, τ ∈ (0, tn0)T

,

−
[
q(τ)f

(
T − 1

2n0+1
, ρn0 , 0

)
+ q(τ)r

(
ρn0 − un0(τ)

)]
, τ ∈

[
T − 1

2n0+1
, T

)

T

,

< 0.
(2.26)

This is a contraction.

Case 2. Assume that τ = T. That is, αn0(T)−un0(T) > 0, this implies φm1(αn0(T))−φm1(un0(T)) >
0.

From (2.4), (2.9), (2.11), (2.12), and
∑m1

j=1 φj(α(ξ
′
j)) ≤ ∑m2

i=1 ψj(α
Δ(ξi)), we have the

following three subcases.
(a) If un0(ξ

′
j) ≤ α(ξ′j) for j = 1, 2, . . . , m1 − 1 and uΔn0(ξi) ≤ αΔ(ξi) for i = 1, 2, . . . , m2, then

0 < φm1(αn0(T)) − φm1(un0(T)) = φm1(α(T)) − φm1(un0(T))

≤ −
m1−1∑
j=1

φj
(
α
(
ξ′j
))

+
m2∑
j=1

ψi
(
αΔ(ξi)

)
+
m1−1∑
j=1

φ∗
j

(
un0

(
ξ′j
))

−
m2∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
− ρn0

< −
m1−1∑
j=1

φj
(
α
(
ξ′j
))

+
m2∑
i=1

ψi
(
αΔ(ξi)

)
+
m1−1∑
j=1

φj
(
α
(
ξ′j
))

−
m2∑
i=1

ψi
(
αΔ(ξi)

)
= 0,

(2.27)

this is a contradiction.
(b) If α(ξ′j) ≤ un0(ξ′j) for j = 1, 2, . . . , m1 − 1 and αΔ(ξi) ≤ uΔn0(ξi) for i = 1, 2, . . . , m2, then

we discuss the four subcases.
Assume that un0(ξ

′
j) ≤ β(ξ′j) for j = 1, 2, . . . , m1 − 1, then

m1−1∑
j=1

φ∗
j

(
un0

(
ξ′j
))

=
m1−1∑
j=1

φj
(
un0

(
ξ′j
))
. (2.28)
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Assume that β(ξ′j) < un0(ξ
′
j) for i = 1, 2, . . . , m1 − 1, then

m1−1∑
j=1

φ∗
j

(
un0

(
ξ′j
))

=
m1−1∑
j=1

φj
(
β
(
ξ′j
))
. (2.29)

Assume that uΔn0(ξi) ≤ βΔ(ξi) for i = 1, 2, . . . , m2, then

m2∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
=

m2∑
i=1

ψi
(
uΔn0(ξi)

)
. (2.30)

Assume that βΔ(ξi) < uΔn0(ξi) for i = 1, 2, . . . , m2, then

m2∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
=

m2∑
i=1

ψi
(
βΔ(ξi)

)
. (2.31)

Now, if there exist sequences {jl1} = {1, 2, . . . , l1} and {jk1} = {1, 2, . . . , k1} such that
β(ξ′jl1 ) < un0(ξ

′
jl
) and un0(ξ

′
jk1
) ≤ β(ξ′jk1 ), here l1 + k1 = m1 − 1, then

m1−1∑
j=1

φ∗
j

(
un0

(
ξ′j
))

=
l1∑

jl1=1

φjl1

(
β
(
ξ′jl1

))
+

k1∑
jk1=1

φjk1

(
un0

(
ξ′jk1

))
. (2.32)

If there exist sequences {il2} = {1, 2, . . . , l2} and {ik2} = {1, 2, . . . , k2} such that βΔ(ξil2 ) <
uΔn0(ξi2) and u

Δ
n0(ξik2 ) ≤ βΔ(ξik2 ), here l2 + k2 = m2, then

m2∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
=

l2∑
il2=1

ψil2

(
βΔ
(
ξil2

))
+

k2∑
ik2=1

ψik2

(
uΔn0

(
ξik2

))
. (2.33)

Hence, by (2.32) and (2.33) together with the monotonicity of φj and ψi,we have

0 < φm1(αn0(T)) − φm1(un0(T)) = φm1(α(T)) − φm1(un0(T))

≤ −
m1−1∑
j=1

φj
(
α
(
ξ′j
))

+
m2∑
j=1

ψi
(
αΔ(ξi)

)
+
m1−1∑
j=1

φ∗
j

(
un0

(
ξ′j
))

−
m2∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
− ρn0

< 0,

(2.34)

which implies a contradiction.
(c) For j = 1, 2, . . . , m1 − 1, if there exist sequences {jl3} = {1, 2, . . . , l3} and {jk3} =

{1, 2, . . . , k3} such that α(ξ′jl3 ) ≤ un0(ξ
′
jl3
) and un0(ξ

′
jk3
) ≤ α(ξ′jk3 ), here l3 + k3 = m1 − 1. For

i = 1, 2, . . . , m2, if there exist sequences {il} = {1, 2, . . . , l} and {ik} = {1, 2, . . . , k} such that
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αΔ(ξil) ≤ uΔn0(ξil) and u
Δ
n0(ξik) ≤ αΔ(ξik), here l + k = m2. Essentially, with the same reasoning

as before, we have

0 < φm1(αn0(T)) − φm1(un0(T)) = φm1(α(T)) − φm1(un0(T)) < 0, (2.35)

which implies a contradiction.
Thus, Cases 1 and 2 imply that (2.17) is established. In particular, since α(t) ≤ αn0(t)

for t ∈ [0, T]
T
, we obtain α(t) ≤ αn0(t) ≤ un0(t) for t ∈ [0, T]

T
.

Essentially, with the same reasoning as the proof of inequality (2.17), we obtain un0(t) ≤
β(t) for t ∈ [0, T]

T
.

Hence

α(t) ≤ αn0(t) ≤ un0(t) ≤ β(t) for t ∈ [0, T]
T
. (2.36)

Now, we discuss the boundary value problem

(
ϕp
(
uΔ(t)

))∇
+ q(t)h∗n0+1

(
t, u(t), uΔ(t)

)
= 0, t ∈ (0, T)

T
,

u(0) = ρn0+1,
m1∑
j=1

φ∗
j

(
u
(
ξ′j
))

−
m2∑
i=1

ψ∗
i

(
uΔ(ξi)

)
= ρn0+1,

(2.37)

where

h∗n0+1
(
t, u(t), uΔ(t)

)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

hn0+1
(
t, αn0+1(t), α

Δ
n0+1

(t)
)
+ r(αn0+1(t) − u(t)), u(t) ≤ αn0+1(t),

hn0+1
(
t, u(t), uΔ(t)

)
, αn0+1(t) ≤ u(t) ≤ un0(t),

hn0+1
(
t, un0(t), u

Δ
n0(t)

)
+ r(un0(t) − u(t)), u(t) ≥ un0(t),

φ∗
j

(
z′j
)
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φj
(
α
(
ξ′j
))
, z′j ≤ αn0+1

(
ξ′j
)
= α
(
ξ′j
)
,

φj
(
z′j
)
, αn0+1

(
ξ′j
)
≤ z′j ≤ un0

(
ξ′j
)
,

φj
(
un0

(
ξ′j
))
, z′j ≥ un0

(
ξ′j
)
,

j = 1, . . . , m1 − 1,

ψ∗
i (zi) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψi
(
αΔ(ξi)

)
, zi ≤ αΔn0+1(ξi) = αΔ(ξi),

ψi(zi), αΔn0+1(ξi) ≤ zi ≤ uΔn0(ξi),
ψi
(
uΔn0(ξi)

)
, zi ≥ uΔn0(ξi),

i = 1, . . . , m2.

(2.38)

It follows from Schauder’s fixed point theorem that the boundary value problem (2.37) has a
solution un0+1(t) ∈ CΔ[0, T]

Tκ with ϕp(uΔn0+1(t)) ∈ C∇(0, T)
T
.

Essentially, with the same reasoning as the proof of inequality (2.36), we have

α(t) ≤ αn0+1(t) ≤ un0+1(t) ≤ un0(t) for t ∈ [0, T]
T
. (2.39)
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Assume that we have uk(t) for some k ∈ {n0 + 1, n0 + 2, . . .} satisfying αk(t) ≤ uk(t) ≤
uk−1(t) for t ∈ [0, T]

T
, then we investigate the boundary value problem

(
ϕp
(
uΔ(t)

))∇ + q(t)h∗k+1
(
t, u(t), uΔ(t)

)
= 0, t ∈ (0, T)

T
,

u(0) = ρk+1,
m1∑
j=1

φj
(
u
(
ξ′j
))

−
m∑
i=1

ψ∗
i

(
uΔ(ξi)

)
= ρk+1,

(2.40)

where

h∗k+1
(
t, u(t), uΔ(t)

)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

hk+1
(
t, αk+1(t), αΔk+1(t)

)
+ r(αk+1(t) − u(t)), u(t) ≤ αk+1(t),

hk+1
(
t, u(t), uΔ(t)

)
, αk+1(t) ≤ u(t) ≤ uk(t),

hk+1
(
t, uk(t), uΔk (t)

)
+ r(uk(t) − u(t)), u(t) ≥ uk(t),

φ∗
j

(
z′j
)
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φj
(
α
(
ξ′j
))
, z′j ≤ αk+1

(
ξ′j
)
= α
(
ξ′j
)
,

φj
(
z′j
)
, αk+1

(
ξ′j
)
≤ z′j ≤ uk

(
ξ′j
)
,

φj
(
uk
(
ξ′j
))
, z′j ≥ uk

(
ξ′j
)
,

j = 1, . . . , m1 − 1,

ψ∗
i (zi) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψi
(
αΔ(ξi)

)
, zi ≤ αΔk+1(ξi) = αΔ(ξi),

ψi(zi), αΔ
k+1(ξi) ≤ zi ≤ uΔk (ξi),

ψΔ
i (uk(ξi)), zi ≥ uΔk (ξi),

i = 1, . . . , m2.

(2.41)

Schauder’s fixed point theorem guarantees that the boundary value problem (2.40) has a
solution uk+1(t) ∈ CΔ[0, T]

Tκ with ϕp(uΔk+1(t)) ∈ C∇(0, T)
T
.

By proceeding to this process as above, we have

α(t) ≤ αk+1(t) ≤ uk+1(t) ≤ uk(t) for t ∈ [0, T]
T
. (2.42)

Hence, for n ∈ {n0, n0+1, . . .}, by proceeding to this process by induction, we obtain sequence
{un(t)}n∈N1

with

α(t) ≤ αn(t) ≤ un(t) ≤ un−1(t) ≤ · · · ≤ un0(t) ≤ β(t) for t ∈ [0, T]
T
. (2.43)

Since [0, T]
T
is compact, the convergence is monotone and bounded, there exist a

subsequence Nn0 of integers and a function zn0(t) ∈ C[1/2n0+1, T]
T
with un(t) converging

uniformly to zn0(t) on [1/2n0+1, T]
T
as n → ∞ through Nn0 . Similarly

{un(t)}∞n=n0+1 is a bounded, monotoneon compact interval
[

1
2n0+2

, T

]

T

. (2.44)
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Thus there exist a subsequence Nn0+1 of Nn0 and a function zn0+1(t) ∈ C[1/2n0+2, T]T
with un(t)

converging uniformly to zn0+1(t) on [1/2n0+2, T]
T
as n → ∞ through Nn0+1. Since Nn0+1 ⊆

Nn0 , we have zn0+1(t) = zn0(t) on [1/2n0+1, T]
T
. Proceed inductively to obtain subsequence

of integers Nn0 ⊇ Nn0+1 ⊇ · · · ⊇ Nn ⊇ · · · and functions zn(t) ∈ C[1/2n+1, T]
T
with un(t)

converging uniformly to zn(t) on [1/2n+1, T]
T
as n → ∞ through Nn and zn(t) = zn−1(t) on

[1/2n, T]
T
.

Now, we define a function u : [0, T]
T

→ [0,∞) with u(t) = zn(t) on [1/2n+1, T]
T

and u(0) = 0. Notice, u(t) is well defined and α(t) ≤ u(t) ≤ un0(t) ≤ β(t) for t ∈ (0, T)
T
.

Nextly, fix t ∈ (0, T)
T
and let l ∈ {n0, n0 + 1, . . .} be such that t ∈ (1/2l+1, T)

T
, assume that

N
∗
l
= {n ∈ Nl : n ≥ l}, we have

φ∗
j

(
un
(
ξ′j
))

= φj
(
un
(
ξ′j
))

for j = 1, 2, . . . , m1,

ψ∗
i (un(ξi)) = ψi(un(ξi)) for i = 1, 2, . . . , m2,

h∗n
(
t, un(t), uΔn (t)

)
= hn

(
t, un(t), uΔn (t)

)
= f
(
t, un(t), uΔn (t)

)
for n ∈ N

∗
l .

(2.45)

Hence, for n ∈ N
∗
l , we have un as the positive solution of the following boundary value

problem:

(
ϕp
(
uΔn (t)

))∇
+ q(t)f

(
t, un(t), uΔn (t)

)
= 0, t ∈

(
1

2n+1
, T

)

T

,

un(0) = ρn,
m1∑
j=1

φj
(
un
(
ξ′j
))

−
m2∑
i=1

ψi
(
uΔn (ξi)

)
= ρn.

(2.46)

Let n → ∞ through N
∗
l , we obtain that u(t) satisfies

(
ϕp
(
uΔ(t)

))∇
+ q(t)f

(
t, u(t), uΔ(t)

)
= 0, t ∈ (0, T)

T
,

u(0) = 0,
m1∑
j=1

φj
(
u
(
ξ′j
))

−
m2∑
i=1

ψi
(
uΔ(ξi)

)
= 0.

(2.47)

It remains to show that u(t) is continuous at 0.

First, it follows from limn→∞un(0) = 0 that there exists n1 ∈ {n0, n0+1, . . .}with un1(0) <
ε/2. Since un1(t) ∈ C[0, T]

T
, there exists δn1 ∈ (0, T)

T
with un1(t) < ε/2 for t ∈ [0, δn1)T

. By
the monotonicity of {un(t)}n∈N0

for each t ∈ [0, T]
T
, we have α(t) ≤ un(t) ≤ un1(t) < ε/2 for

t ∈ [0, δn1)T
and n ≥ n1, which means α(t) ≤ u(t) < ε/2 for t ∈ [0, δn1)T

. So u(t) is continuous
at 0.

If we replace [1/2n+1, T − (1/2n+1)]
T
with t ∈ [0, T − (1/2n+1)]

T
, then the singularity

occurs at u = 0 and t = T .
If we replace [1/2n+1, T − (1/2n+1)]

T
with t ∈ [1/2n+1, T]

Tκ , then the singularity occurs
at u = 0 and t = 0.
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If we replace [1/2n+1, T − (1/2n+1)]
T
with t ∈ [0, T]

Tκ , then the singularity occurs at
u = 0.

So we easily obtain the analogue of Theorem 2.1 in this section; see the following
remark.

Remark 2.2. (A3) is appropriately adjusted, then we can replace t ∈ [1/2n+1, T − (1/2n+1)]
T
in

(A1) by

t ∈
[
0, T − 1

2n+1

]

T

, (2.48)

t ∈
[

1
2n+1

, T

]

Tκ

, (2.49)

or

t ∈ [0, T]
Tκ . (2.50)

For example, if (2.49) occurs, then (A3) is replaced by the following.

(A3’) There exists a function β(t) ∈ C[0, T]
T
∩ CΔ(0, T]

Tκ , ϕp(βΔ(t)) ∈ C∇(0, T)
T
satisfies

β(t) ≥ α(t), β(t) ≥ ρn0 for t ∈ [0, T]
T
and

∑m1
j=1 φj(β(ξ

′
j)) −

∑m2
i=1 ψi(β

Δ(ξi)) > 0,

with −(ϕp(βΔ(t)))∇ ≥ q(t)f(t, β(t), βΔ(t)) for t ∈ (0, T)
T
, and −(ϕp(βΔ(t)))∇ ≥

q(t)f(1/2n0+1, β(t), βΔ(t)) for t ∈ (0, 1/2n0+1)
T
.

Assume that (H1)–(H3), (A1), and (A2) hold, and in addition suppose that the
following conditions are satisfied.

(A4) −(ϕp(αΔ(t)))∇ < q(t)f(t, u(t), uΔ(t)) for (t, u(t), uΔ(t)) ∈ (0, T)
T
× (0, α(t)] ×

(−∞,+∞), here u(t) ∈ C[0, T]
T
∩ CΔ(0, T]

Tκ .

(A5) There exists a function β(t) ∈ C[0, T]
T
∩ CΔ(0, T]

Tκ , ϕp(βΔ(t)) ∈ C∇(0, T)
T
such

that β(t) ≥ ρn0 for t ∈ [0, T]
T
,
∑m1

j=1 ψi(β(ξ
′
j)) −

∑m2
i=1 ψi(β

Δ(ξi)) > 0, −(ϕp(βΔ(t)))∇ ≥
q(t)f(t, β(t), βΔ(t)) for t ∈ (0, T)

T
and

−(ϕp
(
βΔ(t)

))∇ ≥ q(t)f
(

1
2n0+1

, β(t), βΔ(t)
)

for t ∈
(
0,

1
2n0+1

)

T

,

−(ϕp
(
βΔ(t)

))∇ ≥ q(t)f
(
T − 1

2n0+1
, β(t), βΔ(t)

)
for t ∈

(
T − 1

2n0+1
, T

)

T

.

(2.51)

(A6) β(T) ≥ α(T).
Then the result in Theorem 2.1 is also true. This follows immediately from Theorem 2.1 if we
show that (A3) holds. That is to say, if we show β(t) ≥ α(t) for t ∈ [0, T]

T
, then the result

holds. Assume that it is not true, in view of (A6), we obtain that β(t) − α(t) has a negative
minimum for some τ6 ∈ (0, T)

T
, so (β − α)Δ(τ6) ≥ 0 and essentially the same reasoning as

the proof of inequality (2.18), we have (ϕp(αΔ))
∇(τ6) ≤ (ϕp(βΔ))

∇(τ6). However, by (A4),

(A5), and α(τ6) > β(τ6) > 0, we obtain −(ϕp(αΔ))∇(τ6) < q(τ6)f(τ6, β(τ6), βΔ(τ6)). Hence
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(ϕp(αΔ))
∇(τ6)− (ϕp(βΔ))

∇(τ6) ≥ (ϕp(αΔ))
∇(τ6) + q(τ6)f(τ6, β(τ6), βΔ(τ6)) > 0,which implies a

contradiction.

Corollary 2.3. Let n0 ∈ {1, 2, . . .} be fixed, suppose that (H1)–(H3), (A1), (A2) and (A4)–(A6)
hold, then the boundary value problem (1.2) and (1.3) has a solution u(t) ∈ C[0, T]

T
∩ CΔ(0, T]

Tκ ,
ϕp(uΔ(t)) ∈ C∇(0, T)

T
with u(t) ≥ α(t) for t ∈ [0, T]

T
.

3. Construction of α(t) and β(t)

In this section, we consider how to construct a lower solution α(t) and an upper solution β(t)
in certain conditions. In this section, we assume that

m2∑
i=1

ψi(xi) −
m1−1∑
j=1

φj
(
x′
j

)
≥ 0 for xi, x′

j ∈ R. (3.1)

Lemma 3.1. If there exists a nonincreasing positive sequence {εn} with limn→∞εn = 0, then there
exists a function λ(t) ∈ CΔ[0, T]

T
satisfying

(i) ϕp(λΔ(t)) ∈ C∇[0, T]
T
, λ(t) > 0 for t ∈ (0, T]

T
and maxt∈[0,T]

T
|(ϕp(λΔ(t)))∇| > 0;

(ii) λ(0) = 0,
∑m1

j=1 φj(λ(ξ
′
j)) −

∑m2
i=1 ψi(λ

Δ(ξi)) < 0 and 0 < λ(t) ≤ εn for t ∈ (0, T)
T
.

Proof. Let en = [1/2n+1, T − (1/2n+1)]
T
(n ≥ n0). Assume that r : [0, T]

T
→ [0,∞) is

continuous function such that r(0) = 0, r(t) = ε
p−1
n /(2T)p+1 for t ∈ en \ en−1, n ≥ n0, and

r(t) = ε
p−1
n0 /(2T)

p+1 for t ∈ [1/2n0 , T − 1/2n0]
T
. Let u(t) =

∫ t
0r(s)Δs, v(t) = [

∫ t
0u(s)∇s]1/(p−1),

w(t) =
∫ t
0v(s)Δs.Assume that τ7 ∈ en\en−1 for n ≥ n0, τ8 ∈ (0, T)

T
with τ7 < τ8 and 2τ8−T ≥ τ7.

It is easy to show that u, v,w : [0, τ7]T
→ [0,∞) are continuous and increasing. Denote

a(t) = [c0(τ8 − t) + c1t]1/(p−1) for t ∈ [τ7, T]T
,

here c0 = −τ7
τ8
u(τ7) +

1
τ8
(v(τ7))p−1, c1 =

τ8 − τ7
τ8

u(τ7) +
1
τ8
(v(τ7))p−1.

(3.2)

Hence, a(t) > 0 for t ∈ [τ7, T]T
and is nondecreasing. Define

b(t) =
∫ t
τ7

a(s)Δs +w(τ7) for t ∈ [τ7, τ8]T
,

P(t) =

⎧
⎨
⎩
b(t), t ∈ [τ7, τ8]T

,

b(2τ8 − t), t ∈ [τ8, T]T
,

λ(t) =

⎧
⎨
⎩
w(t), t ∈ [0, τ7]T

,

P(t), t ∈ [τ7, T]T
.

(3.3)

We can easily prove thatw(τ7) = P(τ7),wΔ(τ7) = PΔ(τ7), (ϕp(wΔ))∇(τ7) = (ϕp(PΔ))∇(τ7) and
w ∈ CΔ[0, τ7]T

, P ∈ CΔ[τ7, T]T
, ϕp(wΔ) ∈ C∇[0, τ7]T

, ϕp(PΔ) ∈ C∇[τ7, T]T
. Thus, we have
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λ ∈ CΔ[0, T]
T
and ϕp(λΔ) ∈ C∇[0, T]

T
with max0≤t≤T |(ϕp(λΔ))∇(t)| > 0. Now since w(t) > 0

for t ∈ (0, τ7]T
and P(t) > 0 for t ∈ [τ7, T]T

,we have λ(t) > 0 for t ∈ (0, T]
T
.On the other hand,

u(τ7) =
∫ τ7
0
r(s)Δs ≤ τ7 ε

p−1
n

(2T)p+1
<

ε
p−1
n

(2T)p
,

v(τ7) =
[∫ τ7

0
u(s)∇s

]1/(p−1)
<

(
τ7

ε
p−1
n

(2T)p

)1/(p−1)
<

εn

2p/(p−1)T
, w(τ7) < τ7 × εn

2p/(p−1)T
<
εn
2
,

(3.4)

by the monotonicity of P(t) on [τ7, τ8]T
, [τ8, T]T

, respectively, we have

λ(τ8) = max
t∈[τ7,T]T

λ(t) =
∫ τ8
τ7

a(s)Δs +w(τ7)

≤ (τ8 − τ7) max
t∈[τ7,τ8]T

[c0(τ8 − t) + c1t]1/(p−1) +w(τ7)

≤ (τ8 − τ7)
[
(τ8 − τ7)u(τ7) + (v(τ7))p−1

]1/(p−1)
+w(τ7)

< T

[
T
ε
p−1
n

(2T)p
+

ε
p−1
n

2(2T)p−1

]1/(p−1)
+
εn
2
<
εn
2

+
εn
2

= εn.

(3.5)

Consequently, 0 < λ(t) ≤ εn, t ∈ (0, T)
T
, which implies 0 < φm1−1(λ(t)) ≤ φm1−1(εn), t ∈ (0, T]

T
.

Without loss of generality, one has

m2∑
i=1

ψi
(
λΔ(ξi)

)
−
m1−1∑
j=1

φj
(
ξ′j
)
≥ φm1−1(εn) > φm1

(
λ
(
ξ′m1

))
= φm1(λ(T)). (3.6)

We have φm1(λ(ξ
′
m1
)) +

∑m1−1
j=1 φj(ξ′j) −

∑m2
i=1 ψi(λ

Δ(ξi)) < 0.

Now we discuss how to construct a lower solution α(t) in (A2) and (A4).

(A7) For each n ∈ {1, 2, . . .}, there exist a constant k0 and a strictly monotone decreasing
sequence {ρn} with limn→∞ρn = 0, and q(t)f(t, u(t), uΔ(t)) ≥ k0 for (t, u(t), uΔ(t)) ∈
[1/2n+1, T − (1/2n+1)]

T
× {u(t) ∈ C[0, T]

T
∩ CΔ(0, T]

Tκ : 0 < u(t) ≤ ρn} × (−∞,+∞).

(A8) There exists a function β(t) ∈ C[0, T]
T
∩ CΔ(0, T]

Tκ , ϕp(βΔ(t)) ∈ C∇(0, T)
T
such

that β(t) ≥ 0 for t ∈ [0, T]
T
,
∑m1

j=1 φj(β(ξ
′
j)) −

∑m2
i=1 ψi(β

Δ(ξi)) > 0, −(ϕp(βΔ(t)))∇ ≥
q(t)f(t, β(t), βΔ(t)) for t ∈ (0, T)

T
and −(ϕp(βΔ(t)))∇ ≥ q(t)f(1/2n0+1, β(t), βΔ(t)) for

t ∈ (0, (1/2n0+1))
T
, and

−
(
ϕp
(
βΔ(t)

))∇ ≥ q(t)f
(
T − 1

2n0+1
, β(t), βΔ(t)

)
for t ∈

(
T − 1

2n0+1
, T

)

T

. (3.7)



16 Advances in Difference Equations

Theorem 3.2. Let n0 ∈ {3, 4, . . .} be fixed. If (H1)–(H3), (3.1), and (A7)-(A8) hold, then boundary
value problem (1.2) and (1.3) has a solution u(t) ∈ C[0, T]

T
∩ CΔ(0, T]

Tκ with ϕp(uΔ(t)) ∈
C∇(0, T)

T
and u(t) > 0 for t ∈ (0, T]

T
.

Proof. By Corollary 2.3, we need only to show that conditions (A1), (A2), (A4)–(A6) are
satisfied. Without loss of generality, suppose that

β(t) > ρn0 for t ∈ [0, T]
T
,

m1∑
j=1

φj
(
β
(
ξ′j
))

−
m2∑
i=1

ψi
(
βΔ(ξi)

)
> ρn0 , (3.8)

by (A7), (A8), and (3.8), we obtain that (A1) and (A5) hold.
From Lemma 3.1 there exists a function λ(t) ∈ CΔ[0, T]

T
satisfying

(i) ϕp(λΔ(t)) ∈ C∇[0, T]
T
, λ(t) > 0 for t ∈ (0, T]

T
together with

R1 = max
t∈[0,T]

T

∣∣∣∣
(
ϕp
(
λΔ(t)

))∇∣∣∣∣ > 0, (3.9)

(ii) λ(0) = 0,
∑m1

j=1 φj(λ(ξ
′
j)) −

∑m2
i=1 ψi(λ

Δ(ξi)) < 0 and 0 < λ(t) ≤ ρn for t ∈ (0, T)
T
.

Assume thatm = min{1, (k0/2R1)
1/(p−1), ρn0/|λ|}. Let α(t) = mλ(t) for t ∈ [0, T]

T
. Then

α(t) ∈ C[0, T]
T
∩ CΔ(0, T]

Tκ , ϕp(αΔ(t)) ∈ C∇(0, T)
T
, α(0) = 0 with 0 < α(t) ≤ λ(t) ≤ ρn for

t ∈ (1/2n+1, T]
T
.Without loss of generality, we have

m1∑
j=1

φj
(
α
(
ξ′j
))

−
m2∑
i=1

ψi
(
αΔ(ξi)

)
< 0. (3.10)

For arbitrary

(
t, u(t), uΔ(t)

)
∈ (0, T]

T
× {0 < u(t) ≤ α(t)} ×

{
−∞ < uΔ(t) < +∞

}
, (3.11)

there exists n ∈ {n0, n0 + 1, . . .} such that

(
t, u(t), uΔ(t)

)
∈
[

1
2n+1

, T − 1
2n+1

]

T

× {0 < u(t) ≤ α(t)} ×
{
−∞ < uΔ(t) < +∞

}
. (3.12)

We have

q(t)f
(
t, u(t), uΔ(t)

)
+
(
ϕp
(
αΔ(t)

))∇ ≥ k0 +
(
ϕp
(
mλΔ(t)

))∇
= k0 +mp−1

(
ϕp
(
λΔ(t)

))∇

≥ k0 −mp−1
∣∣∣∣
(
ϕp
(
λΔ(t)

))∇∣∣∣∣ ≥ k0 −
k0
2R1

∣∣∣∣
(
ϕp
(
λΔ(t)

))∇∣∣∣∣

≥ k0 − k0
2R1

max
t∈[0,T]

∣∣∣∣
(
ϕp
(
λΔ(t)

))∇∣∣∣∣ =
k0
2
> 0.

(3.13)



Advances in Difference Equations 17

Thus (A4) holds and (A2) is also true if u(t) = α(t). Further, since α(T) ≤ sup[0,T]
T

|α(t)| =
m supt∈[0,T]

T

|λ(t)| ≤ ρn0 ,we have β(T) ≥ ρn0 ≥ α(T), then (A6) is fulfilled. By Corollary 2.3, the
boundary value problem (1.2) and (1.3) has a solution u(t) ∈ C[0, T]

T
∩CΔ(0, T]

Tκ , ϕp(uΔ(t)) ∈
C∇(0, T)

T
with u(t) ≥ 0 for t ∈ (0, T]

T
.

According to Theorem 2.1 , it is difficult for us to discuss examples in constructing β in
(A8). The following theorem removes (A8) and replaces it with an easy verified condition.

Theorem 3.3. Let n0 ∈ {1, 2, . . .} be fixed. If (H1)–(H3), (A1), and (A2) hold, in addition suppose
that the following conditions are satisfied:

M1 > 0, M2 > max

{
sup

t∈[0,T]
T

α(t), ρn0

}
, here M1, M2 are constants, (3.14)

q(t)f(t,M1t +M2,M1) ≤ 0 for t ∈ (0, T)
T
,

q(t)f
(

1
2n0+1

,M1t +M2,M1

)
≤ 0 for t ∈

(
0,

1
2n0+1

)

T

,

q(t)f
(

1
2n0+1

,M1t +M2,M1

)
≤ 0 for t ∈

(
T − 1

2n0+1
, T

)

T

,

(3.15)

m1∑
j=1

φj
(
M1ξ

′
j +M2

)
−

m2∑
i=1

ψi(M1) > 0. (3.16)

Then boundary value problem (1.2) and (1.3) has a solution u(t) ∈ C[0, T]
T
∩ CΔ(0, T]

Tκ with
ϕp(uΔ(t)) ∈ C∇(0, T)

T
and u(t) > 0 for t ∈ (0, T]

T
.

Proof. Denote β(t) = M1t +M2 for t ∈ [0, T]
T
, then β(t) ∈ C[0, T]

T
∩ CΔ(0, T]

Tκ , ϕp(βΔ(t)) ∈
C∇(0, T)

T
together with β(t) ≥ α(t) and β(t) ≥ ρn0 for t ∈ [0, T]

T
,
∑m1

j=1 ψi(β(ξ
′
j)) −∑m2

i=1 ψi(β
Δ(ξi)) > 0, with

−
(
ϕp
(
βΔ(t)

))∇ ≥ q(t)f
(
t, β(t), βΔ(t)

)
for t ∈ (0, T)

T
,

−
(
ϕp
(
βΔ(t)

))∇ ≥ q(t)f
(

1
2n0+1

, β(t), βΔ(t)
)

for t ∈
(
T − 1

2n0+1
,

1
2n0+1

)

T

,

−
(
ϕp
(
βΔ(t)

))∇ ≥ q(t)f
(

1
2n0+1

, β(t), βΔ(t)
)

for t ∈
(
0,

1
2n0+1

)

T

,

(3.17)

then (A3) holds. By Theorem 2.1 the result holds.

From Theorems 2.1 and 3.2 we have the following theorem.

Theorem 3.4. Let n0 ∈ {1, 2, . . .} be fixed. If (H1)–(H3), (3.1), and (A7) hold, in addition suppose
that there exist constants M1,M2 > 0 such that (3.15) and (3.16) are true. Then the problem (1.2)
and (1.3) has a solution u(t) ∈ C[0, T]

T
∩ CΔ(0, T]

Tκ with ϕp(uΔ(t)) ∈ C∇(0, T)
T
and u(t) > 0 for

t ∈ (0, T]
T
.
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Proof. Without loss of generality, suppose that ρn0 < M2, by (A7), (A1) holds and

M2 > ρn0 > ρn0+1 > · · · , lim
n→∞

ρn = 0. (3.18)

By the similar way as the proof of Theorem 3.2, there exists a function α(t) ∈ C[0, T]
T
∩

CΔ(0, T]
Tκ , ϕp(αΔ(t)) ∈ C∇(0, T)

T
with α(0) = 0,

∑m1
j=1 φj(α(ξ

′
j)) −

∑m2
i=1 ψi(α

Δ(ξi)) < 0, α(t) >

0 for t ∈ (0, T]
T
, such that −(ϕp(αΔ(t)))∇ ≤ q(t)f(t, α(t), αΔ(t)) for t ∈ (0, T)

T
and α(t) ≤

supt∈[0,T]
T

|α(t)| ≤ ρn0 . By this together with (3.18), we have M2 > max{supt∈[0,T]
T

α(t), ρn0}.
Thus all the conditions of Theorem 3.3 are fulfilled.

4. An Example

In this section, we present an example to illustrate our results.

Let T = {0} ∪ {(1
2
)
N

} ∪ [
1
2, 1

]. Consider the following boundary value problem:

−
(∣∣∣uΔ(t)

∣∣∣
2
uΔ(t)

)∇
= q(t)f

(
t, u(t), uΔ(t)

)
for t ∈ (0, 1)

T
,

u(0) = 0, u(1) +
1
5
u

(
1
8

)
− 1
5
uΔ
(
1
8

)
− 1
10
uΔ
(
1
4

)
− 1
5
uΔ
(
3
4

)
− 1
10
uΔ(1) = 0.

(4.1)

It is obvious that T = 1, p = 4, ϕ1(x) = ψ1(x) = (
1
5
)x, ψ2(x) = (

1
10

)x, ψ3(x) = (
1
5
)x, and

ψ4(x) = x. Denote q(t) = t4+4 and f(t, u(t), uΔ(t)) = t/u7(t)+u8(t)+(tuΔ(t))2−λ2, here λ2 ≥ 10
is constant. Let n0 ∈ {1, 2, . . .}, ρn = (1/2n+1(λ2 + a1))

1/7
, and k0 = a1 > 0 is a constant, we have

ρn0 ≤ 1.Note that (H1)–(H3) and (3.1) hold. For n ∈ {1, 2, . . .}, t ∈ [1/2n+1, 1 − (1/2n+1)]
T
, and

0 < u ≤ ρn, we have

q(t)f
(
t, u, uΔ

)
≥
(
t4 + 4

)( 1
2n+1ρ7n

− λ2
)

≥
(
t4 + 4

)(
λ2 + a1 − λ2

)
> a1, (4.2)

which implies that (A7) is satisfied.
Now we show that (A8) holds with β(t) = t1/7.
Notice that if t ∈ (1/2, 1]

T
, then βΔ(t) = β′(t) = (1/7)t−6/7,

∣∣∣βΔ(t)
∣∣∣
2
βΔ(t) =

1
343

t−18/7,
(∣∣∣βΔ(t)

∣∣∣
2
βΔ(t)

)∇
= − 18

2401
t−25/7 ≤ 0. (4.3)

If t = 1/2, then βΔ(t) = (1/7)t−6/7 and |βΔ(t)|2βΔ(t) = (1/343)t−18/7,

(∣∣∣βΔ(t)
∣∣∣
2
βΔ(t)

)∇
=

2
343

(
1
2

)−18/7
− 2
343

(
1
4

)−18/7
≈ −0.1714 ≤ 0. (4.4)
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If t = 1/2n (n = 2, 3, . . .), then σ(t) = 2t, ρ(t) = t/2, μ(t) = t, ν(t) = t/2, we have

βΔ(t) =
1
t

[
(2t)1/7 − t1/7

]
,

∣∣∣βΔ(t)
∣∣∣
2
βΔ(t) =

1
t3

[
(2t)1/7 − t1/7

]3
, (4.5)

by induction, one gets

(∣∣∣βΔ(t)
∣∣∣
2
βΔ(t)

)∇
= 24n+1

[(
1

2n−1

)1/7

−
(

1
2n

)1/7
]3

− 24n+4
[(

1
2n

)1/7

−
(

1
2n+1

)1/7
]3

≤ 0.

(4.6)

Thus, for t ∈ (0, 1]
T
, we have

(∣∣∣βΔ(t)
∣∣∣
2
βΔ(t)

)∇
+ q(t)f

(
t, β(t), βΔ(t)

)

≤

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
t4 + 4

)( t

t
+ t8/7 +

(
1
7
t1/7
)2

− λ2
)
, t ∈

[
1
2
, 1
]

T

,

(
t4 + 4

)( t
t
+ t8/7 +

(
(2t)1/7 − t1/7

)2 − λ2
)
, t ∈

{
1
2n
, n = 2, 3, . . . ,

}
,

≤
(
t4 + 4

)(
10 − λ2

)
≤ 0,

(∣∣∣βΔ(t)
∣∣∣
2
βΔ(t)

)∇
+ q(t)f

(
1

2n0+1
, β(t), βΔ(t)

)

≤
(
t4 + 4

)( 1
2n0+1t

+
(
t1/7
)8

+
(
(2t)1/7 − t1/7

)2 − λ2
)

≤
(
t4 + 4

)(
10 − λ2

)
≤ for t ∈

(
0,

1
2n0+1

)

T

.

(4.7)

In addition

β(1) + ϕ1

(
β

(
1
8

))
− ψ1

(
βΔ
(
1
8

))
− ψ2

(
β

(
1
4

))
− ψ3

(
βΔ
(
3
4

))
− ψ4

(
β(1)

)
> 0. (4.8)

Hence, all conditions of Theorem 3.2 are satisfied. As a result, the problem (4.1) has a positive
solution.
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