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1. Introduction

Consider the second-order difference equation

−∇
(
pnΔyn

)
+ qnyn = λwnyn, n ∈ [0,N − 1] (1.1)

with the general coupled boundary condition

(
yN−1

ΔyN−1

)

= eiαK

(
y−1

Δy−1

)

, (1.2)

where N ≥ 2 is an integer, Δ is the forward difference operator: Δyn = yn+1 − yn, ∇ is the
backward difference operator: ∇yn = yn − yn−1, and pn, qn, and wn are real numbers with
pn > 0 for n ∈ [−1,N − 1], wn > 0 for n ∈ [0, N − 1], and p−1 = pN−1 = 1;λ is the spectral
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parameter; the interval [0,N − 1] is the integral set {n}N−1
n=0 ; α, −π < α ≤ π is a constant

parameter; i =
√
−1,

K =

(
k11 k12

k21 k22

)

, kij ∈ R, i, j = 1, 2, with detK = 1. (1.3)

The boundary condition (1.2) contains the periodic and antiperiodic boundary
conditions. In fact, (1.2) is the periodic boundary condition in the case where α = 0 and
K = I, the identity matrix, and (1.2) is the antiperiodic condition in the case where α = π and
K = I.

We first briefly recall some relative existing results of eigenvalue problems for
difference equations. Atkinson [1, Chapter 6, Section 2] discussed the boundary conditions

y−1 = αym−1, ym = βy0 (1.4)

when he investigated the recurrence formula

cnyn+1 =
(
anλ̂ + bn

)
yn − cn−1yn−1, n ∈ [0, m − 1], (1.5)

where an, bn, cn, α, and β are real numbers, subject to an > 0, cn > 0, and

αc−1 = βcm−1. (1.6)

He remarked that all the eigenvalues of the boundary value problem (1.4) and (1.5) are real,
and they may not be all distinct. If c−1 = cm−1 and α = β = 1, he viewed the boundary
conditions (1.4) as the periodic boundary conditions for (1.5). Shi and Chen [2] investigated
the more general boundary value problem

−∇(CnΔxn) + Bnxn = λwnxn, n ∈ [1,N], N ≥ 2, (1.7)

R

(
−x0

xN

)

+ S

(
C0Δx0

CNΔxN

)

= 0, (1.8)

where Cn, Bn, and wn are d × d Hermitian matrices; C0 and CN are nonsingular; wn > 0
for n ∈ [1,N]; R and S are 2d × 2d matrices. Moreover, R and S satisfy rank(R, S) = 2d
and the self-adjoint condition RS∗ = SR∗ [2, Lemma 2.1]. A series of spectral results was
obtained. We will remark that the boundary condition (1.8) includes the coupled boundary
condition (1.2) when d = 1, and the boundary conditions (1.4) when (1.6) holds. Agarwal and
Wong studied existence of minimal and maximal quasisolutions of a second-order nonlinear
periodic boundary value problem [3, Section 4]. In 2005, Wang and Shi [4] considered (1.1)
with the periodic and antiperiodic boundary conditions. They found out the following results
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(see [4, Theorems 2.2 and 3.1]): the periodic and antiperiodic boundary value problems have
exactly N real eigenvalues {λi}N−1

i=0 and {λ̃i}Ni=1, respectively, which satisfy

λ0 < λ̃1 ≤ λ̃2 < λ1 ≤ λ2 < λ̃3 ≤ λ̃4 < · · · < λN−2 ≤ λN−1 < λ̃N, if N is odd,

λ0 < λ̃1 ≤ λ̃2 < λ1 ≤ λ2 < λ̃3 ≤ λ̃4 < · · · < λ̃N−1 ≤ λ̃N < λN−1, if N is even.
(1.9)

These results are similar to those about eigenvalues of periodic and antiperiodic boundary
value problems for second-order ordinary differential equations (cf. [5–8]).

Motivated by [4], we compare the eigenvalues of the eigenvalue problem (1.1) with
the coupled boundary condition (1.2) as α varies and obtain relationships between the
eigenvalues in the present paper. These results extend the above results obtained in [4]. In
this paper, we will apply some results obtained by Shi and Chen [2] to prove the existence
of eigenvalues of (1.1) and (1.2) to calculate the number of these eigenvalues, and to apply
some oscillation results obtained by Agarwal et al. [9] to compare the eigenvalues as α varies.

This paper is organized as follows. Section 2 gives some preliminaries including
existence and numbers of eigenvalues of the coupled boundary value problems, and some
properties of eigenvalues of a kind of separated boundary value problem, which will be
used in the next section. Section 3 pays attention to comparison between the eigenvalues
of problem (1.1) and (1.2) as α varies.

2. Preliminaries

Equation (1.1) can be rewritten as the recurrence formula

pnyn+1 =
(
pn + pn−1 + qn − λwn

)
yn − pn−1yn−1, n ∈ [0,N − 1]. (2.1)

Clearly, yn is a polynomial in λ with real coefficients since pn, qn, and wn are all real. Hence,
all the solutions of (1.1) are entire functions of λ. Especially, if y0 /= 0, yn is a polynomial of
degree n in λ for n ≤ N. However, if y−1 /= 0 and y0 = 0, yn is a polynomial of degree n − 1 in
λ for n ≤N.

We now prepare some results that are useful in the next section. The following lemma
is mentioned in [4, Theorem 2.1].

Lemma 2.1 ([4, Theorem 2.1]). Let y and z be any solutions of (1.1). Then the Wronskian

W
[
y, z
]
(n) =

∣∣∣∣∣

yn+1 zn+1

pnΔyn pnΔzn

∣∣∣∣∣
= −pn

(
yn+1zn − ynzn+1

)
(2.2)

is a constant on [−1,N − 1].

Theorem 2.2. If k11 /= k12 then the coupled boundary value problem (1.1) and (1.2) has exactly N
real eigenvalues.
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Proof. By setting d = 1, Cn = pn, Bn = qn,

R = (R1, R2) =

(
eiαk11 1

eiαk21 0

)

, S = (S1, S2) =

(
−eiαk12 0

−eiαk22 1

)

, (2.3)

shifting the whole interval [1,N] left by one unit, and using p−1 = pN−1 = 1, (1.1) and (1.2)
are written as (1.7) and (1.8), respectively. It is evident that rank(R, S) = 2d and RS∗ = SR∗.
Hence, the boundary condition (1.2) is self-adjoint by [2, Lemma 2.1]. In addition, it follows
from (2.3) and C−1 = 1 that

(R1 + S1C−1, S2) =

(
eiα(k11 − k12) 0

eiα(k21 − k22) 1

)

. (2.4)

By noting that k11 /= k12, we get rank(R1 + S1C−1, S2) = 2. Therefore, by [2, Theorem 4.1], the
problem (1.1) and (1.2) has exactly N real eigenvalues. This completes the proof.

Let yn(λ) be the solution of (1.1) with the initial conditions

y−1(λ) = 0, y0(λ)/= 0. (2.5)

Consider the sequence

y0(λ), y1(λ), . . . , yN−1(λ). (2.6)

If yn(λ) = 0 for some n ∈ (0,N − 1), then, we get from (2.1) that yn−1(λ) and yn+1(λ) have
opposite signs. Hence, we say that sequence (2.6) exhibits a change of sign if yn(λ)yn+1(λ) < 0
for some n ∈ [0,N − 1), or yn(λ) = 0 for some n ∈ (0,N − 1). A general zero of the sequence
(2.6) is defined as its zero or a change of sign.

Now we consider (1.1) with the following separated boundary conditions:

y−1 = 0, k12ΔyN−1 − k22yN−1 = 0, (2.7)

where k12, k22 are entries of K. It follows from (2.1) that the separated boundary value
problem (1.1) with (2.7) has a unique solution, and the separated boundary value problem
will be used to compare the eigenvalues of (1.1) and (1.2) as α varies in the next section.

In [9], Agarwal et al. studied the following boundary value problem on time scales:

yΔΔ + q(t)yσ = −λyσ, t ∈
[
ρ(a), ρ(b)

]
∩ T, (2.8)

with the boundary conditions

Ra

(
y
)

:= αy
(
ρ(a)

)
+ βyΔ(ρ(a)

)
= 0, Rb

(
y
)

:= γy(b) + δyΔ(b) = 0, (2.9)
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where T is a time scale, σ(t) and ρ(t) are the forward and backward jump operators in T,
yΔ is the delta derivative, and yσ(t) := y(σ(t)); q : [ρ(a), ρ(b)] ∩ T → R is continuous;
(α2 + β2)(γ2 + δ2)/= 0; a, b ∈ T with a < b. They obtained some useful oscillation results. With
a similar argument to that used in the proof of [9, Theorem 1], one can show the following
result.

Lemma 2.3. The eigenvalues of the boundary value problem are

−
(
p(t)yΔ(t)

)Δ
+ qσ(t)yσ(t) = λrσ(t)yσ(t), t ∈

[
ρ(a), ρ(b)

]
∩ T, (2.10)

with

Ra

(
y
)
= Rb

(
y
)
= 0, (2.11)

where pΔ, qσ, and rσ are real and continuous functions in [ρ(a), ρ(b)] ∩ T, p > 0 over [ρ(a), b] ∩
T, rσ > 0 over [ρ(a), ρ(b)] ∩ T, p(ρ(a)) = p(b) = 1 are arranged as −∞ < λ0 < λ1 < λ2 < · · · , and
an eigenfunction corresponding to λk has exactly k generalized zeros in the open interval (a, b).

By setting [ρ(a), b] ∩ T = [−1,N − 1] := {n}N−1
−1 , α = 1, β = 0, γ = −k22, δ = k12, the

above boundary value problem can be written as (1.1) with (2.7), then we have the following
result.

Lemma 2.4. The boundary value problem (1.1) and (2.7) has N − 1 real and simple eigenvalues as
k12 = 0 andN real and simple eigenvalues as k12 /= 0, which can be arranged in the increasing order

μ0 < μ1 < · · · < μNs, where Ns :=N − 2 or N − 1. (2.12)

Let yn(λ) be the solution of (1.1) with the separated boundary conditions (2.7). Then sequence (2.6)
exhibits no changes of sign for λ ≤ μ0, exactly k+1 changes of sign for μk < λ ≤ μk+1 (0 ≤ k ≤Ns−1),
andNs + 1 changes of sign for λ > μNs .

Let ϕn and ψn be the solutions of (1.1) satisfying the following initial conditions:

ϕ−1 = ψ0 = 1, ϕ0 = ψ−1 = 0, (2.13)

respectively. By Lemma 2.1 and using pN−1 = 1, we have

ΔϕN−1ψN−1 − ϕN−1ΔψN−1 = ϕNψN−1 − ϕN−1ψN = −1. (2.14)

Obviously, ϕn(λ) and ψn(λ) are two linearly independent solutions of (1.1). The following
lemma can be derived from [4, Proposition 3.1].
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Lemma 2.5. Let μk (0 ≤ k ≤Ns) be the eigenvalues of (1.1) and (2.7) with k12 = 0 and be arranged
as (2.12). Then, ψn(μk) is an eigenfunction of the problem (1.1) and (2.7) with respect to μk (0 ≤ k ≤
Ns), that is, for 0 ≤ k ≤Ns, ψn(μk) is a nontrivial solution of (1.1) satisfying

ψ−1
(
μk
)
= ψN−1

(
μk
)
= 0. (2.15)

Moreover, if k is odd, ψN(μk) > 0 and if k is even, ψN(μk) < 0 for 2 ≤ k ≤Ns.

A representation of solutions for a nonhomogeneous linear equation with initial
conditions is given by the following lemma.

Lemma 2.6 (see [4, Theorem 2.3]). For any {fn}N−1
n=0 ⊂ C and for any c−1, c0 ∈ C, the initial value

problem

−∇
(
pnΔzn

)
+
(
qn − λwn

)
zn = wnfn, n ∈ [0,N − 1],

z−1 = c−1, z0 = c0

(2.16)

has a unique solution z, which can be expressed as

zn = c−1ϕn + c0ψn +
n−1∑

j=0

wj

(
ϕnψj − ϕjψn

)
fj , n ∈ [−1,N], (2.17)

where
∑−2

j=0 · =
∑−1

j=0 · := 0.

3. Main Results

Let ϕn and ψn be defined in Section 2, let μk (0 ≤ k ≤ Ns) be the eigenvalues of the separated
boundary value problem (1.1) with (2.7), and let λj(eiαK) (0 ≤ j ≤ N − 1) be the eigenvalues
of the coupled boundary value problem (1.1) and (1.2) and arranged in the nondecreasing
order

λ0

(
eiαK

)
≤ λ1

(
eiαK

)
≤ · · · ≤ λN−1

(
eiαK

)
. (3.1)

Clearly, λj(K) (0 ≤ j ≤ N − 1) denotes the eigenvalue of the problem (1.1) and (1.2) with
α = 0, and λj(−K) (0 ≤ j ≤N − 1) denotes the eigenvalue of the problem (1.1) and (1.2) with
α = π . We now present the main results of this paper.
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Theorem 3.1. Assume that k11 > 0, k12 ≤ 0 or k11 ≥ 0, k12 < 0. Then, for every fixed α/= 0,
−π < α < π , one has the following inequalities:

λ0(K) < λ0

(
eiαK

)
< λ0(−K) ≤ λ1(−K) < λ1

(
eiαK

)
< λ1(K)

≤ λ2(K) < λ2

(
eiαK

)
< λ2(−K)

≤ λ3(−K) < λ3

(
eiαK

)
< λ3(K)

≤ · · · ≤ λN−2(−K) < λN−2

(
eiαK

)
< λN−2(K)

≤ λN−1(K) < λN−1

(
eiαK

)
< λN−1(−K), if N is odd,

λ0(K) < λ0

(
eiαK

)
< λ0(−K) ≤ λ1(−K) < λ1

(
eiαK

)
< λ1(K)

≤ λ2(K) < λ2

(
eiαK

)
< λ2(−K)

≤ λ3(−K) < λ3

(
eiαK

)
< λ3(K)

≤ · · · ≤ λN−2(K) < λN−2

(
eiαK

)
< λN−2(−K)

≤ λN−1(−K) < λN−1

(
eiαK

)
< λN−1(K), if N is even.

(3.2)

Remark 3.2. If k11 ≤ 0, k12 > 0 or k11 < 0, k12 ≥ 0, a similar result can be obtained by applying
Theorem 3.1 to −K. In fact, eiαK = ei(π+α)(−K) for α ∈ (−π, 0) and eiαK = ei(−π+α)(−K) for α ∈
(0, π). Hence, the boundary condition (1.2) in the cases of k11 ≤ 0, k12 > 0 or k11 < 0, k12 ≥ 0
and α/= 0,−π < α < π , can be written as condition (1.2), where α is replaced by π + α for
α ∈ (−π, 0) and −π + α for α ∈ (0, π), and K is replaced by −K.

Before proving Theorem 3.1, we prove the following five propositions.

Proposition 3.3. For λ ∈ C, λ is an eigenvalue of (1.1) and (1.2) if and only if

f(λ) = 2 cosα, (3.3)

where

f(λ) := k22ϕN−1(λ) + (k11 − k12)ΔψN−1(λ) − (k21 − k22)ψN−1(λ) − k12ΔϕN−1(λ). (3.4)

Moreover, λ is a multiple eigenvalue of (1.1) and (1.2) if and only if

ϕN−1(λ) = eiα(k11 − k12), ΔϕN−1(λ) = eiα(k21 − k22),

ψN−1(λ) = eiαk12, ΔψN−1(λ) = eiαk22.
(3.5)
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Proof. Since ϕn and ψn are linearly independent solutions of (1.1), then λ is an eigenvalue of
the problem (1.1) and (1.2) if and only if there exist two constants C1 and C2 not both zero
such that C1ϕn + C2ψn satisfies (1.2), which yields

(
ϕN−1(λ) − eiα(k11 − k12) ψN−1(λ) − eiαk12

ΔϕN−1(λ) − eiα(k21 − k22) ΔψN−1(λ) − eiαk22

)(
C1

C2

)

= 0. (3.6)

It is evident that (3.6) has a nontrivial solution (C1, C2) if and only if

det

(
ϕN−1(λ) − eiα(k11 − k12) ψN−1(λ) − eiαk12

ΔϕN−1(λ) − eiα(k21 − k22) ΔψN−1(λ) − eiαk22

)

= 0 (3.7)

which, together with (2.14) and det K = 1, implies that

1 + e2iα − eiαf(λ) = 0. (3.8)

Then (3.3) follows from the above relation and the fact that e−iα + eiα = 2 cosα. On the other
hand, (1.1) has two linearly independent solutions satisfying (1.2) if and only if all the entries
of the coefficient matrix of (3.6) are zero. Hence, λ is a multiple eigenvalue of (1.1) and (1.2)
if and only if (3.5) holds. This completes the proof.

The following result is a direct consequence of the first result of Proposition 3.3.

Corollary 3.4. For any α ∈ (−π,π],

λj
(
eiαK

)
= λj
(
e−iαK

)
, 0 ≤ j ≤N − 1. (3.9)

Proposition 3.5. Assume that k11 > 0, k12 ≤ 0 or k11 ≥ 0, k12 < 0. Then one has the following
results.

(i) For each k, 0 ≤ k ≤Ns, f(μk) ≥ 2 if k is odd, and f(μk) ≤ −2 if k is even.

(ii) There exists a constant ν0 < μ0 such that f(ν0) ≥ 2.

(iii) If the boundary value problem (1.1) and (2.7) has exactly N − 1 eigenvalues then there
exists a constant ξ0 such that μN−2 < ξ0 and f(ξ0) ≤ −2, whereN is odd, and there exists
a constant η0 such that μN−2 < η0 and f(η0) ≥ 2, whereN is even.

Proof. (i) If ψn(μk) is an eigenfunction of the problem (1.1) and (2.7) respect to μk then
k12ΔψN−1(μk) − k22ψN−1(μk) = 0. By Lemma 2.3 and the initial conditions (2.13), we have
that if k12 < 0 then the sequence ψ0(μk), ψ1(μk), . . . , ψN−1(μk) exhibits k changes of sign and

sgnψN−1
(
μk
)
= (−1)k. (3.10)
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Case 1. If k12 < 0 then it follows from k12ΔψN−1(μk) − k22ψN−1(μk) = 0 that

ψN−1
(
μk
)

k12
=

ΔψN−1
(
μk
)

k22
, k11k22ψN−1

(
μk
)
= k11k12ΔψN−1

(
μk
)
. (3.11)

By (2.14) and the first relation in (3.11), for each k, 0 ≤ k ≤Ns, we have

ϕN−1
(
μk
)
ΔψN−1

(
μk
)
−ΔϕN−1

(
μk
)
ψN−1

(
μk
)

= ϕN−1
(
μk
)k22

k12
ψN−1

(
μk
)
−ΔϕN−1

(
μk
)
ψN−1

(
μk
)

=
(
k22ϕN−1

(
μk
)
− k12ΔϕN−1

(
μk
))ψN−1

(
μk
)

k12
= 1.

(3.12)

By the definition of f(λ), (3.11), and det K = 1,

k12f
(
μk
)
= k12k22ϕN−1

(
μk
)
+ k12(k11 − k12)ΔψN−1

(
μk
)

− k12(k21 − k22)ψN−1
(
μk
)
− k2

12ΔϕN−1
(
μk
)

= k12k22ϕN−1
(
μk
)
+ k11k12ΔψN−1

(
μk
)
− k12k21ψN−1

(
μk
)
− k2

12ΔϕN−1
(
μk
)

= k12k22ϕN−1
(
μk
)
+ k11k22ψN−1

(
μk
)
− k12k21ψN−1

(
μk
)
− k2

12ΔϕN−1
(
μk
)

= k12k22ϕN−1
(
μk
)
− k2

12ΔϕN−1
(
μk
)
+ ψN−1

(
μk
)
.

(3.13)

Hence,

f
(
μk
)
=
(
k22ϕN−1

(
μk
)
− k12ΔϕN−1

(
μk
))

+
ψN−1

(
μk
)

k12
. (3.14)

Noting (k22ϕN−1(μk) − k12ΔϕN−1(μk))(ψN−1(μk)/k12) = 1, k12 < 0, and (3.10), we have that if
k is odd then

f
(
μk
)
=

⎛

⎝

√
ψN−1

(
μk
)

k12
−
√
k22ϕN−1

(
μk
)
− k12ΔϕN−1

(
μk
)
⎞

⎠

2

+ 2 ≥ 2, (3.15)

and if k is even then

f
(
μk
)
= −

⎛

⎝

√

−
ψN−1

(
μk
)

k12
−
√
−
(
k22ϕN−1

(
μk
)
− k12ΔϕN−1

(
μk
))
⎞

⎠

2

− 2 ≤ −2. (3.16)
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Case 2. If k12 = 0 then it follows from (2.7) and (2.14) that for each k, 0 ≤ k ≤Ns,

ϕN−1
(
μk
)
ψN
(
μk
)
= 1. (3.17)

From (2.15) and by the definition of f(λ), we get

f
(
μk
)
=

k22

ψN
(
μk
) + k11ψN

(
μk
)
. (3.18)

Hence, noting det K = k11k22 = 1, k11 > 0, and by Lemma 2.5, we have that if k is odd, then

f
(
μk
)
≥ 2, (3.19)

and if k is even, then

f
(
μk
)
≤ −2. (3.20)

(ii) By the discussions in the first paragraph of Section 2, ϕN−1(λ) is a polynomial of
degree N − 2 in λ, ϕN(λ) is a polynomial of degree N − 1 in λ, ψN−1(λ) is a polynomial of
degree N − 1 in λ, and ψN(λ) is a polynomial of degree N in λ. Further, ψN(λ) can be written
as

ψN(λ) = (−1)NANλ
N +AN−1λ

N−1 + · · · +A0, (3.21)

where AN = w0w1 · · ·wN−1(p0p1 · · · pN−1)
−1 > 0 and An is a certain constant for n ∈ [0,N − 1].

Then

f(λ) = (−1)N(k11 − k12)ANλ
N + h(λ), (3.22)

where h(λ) is a polynomial in λ whose degree is not larger than N − 1. Clearly, as λ → −∞,
f(λ) → +∞ since (k11 − k12) > 0. By the first part of this proposition, f(μ0) ≤ −2. So there
exists a constant ν0 < μ0 such that f(ν0) ≥ 2.

(iii) It follows from the first part of this proposition that if N is odd, f(μN−2) ≥ 2 and
if N is even, f(μN−2) ≤ −2. By (3.22), if N is odd, f(λ) → −∞ as λ → +∞; if N is even,
f(λ) → +∞ as λ → +∞. Hence, if N is odd, there exists a constant ξ0 > μN−2 such that
f(ξ0) ≤ −2; if N is even, there exists a constant η0 > μN−2 such that f(η0) ≥ 2. This completes
the proof.

Since ϕn and ψn are both polynomials in λ, so is f(λ). Denote

d

dλ
f(λ) := f ′(λ),

d2

dλ2
f(λ) := f ′′(λ). (3.23)
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Proposition 3.6. Assume that k11 > 0, k12 ≤ 0 or k11 ≥ 0, k12 < 0. Equations f ′(λ) = 0 and
f(λ) = 2 or −2 hold if and only if λ is a multiple eigenvalue of (1.1) and (1.2) with α = 0 or α = π .
If f(λ) = 2 or −2 for some λ/=μk (0 ≤ k ≤Ns), then λ is a simple eigenvalue of (1.1) and (1.2) with
α = 0 or α = π and for every λ/=μk (0 ≤ k ≤Ns), with −2 ≤ f(λ) ≤ 2 one has:

f ′(λ) < 0, λ < μ0,

(−1)kf ′(λ) > 0, μk < λ < μk+1, 0 ≤ k ≤N − 3,

(−1)N−2f ′(λ) > 0, λ > μN−2.

(3.24)

Proof. Since ϕn and ψn are solutions of (1.1), we have

−∇
(
pnΔϕn(λ)

)
+ qnϕn(λ) = λwnϕn(λ), (3.25)

−∇
(
pnΔψn(λ)

)
+ qnψn(λ) = λwnψn(λ). (3.26)

Differentiating (3.25) and (3.26) with respect to λ, respectively, yields that

−∇
(
pnΔϕ′n(λ)

)
+
(
qn − λwn

)
ϕ′n(λ) = wnϕn(λ),

−∇
(
pnΔψ ′n(λ)

)
+
(
qn − λwn

)
ψ ′n(λ) = wnψn(λ).

(3.27)

It follows from (2.13) that

ϕ′0 = ϕ′−1 = ψ ′0 = ψ ′−1 = 0. (3.28)

Thus, by Lemma 2.6 and from (3.27)–(3.28), we have

ϕ′n(λ) =
n−1∑

j=0

wjϕj(λ)
(
ϕn(λ)ψj(λ) − ϕj(λ)ψn(λ)

)
,

ψ ′n(λ) =
n−1∑

j=0

wjψj(λ)
(
ϕn(λ)ψj(λ) − ϕj(λ)ψn(λ)

)
.

(3.29)

It follows from (3.29) that

Δϕ′n−1(λ) =
n−1∑

j=0

wjϕj(λ)
(
Δϕn−1(λ)ψj(λ) − ϕj(λ)Δψn−1(λ)

)
,

Δψ ′n−1(λ) =
n−1∑

j=0

wjψj(λ)
(
Δϕn−1(λ)ψj(λ) − ϕj(λ)Δψn−1(λ)

)
.

(3.30)
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Hence, not indicating λ explicitly, we get

f ′ = k22ϕ
′
N−1 + (k11 − k12)Δψ ′N−1 − (k21 − k22)ψ ′N−1 − k12Δϕ′N−1

= k22

N−2∑

j=0

wjϕj
(
ϕN−1ψj − ϕjψN−1

)
+ (k11 − k12)

N−1∑

j=0

wjψj
(
ΔϕN−1ψj − ϕjΔψN−1

)

− (k21 − k22)
N−2∑

j=0

wjψj
(
ϕN−1ψj − ϕjψN−1

)
− k12

N−1∑

j=0

wjϕj
(
ΔϕN−1ψj − ϕjΔψN−1

)

=
N−1∑

j=0

wjδj ,

(3.31)

where

δj :=
(
(k11 − k12)ΔϕN−1 − (k21 − k22)ϕN−1

)
ψ2
j

+
(
k22ϕN−1 − (k11 − k12)ΔψN−1 + (k21 − k22)ψN−1 − k12ΔϕN−1

)
ψjϕj

+
(
k12ΔψN−1 − k22ψN−1

)
ϕ2
j

=
(
ψj, ϕj

)
I

(
ψj

ϕj

)

,

I :=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

(k11 − k12)ΔϕN−1 − (k21 − k22)ϕN−1
1
2
(
k22ϕN−1 − (k11 − k12)ΔψN−1

+(k21 − k22)ψN−1 − k12ΔϕN−1
)

1
2
(
k22ϕN−1 − (k11 − k12)ΔψN−1

+(k21 − k22)ψN−1 − k12ΔϕN−1
)

k12ΔψN−1 − k22ψN−1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

(3.32)

which is symmetric for any λ ∈ R. Then, we have

det I(λ) =
(
k12ΔψN−1(λ) − k22ψN−1(λ)

)(
(k11 − k12)ΔϕN−1(λ) − (k21 − k22)ϕN−1(λ)

)

−
(
k22ϕN−1(λ) − (k11 − k12)ΔψN−1(λ) + (k21 − k22)ψN−1(λ) − k12ΔϕN−1(λ)

)2

4

= −1
4
f2(λ) + 1.

(3.33)

Hence, if f(λ) = 2 or −2, we get from (3.33) that det I(λ) = 0. Then, for any fixed λ with
f(λ) = 2 or −2, the matrix I(λ) is positive semidefinite or negative semidefinite. Therefore,
for such a λ, f ′(λ) cannot vanish unless δj(λ) = 0 for all 0 ≤ j ≤ N − 1. Because ϕn and ψn are
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linearly independent, δj(λ) is identically zero if and only if all the entries of the matrix I(λ)
vanish, namely,

k12ΔψN−1(λ) − k22ψN−1(λ) = 0,

(k11 − k12)ΔϕN−1(λ) − (k21 − k22)ϕN−1(λ) = 0,

k22ϕN−1(λ) − (k11 − k12)ΔψN−1(λ) + (k21 − k22)ψN−1(λ) − k12ΔϕN−1(λ) = 0

(3.34)

which, together with f(λ) = 2 and det K = 1, implies

ϕN−1(λ) = k11 − k12, ΔϕN−1(λ) = k21 − k22,

ψN−1(λ) = k12, ΔψN−1(λ) = k22.
(3.35)

Then by Proposition 3.3, λ is a multiple eigenvalue of (1.1) and (1.2) with α = 0. In addition,
(3.34), together with f(λ) = −2 and det K = 1, implies

ϕN−1(λ) = −(k11 − k12), ΔϕN−1(λ) = −(k21 − k22),

ψN−1(λ) = −k12, ΔψN−1(λ) = −k22.
(3.36)

Then by Proposition 3.3, λ is a multiple eigenvalue of (1.1) and (1.2) with α = π . Conversely,
from (3.35) or (3.36), it can be easily verified that (3.34) holds, then f ′(λ) = 0. It follows again
from (3.35) or (3.36) that f(λ) = 2 or f(λ) = −2. Thus f ′(λ) = 0 and f(λ) = 2 or −2 if and only
if λ is a multiple eigenvalue of (1.1) and (1.2) with α = 0 or α = π .

Further, for every fixed λ with f(λ) = 2 or −2, not indicating λ explicitly, (3.33) implies
that

(
k12ΔψN−1 − k22ψN−1

)(
(k11 − k12)ΔϕN−1 − (k21 − k22)ϕN−1

)

=

(
k22ϕN−1 − (k11 − k12)ΔψN−1 + (k21 − k22)ψN−1 − k12ΔϕN−1

)2

4
.

(3.37)

Therefore, from (3.37) and by the definition of δj , we have

δj =
(
k12ΔψN−1 − k22ψN−1

)

·
(

ϕj +
k22ϕN−1 − (k11 − k12)ΔψN−1 + (k21 − k22)ψN−1 − k12ΔϕN−1

2
(
k12ΔψN−1 − k22ψN−1

) ψj

)2 (3.38)

and consequently, not indicating λ explicitly, we have

f ′ =
(
k12ΔψN−1 − k22ψN−1

)

·
N−1∑

j=0

wj

(

ϕj +
k22ϕN−1 − (k11 − k12)ΔψN−1 + (k21 − k22)ψN−1 − k12ΔϕN−1

2
(
k12ΔψN−1 − k22ψN−1

) ψj

)2 (3.39)

for every fixed λ with f(λ) = 2 or −2.
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ν0λ0(K)λ0(eiαK)

λ0(−K) μ0 λ1(−K)

−2

2 cosα

2

f(λ)

λ1(eiαK) μ1, (λ1,2(K)) λ2(eiαK)

λ2(−K)

λ

Figure 1: The graph of f(λ).

Suppose that f(λ) = 2 or −2 for some λ/=μk (0 ≤ k ≤ Ns), we have k12ΔψN−1(λ) −
k22ψN−1(λ)/= 0. From the above discussions again, λ is a simple eigenvalue of (1.1) and (1.2)
with α = 0 or α = π , and δj is not identically zero for 0 ≤ j ≤N − 1.

For this λ/=μk (0 ≤ k ≤ Ns), (3.39) implies that f ′(λ)/= 0, and from Proposition 3.5
(i), (ii) that f(μ0) ≤ −2, f(ν0) ≥ 2. Hence, f ′(λ) < 0, where ν0 < λ < μ0. It follows from
Proposition 3.5 (i) that f(μk)f(μk+1) ≤ −4 and (−1)kf ′(λ) > 0, where μk < λ < μk+1 (0 ≤ k ≤
N −3). By Proposition 3.5 (i), (iii), f(μN−2) ≥ 2 and there exists μN−2 < ξ0 such that f(ξ0) ≤ −2
if N is odd, and f(μN−2) ≤ −2 and there exists μN−2 < η0 such that f(η0) ≥ 2 if N is even.
Hence, (−1)N−2f ′(λ) > 0 where μN−2 < λ. This completes the proof.

Proposition 3.7. For any fixed α/= 0, −π < α < π , each eigenvalue of (1.1) and (1.2) is simple.

Proof. Fix α, −π < α < π with α/= 0. Suppose that λ is an eigenvalue of the problem (1.1) and
(1.2). By Proposition 3.3, we have f2(λ) = 4 cos2α < 4. It follows from (3.33) that det I(λ) > 0
and the matrix I(λ) is positive definite or negative definite. Hence, δj > 0 for 0 ≤ j ≤N − 1 or
δj < 0 for 0 ≤ j ≤N − 1 since ϕn and ψn are linearly independent.

If λ is a multiple eigenvalue of problem (1.1) and (1.2), then (3.5) holds by
Proposition 3.3. By using (3.5), it can be easily verified that (3.34) holds, that is, all the entries
of the matrix I(λ) are zero. Then δj = 0 for 0 ≤ j ≤ N − 1, which is contrary to δj /= 0 for
0 ≤ j ≤N −1. Hence, λ is a simple eigenvalue of (1.1) and (1.2). This completes the proof.

Proposition 3.8. Assume that k11 > 0, k12 ≤ 0 or k11 ≥ 0, k12 < 0. If k is odd, f(μk) = 2,
and f ′(μk) = 0, then f ′′(μk) < 0; if k is even, f(μk) = −2, and f ′(μk) = 0, then f ′′(μk) > 0 for
0 ≤ k ≤N − 2.

Proof. We first prove the first result. Suppose that k is odd, f(μk) = 2, and f ′(μk) = 0.
Then μk is a multiple eigenvalue of (1.1) and (1.2) with α = 0 by Proposition 3.6. Then by
Proposition 3.3, (3.5) holds for λ = μk and α = 0, that is,

ϕN−1
(
μk
)
= k11 − k12, ΔϕN−1

(
μk
)
= k21 − k22,

ψN−1
(
μk
)
= k12, ΔψN−1

(
μk
)
= k22.

(3.40)



Advances in Difference Equations 15

Differentiating f(λ) with respect to λ two times, we get

f ′′
(
μk
)
= k22ϕ

′′
N−1

(
μk
)
+ (k11 − k12)Δψ ′′N−1

(
μk
)
− (k21 − k22)ψ ′′N−1

(
μk
)
− k12Δϕ′′N−1

(
μk
)
.

(3.41)

Differentiating (2.14) with respect to λ two times and from (3.40), we get

−
(
k22ϕ

′′
N−1

(
μk
)
+ (k11 − k12)Δψ ′′N−1

(
μk
)
− (k21 − k22)ψ ′′N−1

(
μk
)
− k12Δϕ′′N−1

(
μk
))

+ 2
(
ϕ′N
(
μk
)
ψ ′N−1

(
μk
)
− ϕ′N−1

(
μk
)
ψ ′N
(
μk
))

= 0,
(3.42)

which, together with (3.41), implies that

f ′′
(
μk
)
= 2
(
ϕ′N
(
μk
)
ψ ′N−1

(
μk
)
− ϕ′N−1

(
μk
)
ψ ′N
(
μk
))
. (3.43)

On the other hand, it follows from (3.29) and (2.14) that, not indicating μk explicitly,

ϕ′Nψ
′
N−1 − ϕ

′
N−1ψ

′
N =

N−1∑

j=0

wjϕj
(
ϕNψj − ϕjψN

)N−2∑

j=0

wjψj
(
ϕN−1ψj − ϕjψN−1

)

−
N−2∑

j=0

wjϕj
(
ϕN−1ψj − ϕjψN−1

)N−1∑

j=0

wjψj
(
ϕNψj − ϕjψN

)

=

⎛

⎝
N−1∑

j=0

wjϕjψj

⎞

⎠

2

−
N−1∑

j=0

wjϕ
2
j

N−1∑

j=0

wjψ
2
j .

(3.44)

Since ϕn and ψn are linearly independent on [−1,N], the above relation implies that f ′′(μk) <
0 by Hölder’s inequality, which proves the first conclusion.

The second conclusion can be shown similarly. Hence, the proof is complete.

Finally, we turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. By Propositions 3.3–3.8, and the intermediate value theorem, one can
obtain the graph of f (see Figure 1), which implies the results of Theorem 3.1. We now give
its detailed proof.

By Propositions 3.3–3.6, f(μ0) ≤ −2, f ′(λ) < 0 for all λ < μ0 with −2 ≤ f(λ) ≤ 2,
and there exists ν0 < μ0 such that f(ν0) ≥ 2. Therefore, by the continuity of f(λ) and the
intermediate value theorem, (1.1) and (1.2) with α = 0 has only one eigenvalue λ0(K) < μ0,
(1.1) and (1.2) with α = π has only one eigenvalue λ0(−K) ≤ μ0, and (1.1) and (1.2) with
α/= 0, −π < α < π has only one eigenvalue λ0(K) < λ0(eiαK) < λ0(−K), and they satisfy

ν0 ≤ λ0(K) < λ0

(
eiαK

)
< λ0(−K) ≤ μ0. (3.45)

Similarly, by Propositions 3.3–3.6, the continuity of f(λ), and the intermediate value theorem,
f(λ) reaches −2, 2 cosα (α/= 0, −π < α < π), and 2 exactly one time, respectively, between
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λN−2(−K)

λN−2(eiαK)

2 cosα

−2

2

f(λ)

λN−2(K) μN−2 λN−1(K) λN−1(eiαK)

λN−1(−K) ξ0

λ

Figure 2: The graph of f(λ) in the case that N is odd.

λN−2(K) λN−2(eiαK)

2 cosα

−2

2

f(λ)

λN−2(−K) μN−2 λN−1(−K)

λN−1(eiαK) λN−1(K) η0 λ

Figure 3: The graph of f(λ) in the case that N is even.

any two consecutive eigenvalues of the separated boundary value problem (1.1) with (2.7).
Hence, (1.1) and (1.2) with α = 0; α/= 0, −π < α < π ; α = πhas only one eigenvalue
between any two consecutive eigenvalues of (1.1) with (2.7), respectively. In addition, by
Proposition 3.6, if f(μk) = 2 or −2 and f ′(μk) = 0, then μk is not only an eigenvalue of (1.1)
with (2.7) but also a multiple eigenvalue of (1.1) and (1.2) with α = 0 and α = π .

By Proposition 3.5 (i), if N is odd, f(μN−2) ≥ 2 and if N is even, f(μN−2) ≤ −2. It
follows (3.22) that if N is odd, then f(λ) → −∞ as λ → +∞, and if N is even, then f(λ) →
+∞ as λ → +∞. Hence, ifN is odd, then there exists a constant ξ0 > μN−2 such that f(ξ0) ≤ −2,
which, together with Proposition 3.6, implies that (1.1) and (1.2) with α = 0; α/= 0, −π < α < π ;
α = π, has only one eigenvalue λN−1(K), λN−1(eiαK), and λN−1(−K), satisfying

μN−2 ≤ λN−1(K) < λN−1

(
eiαK

)
< λN−1(−K) ≤ ξ0 (3.46)

(see Figure 2). Similarly, in the other case that N is even, there exists a constant η0 > μN−2

such that f(η0) ≥ 2, which, together with Proposition 3.6, implies that (1.1) and (1.2) with
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α = 0; α/= 0, −π < α < π ; α = π has only one eigenvalue λN−1(K), λN−1(eiαK), and λN−1(−K),
satisfying

μN−2 ≤ λN−1(−K) < λN−1

(
eiαK

)
< λN−1(K) ≤ η0 (3.47)

(see Figure 3). Therefore, we get that (1.1) and (1.2) with α/= 0, −π < α < π, hasN eigenvalues
and it is real and satisfies

ν0 ≤ λ0(K) < λ0

(
eiαK

)
< λ0(−K) ≤ μ0 ≤ λ1(−K) < λ1

(
eiαK

)
< λ1(K) ≤ μ1

≤ λ2(K) < λ2

(
eiαK

)
< λ2(−K) ≤ μ2 ≤ λ3(−K) < λ3

(
eiαK

)
< λ3(K) ≤ μ3

≤ · · · ≤ μN−3 ≤ λN−2(−K) < λN−2

(
eiαK

)
< λN−2(K) ≤ μN−2 ≤ λN−1(K)

< λN−1

(
eiαK

)
< λN−1(−K) ≤ ξ0, if N is odd,

ν0 ≤ λ0(K) < λ0

(
eiαK

)
< λ0(−K) ≤ μ0 ≤ λ1(−K) < λ1

(
eiαK

)
< λ1(K) ≤ μ1

≤ λ2(K) < λ2

(
eiαK

)
< λ2(−K) ≤ μ2 ≤ λ3(−K) < λ3

(
eiαK

)
< λ3(K) ≤ μ3

≤ · · · ≤ μN−3 ≤ λN−2(K) < λN−2

(
eiαK

)
< λN−2(−K) ≤ μN−2 ≤ λN−1(−K)

< λN−1

(
eiαK

)
< λN−1(K) ≤ η0, if N is even.

(3.48)

This completes the proof.

Remark 3.9. Let K = I, that is, k11 = k22 = 1, k12 = k21 = 0. Then f(λ) = ϕN−1(λ) + ψN(λ).
In this case, Propositions 3.5 and 3.8 are the same as those mentioned in [4, Propositions 3.1,
3.3–3.5], respectively, and most of the results of Proposition 3.6 are the same as the results of
[4, Proposition 3.2].
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