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1. Introduction

Let us consider a discrete-time control system described by the following equation in Cn:

x(k + 1) = A(k)x(k) +A1(k)x(k − r) + B(k)u(k), (1.1)

x(k) = ϕ(k), k ∈ {−r,−r + 1, . . . , 0}, (1.2)

where Cn denotes the n-dimensional space of complex column vectors, r ≥ 1 is a given
integer, x : Z+ → Cn is the state, u : Z+ → Cm (m ≤ n) is the input, Z+ is the set of
nonnegative integers. Hence forward, ‖·‖ = ‖ · ‖Cn is the Euclidean norm;A and B are variable
matrices of compatible dimensions, A1 is a variable n × n-matrix such that

sup
k≥0

‖A1(k)‖ <∞, (1.3)

and ϕ is a given vector-valued function, that is, ϕ(k) ∈ Cn.
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The stabilizability question consists on finding a feedback control law u(k) = L(k)x(k),
for keeping the closed-loop system

x(k + 1) = [A(k) + B(k)L(k)]x(k) +A1(k)x(k − r), (1.4)

asymptotically stable in the Lyapunov sense.
The stabilization of control systems is one of the most important properties of the

systems and has been studied widely by many reseachers in control theory; (see, e.g., [1–
11]) and the references therein. It is recognized that the Lyapunov function method serves
as a main technique to reduce a given complicated system into a relatively simpler system
and provides useful applications to control theory, but finding Lyapunov functions is still a
difficult task (see, e.g., [1–3, 12, 13]). By contrast, many methods different from Lyapunov
functions have been successfully applied to establish stabilizability results for discrete-time
equations. For example, to the linear system

x(k + 1) = A(k)x(k), k ∈ Z+, (1.5)

if the evolution operator Φ(k, s) generated by A(k) is stable, then the delay control system
(1.1)-(1.2) is asymptotically stabilizable under appropiate conditions onA1(k) (see [4, 8, 14]).
For infinite-dimensional control systems, the study of stabilizabilization is more complicated
and requires sophisticated techniques from semigroup theory.

The concept of stabilizability has been developed and successfully applied in different
settings (see, e.g., [9, 15, 16]). For example, finite- and infinite-dimensional discrete-time
control systems have been studied extensively (see, e.g., [2, 5, 6, 10, 17–20]).

The stabilizability conditions obtained in this paper are derived by using the
“freezing” technique (see, e.g., [21–23]) for perturbed systems of difference equations
with slowly varying coefficients and do not involve either Lyapunov functions or stability
assumptions on the associated evolution operator Φ(k, s). With more precision, the freezing
technique can be described as follows. Ifm ∈ Z+ is any fixed integer, then we can think of the
autonomous system

x(k + 1) = A(m)x(k) +A1(m)x(k − r) + B(m)u(k) (1.6)

as a particular case of the system (1.1), with its time dependence “frozen” at timem. Thus, in
this paper it is shown that if each frozen system is exponentially stabilizable and the rate of
change of the coefficients of system (1.1) is small enough, then the nonautonomous system
(1.1)-(1.2) is indeed exponentially stabilizable.

The purpose of this paper is to establish sufficient conditions for the global exponential
feedback stabilizability of perturbed control systems with both time-varying and time-
delayed states.

Our main contributions are as follows. By applying the “freezing” technique to the
control system (1.1)-(1.2), we derive explicit stabilizability conditions, provided that the
coefficients are slowly varying. Applications of the main results to control systems with many
delays and nonlinear perturbations will also be established in this paper. This technique will
allow us to avoid constructing the Lyapunov functions in some situations. For instance, it
is worth noting that Niamsup and Phat [2] established sufficient stabilizability conditions
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for the zero solution of a discrete-time control system with many delays, under exponential
growth assumptions on the corresponding transition matrix. By contrast, our approach does
not involve any stability assumption on the transition matrix.

The paper is organized as follows. In Section 2 we introduce notations, definition,
and some preliminary results. In Section 3, we give new sufficient conditions for the global
exponential stabilizability of discrete-time systems with time-delayed states. Finally, as an
application, we consider the global stabilization of the nonlinear control systems.

2. Preliminaries

In this paper we will use the following control law:

u(k) = L(k)x(k), (2.1)

where L(k) is a variablem × n-matrix.
To formulate our results, let us introduce the following notation. Let A be a constant

n × n matrix and let λj(A), j = 1, 2, . . . , n, denote the eigenvalues of A, including their
multiplicities. Put

g(A) =

⎡
⎣N2(A) −

n∑
j=1

∣∣λj(A)
∣∣2
⎤
⎦

1/2

, (2.2)

whereN(A) is the Hilbert-Schmidt (Frobenius) norm of A; that is,N2(A) = Trace(AA∗).
The following relation

g(A) ≤
√

1
2
N(A −A∗) (2.3)

is true, and will be useful to obtain some estimates in this work.

Theorem A ([17, Theorem 3.7]). For any n × n-matrix A, the inequality

‖Am‖ ≤
m1∑
j=0

m!
(
ρ(A)

)m−j(
g(A)

)j
(
m − j)!(j!)3/2

(2.4)

holds for every nonnegative integerm, where ρ(A) is the spectral radius of A, andm1 = min{m,n −
1}.

Remark 2.1. In general, the problem of obtaining a precise estimate for the norm of matrix-
valued and operator-valued functions has been regularly discussed in the literature, for
example, see Gel’fond and Shilov [24] and Daleckii and Krein [25].

The following concepts of stability will be used in formulating the main results of the
paper (see, e.g., [26]).
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Definition 2.2. The zero solution of system (1.4)–(1.2) is stable if for every ε > 0 and every
k0 ∈ Z+, there is a number δ > 0 (depending on ε and k0) such that every solution x(k) of the
system with ‖ϕ(k)‖ < δ for all r − k0, r − k0 + 1, . . . , k0, satisfies the condition

‖x(k)‖ < ε, ∀k ∈ Z+. (2.5)

Definition 2.3. The zero solution of (1.4) is globally exponentially stable if there are constants
M > 0 and c0 ∈ (0, 1) such that

‖x(k)‖ ≤Mck0 max
−r≤s≤0

∥∥ϕ(s)∥∥, (k ∈ Z+) (2.6)

for any solution x(k) of (1.4)with the initial conditions (1.2).

Definition 2.4. The pair (A(k), B(k)) is said to be stabilizable for each k ∈ Z+ if there is a
matrix L(k) such that all the eigenvalues of the matrix CL(k) = A(k) + B(k)L(k) are located
inside the unit disk for every fixed k ∈ Z+. Namely,

ρL = sup
k∈Z+

ρ(CL(k)) < 1. (2.7)

Remark 2.5. The control u(k) = L(k)x(k) is a feedback control of the system.

Definition 2.6. System (1.1) is said to be globally exponentially stabilizable (at x = 0) bymeans
of the feedback law (2.1) if there is a variable matrix L(k) such that the zero solution of (1.4)
is globally exponentially stable.

3. Main Results

Now, we are ready to establish the main results of the paper, which will be valid for the
system (1.1)-(1.2)with slowly varying coefficients.

Consider in Cn the equation

x(k + 1) = T(k)x(k) +A1(k)x(k − r), (3.1)

subject to the initial conditions (1.2), where r ≥ 1 is a given integer and T(k) is a variable
n × n-matrix.

Proposition 3.1. Suppose that

(a) p = supk≥0‖A1(k)‖ <∞,

(b) there is a constant q > 0 such that

∥∥T(k) − T(j)∥∥ ≤ q∣∣k − j∣∣; k, j ∈ Z+, (3.2)

(c) S0 =: S0(T(·), A1(·)) =
∑∞

k=0(qk + p)supl=0,1,...‖Tk(l)‖ < 1.
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Then the zero solution of system (3.1)–(1.2) is globally exponentially stable. Moreover, any
solution of (3.1) satisfies the inequality

‖x(k)‖ ≤ β0
∥∥ϕ(0)∥∥ + γ
1 − S0

, k = 1, 2, . . . , (3.3)

where

β0 = sup
l,k=0,1,...

∥∥∥Tk(l)
∥∥∥ <∞, γ = pmax

−r≤k≤0

∥∥ϕ(k)∥∥
∞∑
k=0

sup
l=0,1,...

∥∥∥Tk(l)
∥∥∥. (3.4)

Proof. Rewrite (3.1) in the form

x(k + 1) − T(s)x(k) = (T(k) − T(s))x(k) +A1(k)x(k − r), (3.5)

with a fixed nonnegative integer s. The variation of constants formula yields

x(m + 1) = Tm+1(s)ϕ(0) +
m∑
j=0

Tm−j(s)
[(
T
(
j
) − T(s))x(j) +A1

(
j
)
x
(
j − r)]. (3.6)

Taking s = m, we have

x(m + 1) = Tm+1(m)ϕ(0) +
m∑
j=0

Tm−j(m)
[(
T
(
j
) − T(m)

)
x
(
j
)
+A1

(
j
)
x
(
j − r)]. (3.7)

Hence,

‖x(m + 1)‖ ≤ β0
∥∥ϕ(0)∥∥ +

m∑
j=0

∥∥∥Tm−j(m)
∥∥∥[q∣∣m − j∣∣∥∥x(j)∥∥ + ∥∥A1

(
j
)∥∥∥∥x(j − r)∥∥]

≤ β0
∥∥ϕ(0)∥∥ + qmax

0≤k≤m
‖x(k)‖

m∑
k=0

∥∥∥Tk(m)
∥∥∥k +

m∑
k=0

∥∥∥Tk(m)
∥∥∥max
−r≤j≤k

∥∥x(j)∥∥‖A1(k)‖

≤ β0
∥∥ϕ(0)∥∥ + max

0≤k≤m
‖x(k)‖

∞∑
k=0

(
qk + p

)
sup
l=0,1,...

∥∥∥Tk(l)
∥∥∥ + γ.

(3.8)

Thus,

‖x(m + 1)‖ ≤ β0
∥∥ϕ(0)∥∥ + γ + max

0≤j≤m

∥∥x(j)∥∥
∞∑
k=0

(
qk + p

)
sup
l=0,1,...

∥∥∥Tk(l)
∥∥∥. (3.9)
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Hence,

max
0≤k≤m+1

‖x(k)‖ ≤ β0
∥∥ϕ(0)∥∥ + γ + S0 max

0≤k≤m+1
‖x(k)‖. (3.10)

From this inequality we obtain

max
0≤k≤m+1

‖x(k)‖ ≤ β0
∥∥ϕ(0)∥∥ + γ
1 − S0

. (3.11)

But, the right-hand side of this inequality does not depend onm. Thus, it follows that

‖x(k)‖ ≤ β0
∥∥ϕ(0)∥∥ + γ
1 − S0

, ∀k = 1, 2, . . . . (3.12)

This proves the global stability of the zero solution of (3.1)–(1.2).
To establish the global exponential stability of (3.1)–(1.2), we take the function

xα(k) = x(k)eαk, (3.13)

with α > 0 small enough, where x(k) is a solution of (3.1).
Substituting (3.13) in (3.1), we obtain

xα(k + 1) = T̃(k)xα(k) + Ã1(k)xα(k − r), (3.14)

where

T̃( k) = eαT( k) , Ã1( k) = e (r+1)α A1( k) . (3.15)

Applying the above reasoning to (3.14), according to inequality (3.3), it follows that xα(k) is
a bounded function. Consequently, relation (3.13) implies the global exponential stability of
the zero solution of system (3.1)–(1.2).

Computing the quantities β0 and S0, defined by

β0 = sup
k,l=0,1,...

∥∥∥Tk(l)
∥∥∥,

S0 =
∞∑
k=0

(
kq + p

)
sup
l=0,1,...

∥∥∥Tk(l)
∥∥∥

(3.16)

is not an easy task. However, in this section we will improve the estimates to these formulae.

Proposition 3.2. Assume that (a) and (b) hold, and in addition

v0 = sup
k≥0

g(T(k)) <∞, ρ0 = sup
k≥0

ρ(T(k)) < 1, (3.17)
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where ρ(T(k)) is the spectral radius of T(k) for each k ∈ Z+. If

S̃0 =
n−1∑
k=0

vk0√
k!

[
(k + 1)q
(
1 − ρ0

)k+2 +
p

(
1 − ρ0

)k+1
]
< 1, (3.18)

then the zero solution of system (3.1)–(1.2) is globally exponentially stable.

Proof. Let us turn now to inequality (3.3). Firstly we will prove the inequality

∞∑
k=0

(
kq + p

)
sup
l=0,1,...

∥∥∥Tk(l)
∥∥∥ ≤ qλ0 + pλ1, (3.19)

where

λ0 =
n−1∑
k=0

(k + 1)vk0√
k!
(
1 − ρ0

)k+2 , λ1 =
n−1∑
k=0

vk0√
k!
(
1 − ρ0

)k+1 . (3.20)

Consider

θ0 =
∞∑
k=1

k sup
l=0,1,...

∥∥∥Tk(l)
∥∥∥. (3.21)

By Theorem A, we have

θ0 ≤
∞∑
k=1

n−1∑
j=0

kk!ρk−j0 v
j

0(
k − j)!(j!)3/2

. (3.22)

But

∞∑
k=1

kk!zk−j(
k − j)! ≤

∞∑
k=0

(k + 1)zk−j(
k − j)! =

dj+1

dzj+1

( ∞∑
k=0

zk+1
)

=
dj+1

dzj+1
z(1 − z)−1 = (j + 1

)
!(1 − z)−j−2, 0 < z < 1.

(3.23)

Hence,

θ0 ≤
n−1∑
j=0

v
j

0(
j!
)3/2

∞∑
k=0

kk!ρk−j0(
k − j)! =

n−1∑
j=0

(
j + 1
)
v
j

0√
j!
(
1 − ρ0

)j+2 = λ0. (3.24)

Proceeding in a similar way, we obtain

∞∑
k=0

sup
l=0,1,...

∥∥∥Tk(l)
∥∥∥ ≤ λ1. (3.25)
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These relations yield inequality (3.19). Consequently,

‖x(k)‖ ≤ (1 − qλ0 − pλ1
)−1(

M0
∥∥ϕ(0)∥∥ + γ), (3.26)

where

M0 = sup
k≥1

⎛
⎝

n−1∑
j=0

k!ρk−j0 v
j

0(
k − j)!(j!)3/2

⎞
⎠ <∞, by condition (3.17). (3.27)

Relation (3.26) proves the global stability of the zero solution of system (3.1)–(1.2).
Establishing the exponential stability of this equation is enough to apply the same arguments
of the Proposition 3.1.

Theorem 3.3. Under the assumption (a), let (A(k), B(k)) be stabilizable for each fixed k ∈ Z+ with
respect to a matrix function L(k), satisfying the following conditions:

(i) ρL = supk≥0ρ(CL(k)) < 1,

(ii) qL = supk≥0‖CL(k + 1) − CL(k)‖ <∞, and

(iii) vL = supk≥0g(CL(k)) <∞.

If,

S(CL,A1) =
n−1∑
k=0

vkL√
k!

[
(k + 1)qL(
1 − ρL

)k+2 +
p

(
1 − ρL

)k+1
]
< 1, (3.28)

then system (1.1)-(1.2) is globally exponentially stabilizable by means of the feedback law (2.1).

Proof. Rewrite (1.4) in the form

x(k + 1) = T(k)x(k) +A1(k)x(k − r), (3.29)

where T(k) = A(k) + B(k)L(k).
According to (i), (ii), and (iii), the conditions (b) and (3.17) hold. Furthermore,

condition (3.28) assures the existence of a matrix function L(k) such that condition (3.18)
is fulfilled. Thus, from Proposition 3.2, the result follows.

Put

σ(A(·), B(·);A1(·)) ≡ min
L
S(CL,A1), (3.30)

where the minimum is taken over allm × nmatrices L(k) satisfying (i), (ii), and (iii).
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Corollary 3.4. Suppose that (a) holds, and the pair (A(k), B(k)) is stabilizable for each fixed k ∈ Z+.
If

σ(A(·), B(·);A1(·)) < 1, (3.31)

then the system (1.1)-(1.2) is globally exponentially stabilizable by means of the feedback law (2.1).
Now, consider in Cn the discrete-time control system

x(k + 1) = Ax(k) +A1(k)x(k − r) + Bu(k), (3.32)

subject to the same initial conditions (1.2), where A and B are constant matrices. In addition, one
assumes that the pair (A,B) is stabilizable, that is, there is a constant matrix L such that all the
eigenvalues of CL = A + BL are located inside the unit disk. Hence, ρ(CL) < 1. In this case, qL = 0
and vL = g(CL). Thus,

S(CL,A1) = p
n−1∑
k=0

(
g(A + BL)

)k
√
k!
(
1 − ρ(A + BL)

)k+1 < 1. (3.33)

Hence, Theorem 3.3 implies the following corollary.

Corollary 3.5. Let (A,B) be a stabilizable pair of constant matrices, with respect to a constant matrix
L satisfying the condition

p
n−1∑
k=0

(
g(A + BL)

)k
√
k!
(
1 − ρ(A + BL)

)k+1 < 1. (3.34)

Then system (3.32)-(1.2), under condition (a), is globally exponentially stabilizable by means of the
feedback law (2.1).

Example 3.6. Consider the control system in R2:

x(k + 1) = A(k)x(k) +A1(k)x(k − 2) + B(k)u(k), (3.35)

whereA(k) =
[
a1(k) a2(k)

1 0

]
, A1(k) =

[
d1(k) d2(k)

d3(k) d4(k)

]
, and B =

[
b 0

0 0

]
, subject to the initial conditions

x(k) = ϕ(k), k = −2,−1, 0, (3.36)

where ϕ(k) is a given function with values in R2, a1(k), a2(k) are positive scalar-valued
bounded sequences with the property

q̃ ≡ sup
k≥0

{|a1(k + 1) − a1(k)| + |a2(k + 1) − a2(k)|} <∞, (3.37)
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and di(k), i = 1, . . . , 4, are positive scalar-valued sequences with

p = sup
k≥0

(
4∑
i=1

|di(k)|
)
<∞. (3.38)

In the present case, the pair (A(k), B) is controllable. Take

L(k) = L =

[
l1 l2

0 0

]
. (3.39)

Then

CL(k) =

[
β(k) ω(k)

1 0

]
, (3.40)

where β(k) = bl1 + a1(k) and ω(k) = bl2 + a2(k) > 0.
By inequality

g(A) ≤ 1√
2
N(A∗ −A), (3.41)

it follows that

vL ≤ v(l1, l2) := 1 + sup
k≥0

ω(k). (3.42)

Assume that

ρL = ρ(l1l2) = sup
k≥0

⎧
⎨
⎩

∣∣∣∣∣∣
β(k)
2

+

(
β2(k)
4

−ω(k)
)1/2

∣∣∣∣∣∣

⎫
⎬
⎭ < 1. (3.43)

Since B(k) and L(k) are constants, by (3.37) we have qL = q̃.Hence, according to (3.28),

S(CL,A1) ≤ S(l1, l2) =
q̃

(
1 − ρ(l1, l2)

)2 +
p(

1 − ρ(l1, l2)
)

+ v(l1, l2)

{
2q̃

(
1 − ρ(l1, l2)

)3 +
p

(
1 − ρ(l1, l2)

)2
}
.

(3.44)

If q̃ and p are small enough such that for some l1 and l2 we have S(l1, l2) < 1,
then by Theorem 3.3, system (3.35)-(3.36), under conditions (3.37) and (3.38), is globally
exponentially stabilizable.
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In the same way, Theorem 3.3 can be extended to the discrete-time control systemwith
multiple delays

x(k + 1) = A(k)x(k) +
N∑
i=1

Ai(k)x(k − ri) + B(k)u(k), (3.45)

x(k) = ϕ(k), k ∈ {−rN,−rN + 1, . . . , 0}, (3.46)

where Ai (i = 1, . . . ,N) are variable n × nmatrices, 1 ≤ r1 ≤ r2 ≤ · · · ≤ rN ;N ≥ 1.
Denote

p̃ =
N∑
i=1

sup
k≥0

‖Ai(k)‖, γ̃ = p̃ max
−rN≤k≤0

∥∥ψ(k)∥∥
∞∑
k=0

sup
l=0,1,...

∥∥∥Tk(l)
∥∥∥. (3.47)

Theorem 3.7. Let (A(k), B(k)) be stabilizable for each k ∈ Z+ with respect to a matrix function
L(k) satisfying the conditions (i), (ii), and (iii). In addition, assume that

p̃ =
N∑
i=1

sup
k≥0

‖Ai(k)‖ <∞. (3.48)

If

S̃(CL,Σ) =
n−1∑
k=0

vkL√
k!

[
(k + 1)qL(
1 − ρL

)k+2 +
p̃

(
1 − ρL

)k+1
]
< 1, (3.49)

then system (3.45)-(3.46) is globally exponentially stabilizable by means of the feedback law (2.1).
Moreover, any solution of (3.45)-(3.46) satisfies the inequality

‖x(k)‖ ≤ M0
∥∥ϕ(0)∥∥ + γ̃

1 − S̃(CL,Σ)
, for k ≥ 1. (3.50)

As an application, one consider, the stabilization of the nonlinear discrete-time control system

x(k + 1) = A(k)x(k) +A1(k)x(k − r) + B(k)u(k) + f(k, x(k), x(k − r), u(k)), (3.51)

x(k) = φ(k), k ∈ {−r,−r + 1, . . . , 0}, (3.52)

where f : Z+ × Cn × Cn × Cm → Cn (m ≤ n) is a given nonlinear function satisfying

∥∥f(k, x, y, u)∥∥ ≤ a‖x‖ + b∥∥y∥∥ + c‖u‖, (3.53)

for some positive numbers a, b, and c.
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One recalls that nonlinear control system (3.51)-(3.52) is stabilizable by a feedback control
u(k) = L(k)x(k), where L(k) is a matrix, if the closed-loop system

x(k + 1) = [A(k) + L(k)B(k)]x(k) +A1(k)x(k − r) + f(k, x(k), x(k − r), L(k)x(k)), (3.54)

is asymptotically stable.

Theorem 3.8. Under (3.53), let (A(k), B(k)) be stabilizable for each k ∈ Z+,with respect to a matrix
function L(k) satisfying conditions (i), (ii), and (iii). In addition, assume that

p∗ = sup
k≥0

(‖A1(k)‖ + b) <∞. (3.55)

If

S
(
CL, f

)
=

n−1∑
k=0

vkL√
k!

[
(k + 1)qL(
1 − ρL

)k+2 +
a + p∗

(
1 − ρL

)k+1
]
+ c

∞∑
k=0

⎛
⎝

k∑
j=0

k!ρk−jL v
j

L(
k − j)!(j!)3/2

‖L(k)‖
⎞
⎠ < 1,

(3.56)

then system (3.51)-(3.52) is globally exponentially stabilizable by means of the feedback law (2.1).

Proof. Rewrite (3.54) in the form

x(k + 1) = T(k)x(k) +A1(k)x(k − r) + f(k, x(k), x(k − r), L(k)x(k)), (3.57)

where T(k) = A(k) + B(k)L(k).
Thus, by reasoning as in Theorem 3.3, and using the estimates established in

Proposition 3.2, the result follows.
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