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1. Introduction

In numerical integration of a differential equation, a standard approach is to replace it by a
suitable difference equation whose solution can be obtained in a stable manner and without
troubles from round off errors. However, often the qualitative properties of the solutions of
the difference equation are quite different from the solutions of the corresponding differential
equations.

For a given differential equation, a difference equation approximation is called best if
the solution of the difference equation exactly coincides with solutions of the corresponding
differential equation evaluated at a discrete sequence of points. Best approximations are not
unique (cf. [1, Section 3.6]).

In the recent paper [2] (see also [1]), various discretizations of the harmonic oscillator
equation ÿ + y = 0 are compared. A best approximation is given by

Δ2xn

(2 sin(ε/2))2
+ xn+1 = 0, (1.1)
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where Δ denotes the forward difference operator of the first order, that is, for each x : Z+ →
X, and n ∈ Z+, Δxn = xn+1 − xn. On the other hand, in the article [3], a characterization of
lp-maximal regularity for a discrete second-order equation in Banach spaces was studied,
but without taking into account the best approximation character of the equation. From
an applied perspective, the techniques used in [3] are interesting when applied to concrete
difference equations, but additional difficulties appear, because among other things, we need
to get explicit formulas for the solution of the equation to be studied.

We study in this paper the discrete second-order equation

Δ2xn +Axn+1 = fn, (1.2)

on complex Banach spaces, where A ∈ B(X). Of course, in the finite-dimensional setting,
(1.2) includes systems of linear difference equations, but the most interesting application
concerns with partial difference equations. In fact, the homogeneous equation associated to
(1.2) corresponds to the best discretization of the wave equation (cf. [1, Section 3.14]).

We prove that well posedness, that is, maximal regularity of (1.2) in lp vector-valued
spaces, is characterized on Banach spaces having the unconditional martingale difference
property ((UMD) see, e.g., [4]) by the R-boundedness of the set

{
(z − 1)2

z

(
(z − 1)2

z
+A

)−1

: |z| = 1, z /= 1

}
. (1.3)

The general framework for the proof of our statement uses a new approach based on
operator-valued Fourier multipliers. In the continuous time setting, the relation between
operator-valued Fourier multiplier andR− boundedness of their symbols is well documented
(see, e.g., [5–10]), but we emphasize that the discrete counterpart is too incipient and limited
essentially a very few articles (see, e.g., [11, 12]). We believe that the development of this topic
could have a strong applied potential. This would lead to very interesting problems related
to difference equations arising in numerical analysis, for instance. From this perspective the
results obtained in this work are, to the best of our knowledge, new.

We recall that in the continuous case, it is well known that the study of maximal
regularity is very useful for treating semilinear and quasilinear problems. (see, e.g., Amann
[13], Denk et al. [8], Clément et al. [14], the survey by Arendt [7] and the bibliography
therein). However it should be noted that for nonlinear discrete time evolution equations
some additional difficulties appear. In fact, we observe that this approach cannot be done
by a direct translation of the proofs from the continuous time setting to the discrete time
setting. Indeed, the former only allows to construct a solution on a (possibly very short)
time interval, the global solution being then obtained by extension results. This technique
will obviously fail in the discrete time setting, where no such thing as an arbitrary short
time interval exists. In the recent work [15], the authors have found a way around the “short
time interval” problem to treat semilinear problems for certain evolution equations of second
order. One more case merits mentioning here is Volterra difference equations which describe
processes whose current state is determined by their entire prehistory (see, e.g., [16, 17], and
the references given there). These processes are encountered, for example, in mathematical
models in population dynamics as well as in models of propagation of perturbation in matter
with memory. In this direction one of the authors in [18] considered maximal regularity for
Volterra difference equations with infinite delay.
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The paper is organized as follows. The second section provides the definitions and
preliminary results to be used in the theorems stated and proved in this work. In particular
to facilitate a comprehensive understanding to the reader we have supplied several basic
R-boundedness properties. In the third section, we will give a geometrical link for the best
discretization of the harmonic oscillator equation. In the fourth section, we treat the existence
and uniqueness problem for (1.2). In the fifth section, we obtain a characterization about
maximal regularity for (1.2).

2. Preliminaries

Let X and Y be the Banach spaces, let B(X,Y ) be the space of bounded linear operators from
X into Y . Let Z+ denote the set of nonnegative integer numbers, Δ the forward difference
operator of the first order, that is, for each x : Z+ → X, and n ∈ Z+, Δxn = xn+1 − xn. We
introduce the means

∥∥(x1, . . . , xn
)∥∥

R :=
1
2n

∑
εj∈{−1,1}n

∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥, (2.1)

for x1, . . . , xn ∈ X.

Definition 2.1. Let X, Y be Banach spaces. A subset T of B(X,Y ) is called R-bounded if there
exists a constant c ≥ 0 such that

∥∥(T1x1, . . . , Tnxn
)∥∥

R ≤ c
∥∥(x1, . . . , xn

)∥∥
R, (2.2)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X, n ∈ N. The least c such that (2.2) is satisfied is called the
R-bound of T and is denoted R(T).

An equivalent definition using the Rademacher functions can be found in [8]. We
note that R-boundedness clearly implies uniformly boundedness. In fact, we have that
supT∈T||T || ≤ R(T). If X = Y , the notion of R-boundedness is strictly stronger than
boundedness unless the underlying space is isomorphic to a Hilbert space [5, Proposition
1.17]. Some useful criteria for R-boundedness are provided in [5, 8, 19]. We remark that the
concept ofR-boundedness plays a fundamental role in recent works by Clément and Da Prato
[20], Clément et al. [21], Weis [9, 10], Arendt and Bu [5, 6], as well as Keyantuo and Lizama
[22–25].

Remark 2.2. (a) Let S,T ⊂ B(X,Y ) be R-bounded sets, then S +T := {S + T : S ∈ S, T ∈ T} is
R- bounded.

(b) LetT ⊂ B(X,Y ) and S ⊂ B(Y,Z) be R-bounded sets, then S ·T := {S ·T : S ∈ S, T ∈
T} ⊂ B(X,Z) is R- bounded and

R(S · T) ≤ R(S) · R(T). (2.3)

(c) Also, each subset M ⊂ B(X) of the form M = {λI : λ ∈ Ω} is R- bounded whenever
Ω ⊂ C is bounded.
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A Banach space X is said to be UMD, if the Hilbert transform is bounded on Lp(R, X)
for some (and then all) p ∈ (1,∞). Here the Hilbert transform H of a function f ∈ S(R, X),
the Schwartz space of rapidly decreasing X-valued functions, is defined by

Hf :=
1
π
PV

(
1
t

)
∗ f. (2.4)

These spaces are also called HT spaces. It is a well-known theorem that the set of Banach
spaces of classHT coincides with the class ofUMD spaces. This has been shown by Bourgain
[4] and Burkholder [26]. The following result on operator-valued Fourier multipliers on
T, due to Blunck [11], is the key for our purposes. Note that for f ∈ lp(Z;X) the Fourier
transform on T is defined as

Ff(z) = f̂(z) =
∑
j∈Z
z−jf(j), z ∈ T. (2.5)

Theorem 2.3. Let p ∈ (1,∞) andX be aUMD space. LetT := (−π, 0)∪(0, π) andM : T → B(X)
be a differentiable function such that the set

{
M(t),

(
eit − 1

)(
eit + 1

)
M′(t) : t ∈ T

}
(2.6)

is R-bounded. Then TM ∈ B(lp(Z+;X)) for the following Fourier multiplier TM:

T̂Mf
(
eit

)
:=M(t)f̂

(
eit

)
, t ∈ T, f̂ ∈ L∞(T;X) of compact support. (2.7)

Recall that T ∈ B(X) is called analytic if the set

{n(T − I)Tn : n ∈ N} (2.8)

is bounded. For recent and related results on analytic operators we refer to [27].

3. Spectral Properties and Open Problems

In this section we first give a geometrical link between the best discretization (1.2) and the
equations of the form

Δ2xn +Axn+k = fn, x0 = x1 = 0, k ∈ {0, 1, 2}. (3.1)

The motivation comes from the recent article of Cieśliński and Ratkiewicz [2], where
several discretizations of second-order linear ordinary differential equations with constant
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coefficients are compared and discussed. More precisely, concerning the harmonic oscillator
equation ẍ + x = 0 the following three discrete equations are considered:

Δ2xn + ε2xn = 0;

Δ2xn + ε2xn+1 = 0;

Δ2xn + ε2xn+2 = 0.

(3.2)

In particular, it is proved in [2] that the best (called “exact” in that paper) discretization
of the harmonic oscillator is given by

Δ2xn +
(

2 sin
(
ε

2

))2

xn+1 = 0, (3.3)

which reminds the ”symmetric” version of Euler’s discretization scheme, but ε that appears
in the discretization of the second derivative is replaced by 2 sin(ε/2).

Remark 3.1. Observe that (3.1) can be rewritten as

xn+2 = 2xn+1 − xn −Axn+k + fn. (3.4)

If k ∈ Z in (3.1), then we have a well-defined recurrence relation of order 2 in case
k = 0 or 1 (and of order (2 − k)) in case k < 0.

In case k = 2, we have (I + A)xn+2 = 2xn+1 − xn + fn, that is, a recurrence relation
of order 2, which can be not well defined unless −1 ∈ ρ(A). Finally, in case k > 2, xn+k =
A−1(2xn+1 − xn − xn+2 + fn) is of order k (note that here we need 0 ∈ ρ(A)).

Taking (formally) Fourier transform to (3.1), we obtain

(z − 1)2x̂(z) +Azkx̂(z) = f̂(z). (3.5)

Hence the operator (z − 1)2 + zkA is invertible if and only if −(z − 1)2/zk belongs to the
resolvent set ρ(A) of A. Define the function

Γα(t) = −
(
eit − 1

)2

eiαt
, α ∈ R, t ∈ (0, 2π). (3.6)

Then, for each α fixed, Γα(t) describes a curve in the complex plane such that Γα(0)=Γα(2π)=0.

Proposition 3.2. The curve Γα attains the minimum length at α = 1.
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Proof. A calculation gives Γ′α(t) = −2ie−i(α/2)t((α − 1)(1 − cos t) + i sin t). Hence the length of
Γα is given by

l(α) =
∫2π

0

∣∣Γ′α(t)∣∣dt = 2
∫2π

0

√
(α − 1)2(1 − cos t)2 + sin2 t dt. (3.7)

From which the conclusion follows.

Remark 3.3. As a consequence, the value k = 1 in (3.1) is singular in the sense that the curve
described by (3.6) attains the minimum length if and only if α = 1 (see Figure 1). This singular
character is reinforced by observing that

Γ1(ε) =
(

2 sin
(
ε

2

))2

, (3.8)

and that this value exactly corresponds to the step size in the best discretization of the
harmonic oscillator obtained in [2]. We conjecture that there is a general link between the
geometrical properties of curves related to classes of difference equations and the property of
best approximation. This is possibly a very difficult task, which we do not touch in this paper.

In what follows we denote T := A + I; D(z, r) = {w ∈ C : |w − z| < r} and T = ∂D(0, 1).
The following result relates the values of Γ1(t) with the spectrum of the operator A. It will be
essential in the proof of our characterization of well posedness for (1.2) in lp-vector-valued
spaces given in Section 5 (cf. Theorem 5.2).

Proposition 3.4. Suppose that T is analytic. Then σ(I − T) ⊆ D(1, 1) ∪ {0}. In particular,

−Γ1((0, 2π)) ⊂ ρ(I − T). (3.9)
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Proof. Let M > 0 such that M/n ≥ ||Tn(T − I)|| for all n ∈ N. Define p(z) = zn+1 − zn. By the
spectral mapping theorem, we have

||Tn(T − I)|| ≥ supλ∈σ(p(T))|λ|

= supλ∈p(σ(T))|λ|

= supz∈σ(T)
∣∣zn(z − 1)

∣∣
= supw∈σ(I−T)

∣∣w(1 −w)n
∣∣ ≥ |w||1 −w|n,

(3.10)

for all w ∈ σ(I − T), n ∈ N. Hence

σ(I − T) ⊆ D(1, 1) ∪ {0}. (3.11)

Finally, we observe that −Γ1(t) = −[2 sin(t/2)]2 ∈ (−4, 0).

4. Existence and Uniqueness

In this section, we treat the existence and uniqueness problem for the equation

Δ2xn − (I − T)xn+1 = fn, n ∈ Z+,

x0 = x1 = 0.
(4.1)

Remark 4.1. If z = (zn) is solution of the equation

Δ2zn − (I − T)zn+1 = 0, n ∈ Z+,

z0 = z1 = 0,
(4.2)

then z ≡ 0. It follows from induction. In fact, suppose that zn = 0 for all n < m, choosing
n = m − 2 in (4.2) we get zm = 0.

Recall that the convolution of two sequences xn and yn is defined by

(x ∗ y)(n) =
n∑
j=0

x(n − j)y(j) =
n∑
j=0

x(n)y(n − j). (4.3)

Also we note that the convolution theorem for the discrete Fourier transform holds, that is,
x̂ ∗ y(z) = x̂(z)ŷ(z). Further properties can be found in [28, Section 5.1]. Our main result in
this section, on existence and uniqueness of solution for (4.1), read as follows.

Theorem 4.2. Let T ∈ B(X), then there exists a unique solution of (4.1) which is given by xm+1 =
(B ∗ f)m, where B(n) ∈ B(X)satisfies the following equation:

Δ2B(n) − (I − T)B(n + 1) = 0,

B(0) = 0, B(1) = I.
(4.4)
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If T is an analytic operator, one has that

B(n) =
1

2πi

∮
C

R

(
(z − 1)2

z
, I − T

)
zn−1 dz, (4.5)

where C is a circle, centered at the origin of the z-plane that enclosed all poles of

R

(
(z − 1)2

z
, I − T

)
zn−1. (4.6)

Hence,

B̂(z) = R
(
(z − 1)2

z
, I − T

)
. (4.7)

Proof. Let Vn := [xn,Δxn], Fn = [0, fn], and RT ∈ B(X ×X) defined by

RT [x, y] = [x + y, x + 2y − T(x + y)]. (4.8)

Then it is not difficult to see that (4.1) is equivalent to

Vn+1 − RTVn = Fn, n ∈ Z+,

V0 = [0, 0],
(4.9)

which has the solution

Vm+1 =
m∑
n=0

Rn
TFm−n. (4.10)

Denote

RT =

[
I I

I − T 2I − T

]
. (4.11)

Then a calculation shows us that there is an operator B(n) ∈ B(X) with (I −T)B(n) = B(n)(I −
T) such that

Rn
T =

[
ΔB(n) − B(n)(I − T) B(n)

B(n)(I − T) ΔB(n)

]
. (4.12)

B(n) satisfy the following equation:

B(n + 2) = (3I − T)B(n + 1) − B(n),
B(0) = 0, B(1) = I,

(4.13)
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which is equivalent to

Δ2B(n) − (I − T)B(n + 1) = 0,

B(0) = 0, B(1) = I.
(4.14)

We can see that there are two sequences ak(2n), bk(2n + 1) in N such that

B(2n) =
n∑
k=1

(−1)n−kak(2n)(3I − T)2k−1, n ≥ 1,

B(2n + 1) =
n∑
k=0

(−1)n−kbk(2n + 1)(3I − T)2k, n ≥ 1.
(4.15)

Since B(2n) = (3I − T)B(2n − 1) − B(2(n − 1)), we have

ak(2n) = bk−1(2n − 1) + ak(2(n − 1)), k = 1, . . . , n − 1,

an(2n) = bn−1(2n − 1) = 1, an−1(2n) = 2n − 2,

a1(2n) = n, b0(2n − 1) = 0, bn−1(2n + 1) = 2n − 1.

(4.16)

On the other hand, using (4.12), we have

xm+1 = (B ∗ f)m,
Δxm+1 = (ΔB ∗ f)m.

(4.17)

Hence, applying Fourier transform in (4.17), we obtain

Δ̂B(z)f̂(z) = (z − 1)B̂(z)f̂(z). (4.18)

Given x ∈ X we define

f0
n =

{
x for n = 0,
0 for n/= 0.

(4.19)

A direct calculation shows that f̂0(z) = x, for z ∈ T. Then by (4.18), we get

Δ̂B(z)x = (z − 1)B̂(z)x, x ∈ X, z ∈ T. (4.20)

Hence

Δ̂B(z) = (z − 1)B̂(z), z ∈ T. (4.21)
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On the other hand, since Vm+1 = [(B ∗ f)m, (ΔB ∗ f)m] is solution of (4.9), we have

(B ∗ f)m = (B ∗ f)m−1 + (ΔB ∗ f)m−1, (4.22)

and hence

(ΔB ∗ f)m = (I − T)
[
(B ∗ f)m−1 + (ΔB ∗ f)m−1

]
+ (ΔB ∗ f)m−1 + fm

= (I − T)(B ∗ f)m + (ΔB ∗ f)m−1 + fm.
(4.23)

Therefore,

(ΔB ∗ f)m − (ΔB ∗ f)m−1 = (I − T)(B ∗ f)m + fm. (4.24)

Applying Fourier transform in (4.24) and taking into account (4.21), we have

[
(z − 1)2

z
− (I − T)

]
B̂(z) = I. (4.25)

If T is analytic, we get

B̂(z) = R
(
(z − 1)2

z
, I − T

)
, (4.26)

and the proof is finished.

5. Maximal Regularity

In this section, we obtain a spectral characterization about maximal regularity for (1.2). The
following definition is motivated in the paper [11] (see also [3]).

Definition 5.1. Let 1 < p < +∞. One says that (4.1) has discrete maximal regularity if Kf =
(I − T)B ∗ f defines a bounded operator K ∈ B(lp(Z+;X)).

As consequence of the definition, if (1.2) has discrete maximal regularity, then (1.2)
has discrete lp-maximal regularity in the following sense: for each (fn) ∈ lp(Z+;X) we have
(Δ2xn) ∈ lp(Z+;X), where (xn) is the solution of the equation Δ2xn − (I − T)xn+1 = fn, for all
n ∈ Z+, x0 = 0, x1 = 0. Moreover,

Δ2xn =
n∑
k=1

(I − T)B(k)fn−k + fn = ((I − T)B ∗ f)n + fn. (5.1)

A similar analysis as above can be carried out when we consider more general initial
conditions, but the price to pay for this is that the proof would certainly require additional
lp-summability condition on B(n). The following is the main result of this paper.
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Theorem 5.2. Let X be a UMD space and let T ∈ B(X) analytic. Then the following assertions are
equivalent.

(i) Equation (1.2) has discrete maximal regularity.

(ii) {((z − 1)2/z)R((z − 1)2/z, I − T)/|z| = 1, z /= 1} is R-bounded.

Proof. (i)⇒(ii) Define kT : Z → B(X) by

kT (n) =

{
(I − T)B(n) for n ∈ N,

0 otherwise,
(5.2)

and the corresponding operator KT : lp(Z+;X) → lp(Z+;X) by

(
KTf

)
(n) =

n∑
j=0

kT (j)fn−j =
(
kT ∗ f

)
(n), n ∈ Z+. (5.3)

By hypothesis, KT is well defined and bounded on lp(Z+;X). By Proposition 3.4, (z − 1)2/z ∈
ρ(I − T) whenever |z| = 1, z /= 1. Then, by Theorem 4.2 we have

k̂T (z) = (I − T)B̂(z)

= (I − T)R
(
(z − 1)2

z
, I − T

)

=
(z − 1)2

z
R

(
(z − 1)2

z
, I − T

)
− I, z ∈ T, z /= 1.

(5.4)

We observe that there exists LM ∈ B(lp(Z+;X)) such that

F
(
LMf

)
(z) :=

(z − 1)2

z
R

(
(z − 1)2

z
, I − T

)
f̂(z). (5.5)

Explicitly, LM is given by (LMf)(n) = (KTf)(n) + f(n). We conclude, from [11, Proposition
1.4], that the set in (ii) is R-bounded.

(ii)⇒(i) Define M(t) = e−it(eit − 1)2
R(e−it(eit − 1)2

, I − T) − I for t ∈ T. Then M(t) is
R-bounded by hypothesis and Remark 2.2. Define

N(t) =
(
eit − 1

)2
R
(
eit

(
eit − 1

)2
, I − T

)
− eitI, (5.6)

thenM(t) = e−itN(t) and {N(t)} is R-bounded. A calculation shows thatM′(t) = −ie−itN(t)+
e−itN ′(t). Note that M(t) is R-bounded if and only if N(t) is R-bounded (cf. Remark 2.2).
Moreover,

(
eit − 1

)
N ′(t) = 2ieit

[
N(t) + eitI

]
−
(
2 − i + ie−it

)[
N(t) + eitI

]2 − ieit
(
eit − 1

)
I. (5.7)
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It shows that the set {(eit − 1)M′(t)}t∈T is R-bounded, thanks to Remark 2.6 again. It
follows the R-boundedness of the set {(eit +1)(eit −1)M′(t)}. Then, by Theorem 2.7 we obtain
that there exists TM ∈ B(lp(Z, X)) such that

F
(
TMf

)
(z) =

(
z − 12)
z

R

(
(z − 1)2

z
, I − T

)
f̂(z) − f̂(z), z ∈ T, z /= 1. (5.8)

By Theorem 4.2, we have

F(Kf)(z) = (I − T)R
(
(z − 1)2

z
, I − T

)
f̂(z) = F

(
TMf

)
(z). (5.9)

Then, by uniqueness of the Fourier transform, we conclude that K ∈ B(lp(Z+, X)).

Remark 5.3. Note that

{
(z − 1)2

z
R

(
(z − 1)2

z
, I − T

)
/|z| = 1, z /= 1

}
(5.10)

is R-bounded if and only if

{
(z − 1)2R

(
(z − 1)2

z
, I − T

)
/|z| = 1, z /= 1

}
(5.11)

is R-bounded.

Corollary 5.4. LetH be a Hilbert space and let T ∈ B(H) be an analytic operator. Then the following
assertions are equivalent.

(i) Equation (1.2) has discrete maximal regularity.

(ii) sup|z|=1, z /= 1‖((z − 1)2/z)((z − 1)2/z − (I − T))−1‖ <∞.

Remark 5.5. Letting H = C and T = ρI with 0 ≤ ρ < 1, we get that the hypothesis of the
preceding corollary are satisfied. We conclude that the scalar equation

Δ2xn − (1 − ρ)xn+1 = fn, n ∈ Z+, x0 = x1 = 0, (5.12)

has the property that for all (fn) ∈ lp(Z+) we get (Δ2xn) ∈ lp(Z+). In particular xn → 0, that
is, the solution is stable. Note that using (4.7) we can infer that

B(n) =
1

a − b
(
an − bn

)
, (5.13)

where a and b are the real roots of z2 + (ρ − 3)z − 1 = 0. Moreover, the solution is given by

xm+1 = (B ∗ f)m =
m∑
j=0

1
a − b

(
a(m−j) − b(m−j)

)
f(j). (5.14)
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Remark 5.6. We emphasize that from a more theoretical perspective, our results also are true
when we consider the more general equation (3.1) instead of (1.1), but additional hypothesis
will be needed (cf. Remark 3.1). Until now literature about this subject is too incipient and
should be developed.
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