
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2009, Article ID 256165, 10 pages
doi:10.1155/2009/256165

Research Article
A Fixed Point Approach to the Stability of
a Quadratic Functional Equation in C∗-Algebras

Mohammad B. Moghimi,1 Abbas Najati,1 and Choonkil Park2

1 Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili,
56199-11367 Ardabil, Iran

2 Department of Mathematics, Research Institute for Natural Sciences, Hanyang University,
Seoul 133-791, South Korea

Correspondence should be addressed to Abbas Najati, a.nejati@yahoo.com

Received 18 May 2009; Accepted 31 July 2009

Recommended by Tocka Diagana

We use a fixed point method to investigate the stability problem of the quadratic functional
equation f(x + y) + f(x − y) = 2f(

√
xx∗ + yy∗) in C∗-algebras.

Copyright q 2009 Mohammad B. Moghimi et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

In 1940, the following question concerning the stability of group homomorphisms was
proposed by Ulam [1]: Under what conditions does there exist a group homomorphism near an
approximately group homomorphism? In 1941, Hyers [2] considered the case of approximately
additive functions f : E → E′, where E and E′ are Banach spaces and f satisfies Hyers
inequality

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε (1.1)

for all x, y ∈ E. Aoki [3] and Th. M. Rassias [4] provided a generalization of the Hyers’
theorem for additivemappings and for linearmappings, respectively, by allowing the Cauchy
difference to be unbounded (see also [5]).

Theorem 1.1 (Th. M. Rassias). Let f : E → E′ be a mapping from a normed vector space E into a
Banach space E′ subject to the inequality

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥∥y
∥∥p) (1.2)
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for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.3)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.4)

for all x ∈ E. If p < 0 then inequality (1.2) holds for x, y /= 0 and (1.4) for x /= 0. Also, if for each x ∈ E
the mapping t 	→ f(tx) is continuous in t ∈ R, then L is R-linear.

The result of the Th. M. Rassias theorem has been generalized by Găvruţa [6] who
permitted the Cauchy difference to be bounded by a general control function. During the
last three decades a number of papers and research monographs have been published on
various generalizations and applications of the generalized Hyers-Ulam stability to a number
of functional equations andmappings (see [7–20]). We also refer the readers to the books [21–
25]. A quadratic functional equation is a functional equation of the following form:

f
(
x + y

)
+ f

(
x − y) = 2f(x) + 2f

(
y
)
. (1.5)

In particular, every solution of the quadratic equation (1.5) is said to be a quadratic mapping.
It is well known that a mapping f between real vector spaces is quadratic if and only if
there exists a unique symmetric biadditive mapping B such that f(x) = B(x, x) for all x (see
[16, 21, 26, 27]. The biadditive mapping B is given by

B
(
x, y

)
=

1
4
[
f
(
x + y

) − f(x − y)]. (1.6)

The Hyers-Ulam stability problem for the quadratic functional equation (1.5) was
studied by Skof [28] for mappings f : E1 → E2, where E1 is a normed space and E2

is a Banach space. Cholewa [8] noticed that the theorem of Skof is still true if we replace
E1 by an Abelian group. Czerwik [9] proved the generalized Hyers-Ulam stability of the
quadratic functional equation (1.5). Grabiec [11] has generalized these results mentioned
above. Jun and Lee [14] proved the generalized Hyers-Ulam stability of a Pexiderized
quadratic functional equation.

Let E be a set. A function d : E × E → [0,∞] is called a generalized metric on E if d
satisfies

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ E;
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.

We recall the following theorem by Margolis and Diaz.
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Theorem 1.2 (see [29]). Let (E, d) be a complete generalized metric space and let J : E → E be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ E, either

d
(
Jnx, Jn+1x

)
= ∞ (1.7)

for all nonnegative integers n or there exists a non-negative integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ E : d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

Throughout this paper A will be a C∗-algebra. We denote by
√
a the unique positive

element b ∈ A such that b2 = a for each positive element a ∈ A. Also, we denote by R, C, and
Q the set of real, complex, and rational numbers, respectively. In this paper, we use a fixed
point method (see [7, 15, 17]) to investigate the stability problem of the quadratic functional
equation

f
(
x + y

)
+ f

(
x − y) = 2f

(√
xx∗ + yy∗) (1.8)

in C∗-algebras. A systematic study of fixed point theorems in nonlinear analysis is due to
Hyers et al. [30] and Isac and Rassias [13].

2. Solutions of (1.8)

Theorem 2.1. Let X be a linear space. If a mapping f : A → X satisfies f(0) = 0 and the functional
equation (1.8), then f is quadratic.

Proof. Letting u = x + y and v = x − y in (1.8), respectively, we get

f(u) + f(v) = 2f

⎛

⎝

√
uu∗ + vv∗

2

⎞

⎠ (2.1)

for all u, v ∈ A. It follows from (1.8) and (2.1) that

f(u) + f(v) = f
(
u + v√

2

)
+ f

(
u − v√

2

)
(2.2)

for all u, v ∈ A. Letting v = 0 in (2.2), we get

2f
(
u√
2

)
= f(u) (2.3)
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for all u ∈ A. Thus (2.2) implies that

f(u + v) + f(u − v) = 2f(u) + 2f(v) (2.4)

for all u, v ∈ A.Hence f is quadratic.

Remark 2.2. A quadratic mapping does not satisfy (1.8) in general. Let f : A → A be the
mapping defined by f(x) = x2 for all x ∈ A. It is clear that f is quadratic and that f does not
satisfy (1.8).

Corollary 2.3. Let X be a linear space. If a mapping f : A → X satisfies the functional equation
(1.8), then there exists a symmetric biadditive mapping B : A × A → X such that f(x) = B(x, x)
for all x ∈ A.

3. Generalized Hyers-Ulam Stability of (1.8) in C∗-Algebras

In this section, we use a fixed pointmethod (see [7, 15, 17]) to investigate the stability problem
of the functional equation (1.8) in C∗-algebras.

For convenience, we use the following abbreviation for a given mapping f : A → X :

Df
(
x, y

)
:= f

(
x + y

)
+ f

(
x − y) − 2f

(√
xx∗ + yy∗) (3.1)

for all x, y ∈ A,where X is a linear space.

Theorem 3.1. Let X be a linear space and let f : A → X be a mapping with f(0) = 0 for which
there exists a function ϕ : A ×A → [0,∞) such that

∥∥Df
(
x, y

)∥∥ ≤ ϕ(x, y) (3.2)

for all x, y ∈ A. If there exists a constant 0 < L < 1 such that

ϕ
(√

2x,
√
2y

)
≤ 2Lϕ

(
x, y

)
(3.3)

for all x, y ∈ A, then there exists a unique quadratic mapping Q : A → X such that

∥∥f(x) −Q(x)
∥∥ ≤ 1

2 − 2L
φ(x) (3.4)

for all x ∈ A, where

φ(x) := ϕ(x, 0) + ϕ
(
x√
2
,
x√
2

)
. (3.5)

Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ A, then Q is R-quadratic, that is,
Q(tx) = t2Q(x) for all x ∈ A and all t ∈ R.



Advances in Difference Equations 5

Proof. Replacing x and y by (x + y)/2 and (x − y)/2 in (3.2), respectively, we get

∥
∥
∥
∥
∥
∥
f(x) + f

(
y
) − 2f

⎛

⎝

√
xx∗ + yy∗

2

⎞

⎠

∥
∥
∥
∥
∥
∥
≤ ϕ

(
x + y
2

,
x − y
2

)
(3.6)

for all x, y ∈ A. Replacing x and y by x/
√
2 and y/

√
2 in (3.2), respectively, we get

∥
∥
∥
∥
∥
∥
f

(
x + y√

2

)
+ f

(
x − y√

2

)
− 2f

⎛

⎝

√
xx∗ + yy∗

2

⎞

⎠

∥
∥
∥
∥
∥
∥
≤ ϕ

(
x√
2
,
y√
2

)
(3.7)

for all x, y ∈ A. It follows from (3.6) and (3.7) that

∥∥∥∥f
(
x + y√

2

)
+ f

(
x − y√

2

)
− f(x) − f(y)

∥∥∥∥ ≤ ϕ
(
x + y
2

,
x − y
2

)
+ ϕ

(
x√
2
,
y√
2

)
(3.8)

for all x, y ∈ A. Letting y = x in (3.8), we get

∥∥∥f
(√

2x
)
− 2f(x)

∥∥∥ ≤ ϕ(x, 0) + ϕ
(
x√
2
,
x√
2

)
(3.9)

for all x ∈ A. By (3.3)we have φ(
√
2x) ≤ 2Lφ(x) for all x ∈ A. Let E be the set of all mappings

g : A → X with g(0) = 0. We can define a generalized metric on E as follows:

d
(
g, h

)
:= inf

{
C ∈ [0,∞] :

∥∥g(x) − h(x)∥∥ ≤ Cφ(x) ∀x ∈ A}
. (3.10)

(E, d) is a generalized complete metric space [7].
Let Λ : E → E be the mapping defined by

(
Λg

)
(x) =

1
2
g
(√

2x
)

∀g ∈ E and all x ∈ A. (3.11)

Let g, h ∈ E and let C ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ C. From the definition
of d, we have

∥∥g(x) − h(x)∥∥ ≤ Cφ(x) (3.12)

for all x ∈ A. Hence

∥∥(Λg
)
(x) − (Λh)(x)

∥∥ =
1
2

∥∥∥g
(√

2x
)
− h

(√
2x

)∥∥∥ ≤ 1
2
Cφ

(√
2x

)
≤ CLφ(x) (3.13)

for all x ∈ A. So

d
(
Λg,Λh

) ≤ Ld(g, h) (3.14)
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for any g, h ∈ E. It follows from (3.9) that d(Λf, f) ≤ 1/2. According to Theorem 1.2, the
sequence {Λkf} converges to a fixed point Q of Λ, that is,

Q : A → X, Q(x) = lim
k→∞

(
Λkf

)
(x) = lim

k→∞
1
2k
f
(
2k/2x

)
, (3.15)

and Q(
√
2x) = 2Q(x) for all x ∈ A. Also,

d
(
Q, f

) ≤ 1
1 − Ld

(
Λf, f

) ≤ 1
2 − 2L

, (3.16)

andQ is the unique fixed point of Λ in the set E∗ = {g ∈ E : d(f, g) <∞}. Thus the inequality
(3.4) holds true for all x ∈ A. It follows from the definition of Q, (3.2), and (3.3) that

‖DQ(
x, y

)‖ = lim
k→∞

1
2k

‖Df
(
2k/2x, 2k/2y

)
‖ ≤ lim

k→∞
1
2k
ϕ
(
2k/2x, 2k/2y

)
= 0 (3.17)

for all x, y ∈ A. By Theorem 2.1, the function Q : A → X is quadratic.
Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ X, then by the same

reasoning as in the proof of [4] Q is R-quadratic.

Corollary 3.2. Let 0 < r < 2 and θ, δ be non-negative real numbers and let f : A → X be a mapping
with f(0) = 0 such that

∥∥Df
(
x, y

)∥∥ ≤ δ + θ
(‖x‖r + ∥∥y

∥∥r) (3.18)

for all x, y ∈ A. Then there exists a unique quadratic mapping Q : A → X such that

∥∥f(x) −Q(x)
∥∥ ≤ 2δ

2 − 2r/2
+

2 + 2r/2

2r/2
(
2 − 2r/2

)θ‖x‖r (3.19)

for all x ∈ A. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ A, then Q is R-quadratic.

The following theorem is an alternative result of Theorem 3.1 and we will omit the
proof.

Theorem 3.3. Let f : A → X be a mapping with f(0) = 0 for which there exists a function
ϕ : A ×A → [0,∞) satisfying (3.2) for all x, y ∈ A. If there exists a constant 0 < L < 1 such that

2ϕ
(
x, y

) ≤ Lϕ
(√

2x,
√
2y

)
(3.20)

for all x, y ∈ A, then there exists a unique quadratic mapping Q : A → X such that

∥∥f(x) −Q(x)
∥∥ ≤ L

2 − 2L
φ(x) (3.21)
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for all x ∈ A, where φ(x) is defined as in Theorem 3.1. Moreover, if f(tx) is continuous in t ∈ R for
each fixed x ∈ A, then Q is R-quadratic.

Corollary 3.4. Let r > 2 and θ be non-negative real numbers and let f : A → X be a mapping with
f(0) = 0 such that

∥
∥Df

(
x, y

)∥∥ ≤ θ(‖x‖r + ∥
∥y

∥
∥r) (3.22)

for all x, y ∈ A. Then there exists a unique quadratic mapping Q : A → X such that

∥∥f(x) −Q(x)
∥∥ ≤ 2 + 2r/2

2r/2
(
2r/2 − 2

)θ‖x‖r (3.23)

for all x ∈ A. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ A, then Q is R-quadratic.

For the case r = 2 we use the Gajda’s example [31] to give the following counterexam-
ple (see also [9]).

Example 3.5. Let φ : C → C be defined by

φ(x) :=

⎧
⎨

⎩

|x|2, for |x| < 1,

1, for |x| ≥ 1.
(3.24)

Consider the function f : C → C by the formula

f(x) :=
∞∑

n=0

1
4n
φ(2nx). (3.25)

It is clear that f is continuous and bounded by 4/3 on C. We prove that

∣∣∣∣f
(
x + y

)
+ f

(
x − y) − 2f

(√
|x|2 + ∣∣y

∣∣2
)∣∣∣∣ ≤

64
3

(
|x|2 + ∣∣y

∣∣2
)

(3.26)

for all x, y ∈ C. To see this, if |x|2 + |y|2 = 0 or |x|2 + |y|2 ≥ 1/4, then

∣∣∣∣f
(
x + y

)
+ f

(
x − y) − 2f

(√
|x|2 + ∣∣y

∣∣2
)∣∣∣∣ ≤

16
3

≤ 64
3

(
|x|2 + ∣∣y

∣∣2
)
. (3.27)

Now suppose that 0 < |x|2 + |y|2 < 1/4. Then there exists a positive integer k such that

1
4k+1

≤ |x|2 + ∣∣y
∣∣2 <

1
4k
. (3.28)
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Thus

2k−1
∣
∣x ± y∣∣, 2k

√
|x|2 + ∣

∣y
∣
∣2 ∈ (−1, 1). (3.29)

Hence

2m
∣
∣x ± y∣∣, 2m

√
|x|2 + ∣

∣y
∣
∣2 ∈ (−1, 1) (3.30)

for allm = 0, 1, . . . , k − 1. It follows from the definition of f and (3.28) that

∣
∣
∣
∣f
(
x + y

)
+ f

(
x − y) − 2f

(√
|x|2 + ∣

∣y
∣
∣2
)∣
∣
∣
∣

=

∣∣∣∣∣

∞∑

n=k

1
4n

[
φ
(
2n
(
x + y

))
+ φ

(
2n
(
x − y)) − 2φ

(
2n
√
|x|2 + ∣∣y

∣∣2
)]∣∣∣∣∣

≤ 4
∞∑

n=k

1
4n

=
64

3 × 4k+1
≤ 64

3

(
|x|2 + ∣∣y

∣∣2
)
.

(3.31)

Thus f satisfies (3.26). Let Q : C → C be a quadratic function such that

∣∣f(x) −Q(x)
∣∣ ≤ β|x|2 (3.32)

for all x ∈ C, where β is a positive constant. Then there exists a constant c ∈ C such that
Q(x) = cx2 for all x ∈ Q. So we have

∣∣f(x)
∣∣ ≤ (

β + |c|)|x|2 (3.33)

for all x ∈ Q. Let m ∈ N with m > β + |c|. If x0 ∈ (0, 2−m) ∩ Q, then 2nx0 ∈ (0, 1) for all
n = 0, 1, . . . , m − 1. So

f(x0) ≥
m−1∑

n=0

1
4n
φ(2nx0) = m|x0|2 >

(
β + |c|)|x0|2 (3.34)

which contradicts (3.33).
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