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1. Introduction

Difference equations with continuous variables are difference equations in which the
unknown function is a function of a continuous variable [1]. These equations appear as
natural descriptions of observed evolution phenomena in many branches of the natural
sciences (see, e.g., [2, 3]). The book mentioned in [3] presents an exposition of some
unusual properties of difference equations, specially, of difference equations with continuous
variables. In the recent years, the asymptotic behavior and other behavior of delay difference
equations with continuous variables have received much attention due to its potential appli-
cation in various fields such as numerical analysis, control theory, finite mathematics, and
computer science. Many results have appeared in the literatures; see, for example, [1, 4–7].

However, besides the delay effect, an impulsive effect likewise exists in a wide variety
of evolutionary process, in which states are changed abruptly at certain moments of time.
Recently, impulsive difference equations with discrete variable have attracted considerable
attention. In particular, delay effect on the asymptotic behavior and other behaviors of
impulsive difference equations with discrete variable has been extensively studied by many
authors and various results are reported [8–12]. However, to the best of our knowledge,
very little has been done with the corresponding problems for impulsive delay difference
equations with continuous variables. Motivated by the above discussions, the main aim of
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this paper is to study the asymptotic behavior of impulsive infinite delay difference equations
with continuous variables. By establishing an infinite delay difference inequality with
impulsive initial conditions and using the properties of “�-cone,” we obtain the attracting
and invariant sets of the equations.

2. Preliminaries

Consider the impulsive infinite delay difference equation with continuous variable

xi(t) = aixi(t − τ1) +
n∑

j=1

aijfj
(
xj(t − τ1)

)
+

n∑

j=1

bijgj
(
xj(t − τ2)

)

+
∫ t

−∞
pij(t − s)hj

(
xj(s)

)
ds + Ii, t /= tk, t ≥ t0,

xi(t) = Jik
(
xi
(
t−
))
, t ≥ t0, t = tk, k = 1, 2, . . . ,

(2.1)

where ai, Ii, aij , and bij (i, j ∈ N) are real constants, pij ∈ Le (here, N and Le will be defined
later), τ1 and τ2 are positive real numbers. tk (k = 1, 2, . . .) is an impulsive sequence such that
t1 < t2 < · · · , limk→∞tk = ∞. fj , gj ,hj , and Jik: R → R are real-valued functions.

By a solution of (2.1), we mean a piecewise continuous real-valued function xi(t)
defined on the interval (−∞,∞)which satisfies (2.1) for all t ≥ t0.

In the sequel, by Φi we will denote the set of all continuous real-valued functions φi
defined on an interval (−∞, 0], which satisfies the “compatibility condition”

φi(0) = aiφi(−τ1) +
n∑

j=1

aijfj
(
φj(−τ1)

)
+

n∑

j=1

bijgj
(
φj(−τ2)

)
+
∫0

−∞
pij(−s)hj

(
φj(s)

)
ds + Ii.

(2.2)

By the method of steps, one can easily see that, for any given initial function φi ∈ Φi, there
exists a unique solution xi(t), i ∈ N, of (2.1)which satisfies the initial condition

xi(t + t0) = φi(t), t ∈ (−∞, 0], (2.3)

this function will be called the solution of the initial problem (2.1)–(2.3).
For convenience, we rewrite (2.1) and (2.3) into the following vector form

x(t) = A0x(t − τ1) +Af(x(t − τ1)) + Bg(x(t − τ2))

+
∫ t

−∞
P(t − s)h(x(s))ds + I, t /= tk, t ≥ t0,

x(t) = Jk
(
x
(
t−
))
, t ≥ t0, t = tk, k = 1, 2, . . . ,

x(t0 + θ) = φ(θ), θ ∈ (−∞, 0],

(2.4)
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where x(t) = (x1(t), . . . , xn(t))
T , A0 = diag{a1, . . . , an}, A = (aij)n×n, B = (bij)n×n, P(t) =

(pij(t))n×n, I = (I1, . . . , In)
T , f(x) = (f1(x1), . . . , fn(xn))

T , g(x) = (g1(x1), . . . , gn(xn))
T , h(x) =

(h1(x1), . . . , hn(xn))
T , Jk(x) = (J1k(x), . . . , Jnk(x))

T , and φ = (φ1, . . . , φn)
T ∈ Φ, in which Φ =

(Φ1, . . . ,Φn)
T .

In what follows, we introduce some notations and recall some basic definitions. Let
R
n(Rn

+) be the space of n-dimensional (nonnegative) real column vectors, R
m×n(Rm×n

+ ) be the
set of m × n (nonnegative) real matrices, E be the n-dimensional unit matrix, and | · | be
the Euclidean norm of R

n. For A,B ∈ R
m×n or A,B ∈ R

n, A ≥ B (A ≤ B,A > B,A < B)
means that each pair of corresponding elements of A and B satisfies the inequality “≥ (≤, >
, <).”Especially, A is called a nonnegative matrix if A ≥ 0, and z is called a positive vector if

z > 0. N Δ= {1, 2, . . . , n} and en = (1, 1, . . . , 1)T ∈ R
n.

C[X,Y ] denotes the space of continuous mappings from the topological spaceX to the

topological space Y . Especially, let C Δ= C[(−∞, 0],Rn]

PC[J,Rn] =

⎧
⎪⎪⎨

⎪⎪⎩
ψ : J −→ R

n

∣∣∣∣∣∣∣∣

ψ(s) is continuous for all but at most

countable points s ∈ J and at these points

s ∈ J, ψ(s+) and ψ(s−) exist, ψ(s) = ψ(s+)

⎫
⎪⎪⎬

⎪⎪⎭
, (2.5)

where J ⊂ R is an interval, ψ(s+) and ψ(s−) denote the right-hand and left-hand limits of the

function ψ(s), respectively. Especially, let PC Δ= PC[(−∞, 0],Rn]

Le =

⎧
⎪⎨

⎪⎩

ψ(s) : R+ → R,

where R+ = [0,∞)

∣∣∣∣∣∣∣

ψ(s) is piecewise continuous and satisfies
∫∞

0
eλ0s

∣∣ψ(s)
∣∣ds <∞, where λ0 > 0 is constant

⎫
⎪⎬

⎪⎭
. (2.6)

For x ∈ R
n, φ ∈ C (φ ∈ PC), and A ∈ R

n×n we define

[x]+ = (|x1|, . . . , |xn|)T , [φ]+∞ = (
[
φ1(t)

]+
∞, . . . , [φn(t)]

+
∞)

T
,

[φi(t)]
+
∞ = sup

θ∈(−∞,0]

∣∣φi(t + θ)
∣∣, i ∈ N, [A]+ =

(∣∣aij
∣∣)
n×n,

(2.7)

and �(A) denotes the spectral radius of A.
For any φ ∈ C or φ ∈ PC, we always assume that φ is bounded and introduce the

following norm:

∥∥φ
∥∥ = sup

−∞<θ≤0

∣∣φ(s)
∣∣. (2.8)

Definition 2.1. The set S ⊂ PC is called a positive invariant set of (2.4), if for any initial value
φ ∈ S, the solution x(t, t0, φ) ∈ S, t ≥ t0.
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Definition 2.2. The set S ⊂ PC is called a global attracting set of (2.4), if for any initial value
φ ∈ PC, the solution x(t, t0, φ) satisfies

dist
(
x
(
t, t0, φ

)
, S
) −→ 0, as t −→ +∞, (2.9)

where dist(φ, S) = infψ∈Sdist(φ, ψ), dist(φ, ψ) = supθ∈(−∞,0]|φ(θ) − ψ(θ)|, for ψ ∈ PC.

Definition 2.3. System (2.4) is said to be globally exponentially stable if for any solution
x(t, t0, φ), there exist constants ξ > 0 and κ0 > 0 such that

∣∣x
(
t, t0, φ

)∣∣ ≤ κ0
∥∥φ
∥∥e−ξ(t−t0), t ≥ t0. (2.10)

Lemma 2.4 (See [13, 14]). IfM ∈ R
n×n
+ and �(M) < 1, then (E −M)−1 ≥ 0.

Lemma 2.5 (La Salle [14]). Suppose that M ∈ R
n×n
+ and �(M) < 1, then there exists a positive

vector z such that (E −M)z > 0.

ForM ∈ R
n×n
+ and �(M) < 1, we denote

Ω�(M) = {z ∈ R
n | (E −M)z > 0, z > 0}, (2.11)

which is a nonempty set by Lemma 2.5, satisfying that k1z1 + k2z2 ∈ Ω�(M) for any scalars
k1 > 0, k2 > 0, and vectors z1, z2 ∈ Ω�(M). So Ω�(M) is a cone without vertex in R

n, we call
it a “�-cone” [12].

3. Main Results

In this section, we will first establish an infinite delay difference inequality with impulsive
initial conditions and then give the attracting and invariant sets of (2.4).

Theorem 3.1. Let P = (pij)n×n,W = (wij)n×n ∈ R
n×n
+ , I = (I1, . . . , In)

T ∈ R
n
+, and Q(t) =

(qij(t))n×n, where 0 ≤ qij(t) ∈ Le. Denote Q̃ = (q̃ij)n×n
Δ= (
∫∞
0 qij(t)dt)n×n and let �(P +W + Q̃) < 1

and u(t) ∈ R
n be a solution of the following infinite delay difference inequality with the initial

condition u(θ) ∈ PC[(−∞, t0],Rn]:

u(t) ≤ Pu(t − τ1) +Wu(t − τ2) +
∫∞

0
Q(s)u(t − s)ds + I, t ≥ t0. (3.1)

(a) Then

u(t) ≤ ze−λ(t−t0) + (E − P −W − Q̃)
−1
I, t ≥ t0, (3.2)

provided the initial conditions

u(θ) ≤ ze−λ(θ−t0) + (E − P −W − Q̃)
−1
I, θ ∈ (−∞, t0], (3.3)
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where z = (z1, z2, . . . , zn)
T ∈ Ω�(P +W + Q̃) and the positive number λ ≤ λ0 is determined by the

following inequality:

(
eλ
(
Peλτ1 +Weλτ2 +

∫∞

0
Q(s)eλsds

)
− E
)
z ≤ 0. (3.4)

(b) Then

u(t) ≤ d(E − P −W − Q̃)
−1
I, t ≥ t0, (3.5)

provided the initial conditions

u(θ) ≤ d(E − P −W − Q̃)
−1
I, d ≥ 1, θ ∈ (−∞, t0]. (3.6)

Proof. (a): Since �(P +W + Q̃) < 1 and P +W + Q̃ ∈ R
n×n
+ , then, by Lemma 2.5, there exists a

positive vector z ∈ Ω�(P +W + Q̃) such that (E − (P +W + Q̃))z > 0. Using continuity and
noting qij(t) ∈ Le, we know that (3.4) has at least one positive solution λ ≤ λ0, that is,

n∑

j=1

[
pije

λτ1 +wije
λτ2 +
∫∞

0
qij(s)eλsds

]
zj ≤ zi, i ∈ N. (3.7)

LetN Δ= (E − P −W − Q̃)
−1
I,N = (N1, . . . ,Nn)

T , one can get that (E − P −W − Q̃)N = I, or

n∑

j=1

(
pij +wij + q̃ij

)
Nj + Ii =Ni, i ∈ N. (3.8)

To prove (3.2), we first prove, for any given ε > 0, when u(θ) ≤ ze−λ(θ−t0) +N,θ ∈ (−∞, t0],

ui(t) ≤ (1 + ε)
[
zie

−λ(t−t0) +Ni

]
Δ= yi(t), t ≥ t0, i ∈ N. (3.9)

If (3.9) is not true, then there must be a t∗ > t0 and some integer r such that

ur(t∗) > yr(t∗), ui(t) ≤ yi(t), t ∈ (−∞, t∗), i ∈ N. (3.10)
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By using (3.1), (3.7)–(3.10), and qij(t) ≥ 0, we have

ur(t∗) ≤
n∑

j=1

prj(1 + ε)
[
zje

−λ(t∗−τ1−t0) +Nj

]

+
n∑

j=1

wrj(1 + ε)
[
zje

−λ(t∗−τ2−t0) +Nj

]

+
n∑

j=1

∫∞

0
qrj(s)(1 + ε)

[
zje

−λ(t∗−s−t0) +Nj

]
ds + Ir

=
n∑

j=1

(
prje

λτ1 +wrje
λτ2 +
∫∞

0
qrj(s)eλsds

)
zj(1 + ε)e−λ(t

∗−t0)

+
n∑

j=1

(
prj +wrj + q̃rj

)
Nj(1 + ε) + (1 + ε)Ir − εIr

≤ (1 + ε)
[
zre

−λ(t∗−t0) +Nr

]

= yr(t∗),

(3.11)

which contradicts the first equality of (3.10), and so (3.9) holds for all t ≥ t0. Letting ε → 0,
then (3.2) holds, and the proof of part (a) is completed.

(b) For any given initial function: u(t0 + θ) = φ(θ), θ ∈ (−∞, 0], where φ ∈ PC, there is
a constant d ≥ 1 such that [φ]+∞ ≤ dN. To prove (3.5), we first prove that

u(t) ≤ dN + Λ Δ= (x1, . . . , xn)
T = x, t ≥ t0, (3.12)

where Λ = (E − P −W − Q̃)
−1
enε (ε > 0 small enough), provided that the initial conditions

satisfies [φ]+∞ ≤ x.
If (3.12) is not true, then there must be a t∗ > t0 and some integer r such that

ur(t∗) > xr, u(t) ≤ x, t ∈ (−∞, t∗). (3.13)

By using (3.1), (3.8), (3.13) qij(t) ≥ 0, and �(P +W + Q̃) < 1, we obtain that

u(t∗) ≤
(
P +W + Q̃

)
x + I

=
(
P +W + Q̃

)
(dN + Λ) + I

≤ d
[(
P +W + Q̃

)
N + I

]
+
(
P +W + Q̃

)
Λ

≤ dN + Λ

= x,

(3.14)
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which contradicts the first equality of (3.13), and so (3.12) holds for all t ≥ t0. Letting ε → 0,
then (3.5) holds, and the proof of part (b) is completed.

Remark 3.2. Suppose that Q(t) = 0 in part (a) of Theorem 3.1, then we get [15, Lemma3].

In the following, we will obtain attracting and invariant sets of (2.4) by employing
Theorem 3.1. Here, we firstly introduce the following assumptions.

(A1) For any x ∈ R
n, there exist nonnegative diagonal matrices F,G,H such that

[f(x)]+ ≤ F[x]+, [g(x)]+ ≤ G[x]+, [h(x)]+ ≤ H[x]+. (3.15)

(A2) For any x ∈ R
n, there exist nonnegative matrices Rk such that

[Jk(x)]
+ ≤ Rk[x]

+, k = 1, 2, . . . . (3.16)

(A3) Let �(P̂ + Ŵ + Q̂) < 1, where

P̂ = [A0]
+ + [A]+F, Ŵ = [B]+G, Q̂ =

∫∞

0
Q(s)ds, Q(s) = [P(s)]+H. (3.17)

(A4) There exists a constant γ such that

ln γk
tk − tk−1 ≤ γ < λ, k = 1, 2, . . . , (3.18)

where the scalar λ satisfies 0 < λ ≤ λ0 and is determined by the following inequality

(
eλ
(
P̂eλτ1 + Ŵeλτ2 +

∫∞

0
Q(s)eλsds

)
− E
)
z ≤ 0, (3.19)

where z = (z1, . . . , zn)
T ∈ Ω�(P̂ + Ŵ + Q̂), and

γk ≥ 1, γkz ≥ Rkz, k = 1, 2, . . . . (3.20)

(A5) Let

σ =
∞∑

k=1

lnσk <∞, k = 1, 2, . . . , (3.21)

where σk ≥ 1 satisfy

Rk(E − P̂ − Ŵ − Q̂)
−1
[I]+ ≤ σk(E − P̂ − Ŵ − Q̂)

−1
[I]+. (3.22)
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Theorem 3.3. If (A1)–(A5) hold, then S = {φ ∈ PC | [φ]+∞ ≤ eσ(E − P̂ − Ŵ − Q̂)
−1
[I]+} is a global

attracting set of (2.4).

Proof. Since �(P̂ + Ŵ + Q̂) < 1 and P̂ , Ŵ, Q̂ ∈ R
n×n
+ , then, by Lemma 2.5, there exists a positive

vector z ∈ Ω�(P̂ + Ŵ + Q̂) such that (E − (P̂ + Ŵ + Q̂))z > 0. Using continuity and noting
pij(t) ∈ Le, we obtain that inequality (3.19) has at least one positive solution λ ≤ λ0.

From (2.4) and condition (A1), we have

[x(t)]+ ≤ [A0x(t − τ1)]+ +
[
Af(x(t − τ1))

]+ +
[
Bg(x(t − τ2))

]+

+

[∫ t

−∞
P(t − s)h(x(s))ds

]+
+ [I]+

≤ [A0]
+[x(t − τ1)]+ + [A]+F[(x(t − τ1))]+ + [B]+G[(x(t − τ2)]+

+
∫∞

0
[P(s)]+H[(x(t − s))]+ds + [I]+

= P̂[x(t − τ1)]+ + Ŵ[(x(t − τ2))]+ +
∫∞

0
Q(s)[(x(t − s))]+ds + [I]+,

(3.23)

where tk−1 ≤ t < tk, k = 1, 2, . . . .
Since �(P̂ + Ŵ + Q̂) < 1 and P̂ , Ŵ, Q̂ ∈ R

n×n
+ , then, by Lemma 2.4, we can get

(E − P̂ − Ŵ − Q̂)
−1 ≥ 0, and so N̂ Δ= (E − P̂ − Ŵ − Q̂)

−1
[I]+ ≥ 0.

For the initial conditions: x(t0 + θ) = φ(θ), θ ∈ (−∞, 0], where φ ∈ PC, we have

[x(t)]+ ≤ κ0ze−λ(t−t0) ≤ κ0ze−λ(t−t0) + N̂, t ∈ (−∞, t0], (3.24)

where

κ0 =

∥∥φ
∥∥

min1≤i≤n{zi} , z ∈ Ω�

(
P̂ + Ŵ + Q̂

)
. (3.25)

By the property of �-cone and z ∈ Ω�(P̂ + Ŵ + Q̂), we have κ0z ∈ Ω�(P̂ + Ŵ + Q̂). Then, all
the conditions of part (a) of Theorem 3.1 are satisfied by (3.23), (3.24), and condition (A3),
we derive that

[x(t)]+ ≤ κ0ze−λ(t−t0) + N̂, t ∈ [t0, t1). (3.26)

Suppose for all ι = 1, . . . , k, the inequalities

[x(t)]+ ≤ γ0 · · · γι−1κ0ze−λ(t−t0) + σ0 · · ·σι−1N̂, t ∈ [tι−1, tι), (3.27)
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hold, where γ0 = σ0 = 1. Then, from (3.20), (3.22), (3.27), and (A2), the impulsive part of (2.4)
satisfies that

[x(tk)]
+ =
[
Jk
(
x
(
t−k
))]+ ≤ Rk[x

(
t−k
)
]+

≤ Rk

[
γ0 · · · γk−1κ0ze−λ(tk−t0) + σ0 · · ·σk−1N̂

]

≤ γ0 · · · γk−1γkκ0ze−λ(tk−t0) + σ0 · · ·σk−1σkN̂.

(3.28)

This, together with (3.27), leads to

[x(t)]+ ≤ γ0 · · · γk−1γkκ0ze−λ(t−t0) + σ0 · · ·σk−1σkN̂, t ∈ (−∞, tk]. (3.29)

By the property of �-cone again, the vector

γ0 · · · γk−1γkκ0z ∈ Ω�

(
P̂ + Ŵ + Q̂

)
. (3.30)

On the other hand,

[x(t)]+ ≤ P̂[x(t − τ1)]+ + Ŵ[(x(t − τ2))]+ +
∫∞

0
Q(t)[(x(t − s))]+ds + σ0, . . . , σk[I]+, t /= tk.

(3.31)

It follows from (3.29)–(3.31) and part (a) of Theorem 3.1 that

[x(t)]+ ≤ γ0 · · · γk−1γkκ0ze−λ(t−t0) + σ0 · · ·σk−1σkN̂, t ∈ [tk, tk+1). (3.32)

By the mathematical induction, we can conclude that

[x(t)]+ ≤ γ0 · · · γk−1κ0ze−λ(t−t0) + σ0 · · ·σk−1N̂, t ∈ [tk−1, tk), k = 1, 2, . . . . (3.33)

From (3.18) and (3.21),

γk ≤ eγ(tk−tk−1), σ0 · · ·σk−1 ≤ eσ, (3.34)

we can use (3.33) to conclude that

[x(t)]+ ≤ eγ(t1−t0) · · · eγ(tk−1−tk−2)κ0ze−λ(t−t0) + σ0 · · ·σk−1N̂

≤ κ0zeγ(t−t0)e−λ(t−t0) + eσN̂

= κ0ze−(λ−γ)(t−t0) + eσN̂, t ∈ [tk−1, tk), k = 1, 2, . . . .

(3.35)

This implies that the conclusion of the theorem holds and the proof is complete.
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Theorem 3.4. If (A1)–(A3) withRk ≤ E hold, then S = {φ ∈ PC | [φ]+∞ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+}

is a positive invariant set and also a global attracting set of (2.4).

Proof. For the initial conditions: x(t0 + s) = φ(s), s ∈ (−∞, 0], where φ ∈ S, we have

[x(t)]+ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+, t ∈ (−∞, t0]. (3.36)

By (3.36) and the part (b) of Theorem 3.1 with d = 1, we have

[x(t)]+ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+, t ∈ [t0, t1). (3.37)

Suppose for all ι = 1, . . . , k, the inequalities

[x(t)]+ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+, t ∈ [tι−1, tι), (3.38)

hold. Then, from (A2) and Rk ≤ E, the impulsive part of (2.4) satisfies that

[x(tk)]
+ ≤ [Jk

(
x
(
t−k
))]+ ≤ Rk[x

(
t−k
)
]+ ≤ E[x(t−k

)
]+ ≤ (E − P̂ − Ŵ − Q̂)

−1
[I]+. (3.39)

This, together with (3.36) and (3.38), leads to

[x(t)]+ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+, t ∈ (−∞, tk]. (3.40)

It follows from (3.40) and the part (b) of Theorem 3.1 that

[x(t)]+ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+, t ∈ [tk, tk+1). (3.41)

By the mathematical induction, we can conclude that

[x(t)]+ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+, t ∈ [tk−1, tk), k = 1, 2, . . . . (3.42)

Therefore, S = {φ ∈ PC | [φ]+∞ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+} is a positive invariant set. Since

Rk ≤ E, a direct calculation shows that γk = σk = 1 and σ = 0 in Theorem 3.3. It follows from
Theorem 3.3 that the set S is also a global attracting set of (2.4). The proof is complete.

For the case I = 0, we easily observe that x(t) ≡ 0 is a solution of (2.4) from (A1) and
(A2). In the following, we give the attractivity of the zero solution and the proof is similar to
that of Theorem 3.3.

Corollary 3.5. If (A1)−(A4) hold with I = 0, then the zero solution of (2.4) is globally exponentially
stable.
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Remark 3.6. If Jk(x) = x, that is, they have no impulses in (2.4), then by Theorem 3.4, we can
obtain the following result.

Corollary 3.7. If (A1) and (A3) hold, then S = {φ ∈ PC | [φ]+∞ ≤ (E − P̂ − Ŵ − Q̂)
−1
[I]+} is a

positive invariant set and also a global attracting set of (2.4).

4. Illustrative Example

The following illustrative example will demonstrate the effectiveness of our results.

Example 4.1. Consider the following impulsive infinite delay difference equations:

x1(t) =
1
4
x1(t − 1) +

1
12

sin(x1(t − 1)) +
1
15
x2(t − 1)

+
4
15

|x2(t − 2)| −
∫ t

−∞
e−6(t−s)|x1(s)|ds + 2

x2(t) = −1
4
x2(t − 1) +

1
5
sin(x1(t − 1)) +

1
6
x2(t − 1)

+
2
15

|x1(t − 2)| +
∫ t

−∞
e−12(t−s)|x2(s)|ds + 3

, m/=mk, (4.1)

with

x1(tk) = α1kx1
(
t−k
) − β1kx2

(
t−k
)

x2(tk) = β2kx1
(
t−k
)

+ α2kx2
(
t−k
)
,

(4.2)

where αik and βik are nonnegative constants, and the impulsive sequence tk (k = 1, 2, . . .)
satisfies: t1 < t2 < · · · , limk→∞tk = ∞. For System (4.1), we have p11(s) = −e−6s, p22(s) =
e−12s, p12(s) = p21(s) = 0. So, it is easy to check that pij(s) ∈ Le, i, j = 1, 2, provided that
0 < λ0 < 1. In this example, we may let λ0 = 0.1.

The parameters of (A1)–(A3) are as follows:

A0 =

⎛
⎜⎝

1
4

0

0 −1
4

⎞
⎟⎠, A =

⎛
⎜⎝

1
12

1
15

1
5

1
6

⎞
⎟⎠, B =

⎛
⎜⎝

0
4
15

2
15

0

⎞
⎟⎠,

F = G = H =

(
1 0

0 1

)
, P̂ =

⎛
⎜⎝

1
3

1
15

1
5

5
12

⎞
⎟⎠, Ŵ =

⎛
⎜⎝

0
4
15

2
15

0

⎞
⎟⎠,

Q̂ =

⎛
⎜⎝

1
6

0

0
1
12

⎞
⎟⎠, Rk =

(
α1k β1k

β2k α2k

)
, P̂ + Ŵ + Q̂ =

⎛
⎜⎝

1
2

1
3

1
3

1
2

⎞
⎟⎠.

(4.3)
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It is easy to prove that �(P̂ + Ŵ + Q̂) = 5/6 < 1 and

Ωρ

(
P̂ + Ŵ + Q̂

)
=
{
(z1, z2)

T > 0
∣∣∣∣
2
3
z1 < z2 <

3
2
z1

}
. (4.4)

Let z = (1, 1)T ∈ Ω�(P̂ + Ŵ + Q̂) and λ = 0.01 < λ0 which satisfies the inequality

(
eλ
(
P̂eλ + Ŵe2λ +

∫∞

0
Q(s)eλsds

)
− E
)
z < 0. (4.5)

Let γk = max{α1k + β1k, α2k + β2k}, then γk satisfy γkz ≥ Rkz, k = 1, 2, . . . .

Case 1. Let α1k = α2k = (1/3)e1/25
k
, β1k = β2k = (2/3)e1/25

k
, and tk − tk−1 = 5k, then

γk = e1/25
k ≥ 1,

ln γk
tk − tk−1 =

ln e1/25
k

5k
=

1
25k × 5k

≤ 0.008 = γ < λ. (4.6)

Moreover, σk = e1/25
k ≥ 1, σ =

∑∞
k=1 lnσk =

∑∞
k=1 ln e

1/25k = 1/24. Clearly, all conditions

of Theorem 3.3 are satisfied. So S = {φ ∈ PC | [φ]+∞ ≤ e1/24(E − P̂ − Ŵ − Q̂)
−1
I} =

(6e1/24, 6e1/24)T is a global attracting set of (4.1).

Case 2. Let α1k = α2k = (1/3)e1/2
k
and β1k = β2k = 0, then Rk = (1/3)e1/2

k
E ≤ E. Therefore, by

Theorem 3.4, S = {φ ∈ PC | [φ]+∞ ≤ N̂ = (E − P̂ − Ŵ − Q̂)
−1
I} = (6, 6)T is a positive invariant

set and also a global attracting set of (4.1).

Case 3. If I = 0 and let α1k = α2k = (1/3)e0.04k and β1k = β2k = (2/3)e0.04k, then

γk = e0.04k ≥ 1,
ln γk

tk − tk−1 =
ln e0.04k

5k
= 0.008 = γ < λ. (4.7)

Clearly, all conditions of Corollary 3.5 are satisfied. Therefore, by Corollary 3.5, the zero
solution of (4.1) is globally exponentially stable.
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