
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2009, Article ID 219251, 14 pages
doi:10.1155/2009/219251

Research Article
Multiple Positive Solutions for a Class of m-Point
Boundary Value Problems on Time Scales

Meiqiang Feng,1 Xuemei Zhang,2, 3 and Weigao Ge3

1 School of Science, Beijing Information Science & Technology University,
Beijing 100192, China

2 Department of Mathematics and Physics, North China Electric Power University,
Beijing 102206, China

3 Department of Applied Mathematics, Beijing Institute of Technology,
Beijing 100081, China

Correspondence should be addressed to Xuemei Zhang, zxm74@sina.com

Received 1 December 2008; Revised 15 April 2009; Accepted 10 June 2009

Recommended by Victoria Otero-Espinar

By constructing an available integral operator and combining Krasnosel’skii-Zabreiko fixed point
theorem with properties of Green’s function, this paper shows the existence of multiple positive
solutions for a class of m-point second-order Sturm-Liouville-like boundary value problems on
time scales with polynomial nonlinearity. The results significantly extend and improve many
known results for both the continuous case and more general time scales. We illustrate our results
by one example, which cannot be handled using the existing results.

Copyright q 2009 Meiqiang Feng et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Recently, there have been many papers working on the existence of positive solutions to
boundary value problems for differential equations on time scales; see, for example, [1–
20]. This has been mainly due to its unification of the theory of differential and difference
equations. An introduction to this unification is given in [11, 12, 18, 19]. Now, this study
is still a new area of fairly theoretical exploration in mathematics. However, it has led to
several important applications, for example, in the study of insect population models, neural
networks, heat transfer, and epidemic models; see, for example, [10, 11]. For some other
excellent results and applications of the case that boundary value problems on time scales
to a variety of problems from Khan et al. [21], Agarose et al. [22], Wang [23], Sun [24], Feng
et al. [25], Feng et al. [26] and Feng et al. [27].

Motivated by the works mentioned above, we intend in this paper to study the
existence of multiple positive solutions for the second-order m-point nonlinear dynamic
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equation on time scales with polynomial nonlinearity:

−
[
p(t)x∇

]Δ
(t) + q (t)x (t) = f (t, x (t)) , t1 < t < tm,

αx (t1) − βp (t1)x∇ (t1) =
m−1∑
i=2

aix (ti) ,

γx (tm) + δp (tm)x∇ (tm) =
m−1∑
i=2

bix (ti) ,

(1.1)

where T is a time scale,

p, q : [t1, tm] −→ (0,∞) , p ∈ CΔ [t1, tm) , q ∈ C [t1, tm] ; (1.2)

the points ti ∈ T
k
k
for i ∈ {1, 2, . . . , m}with t1 < t2 < · · · < tm;

α, γ, β, δ ∈ [0,∞) αγ + αδ + βγ > 0, ai, bi ∈ [0,∞) , i ∈ {2, 3, . . . , m − 1} ; (1.3)

f (t, x) =
n∑
j=1

cj (t)xυj , cj ∈ C ([t1, tm] , [0,+∞)) , υj ∈ [0,∞) , j = 1, 2, . . . , n. (1.4)

Recently, Xu [28] considered the following second-order two-point impulsive singular
differential equations boundary value problem:

y′′ +
n∑
j=1

aj (t)xαj = 0, 0 < t < 1, t /= t1,

Δy|t=t1 = I
(
y (t1)

)
,

y (0) = y (1) = 0.

(1.5)

By means of fixed point index theory in a cone, the author established the existence of two
nonnegative solutions for problem (1.5).

More recently, by applying Guo-Krasnosel’skii fixed point theorem in a cone,
Anderson and Ma [6] established the existence of at least one positive solution to the
multipoint time-scale eigenvalue problem:

[
py∇

]Δ
(t) − q (t)y (t) + λh (t) f

(
y
)
= 0, t1 < t < tn,

αy (t1) − βp (t1)y∇ (t1) =
n−1∑
i=2

aiy (ti) ,

γx (tn) + δp (tn)x∇ (tn) =
n−1∑
i=2

biy (ti) ,

(1.6)

where f : [0,∞) → [0,∞) is continuous.
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As far as we know, there is no paper to study the existence of multiple positive
solutions to problem (1.1) on time scales with polynomial nonlinearity. The objective of the
present paper is to fill this gap. On the other hand, many difficulties occur when we study
BVPs on time scales. For example, basic tools from calculus such as Fermat’s theorem, Rolle’s
theorem and the intermediate value theoremmay not necessarily hold. So it is interesting and
important to discuss the problem (1.1). The purpose of this paper is to prove that the problem
(1.1) possesses at least two positive solutions. Moreover, the methods used in this paper are
different from [6, 28] and the results obtained in this paper generalize some results in [6, 28]
to some degree.

The time scale related notations adopted in this paper can be found, if not explained
specifically, in almost all literature related to time scales. The readers who are unfamiliar with
this area can consult for example [11, 12, 18, 19] for details.

For convenience, we list the following well-known definitions.

Definition 1.1. A time scale T is a nonempty closed subset of R.

Definition 1.2. Define the forward (backward) jump operator σ(t) at t for t < supT (ρ(t) at t
for t > inf T) by σ(t) = inf{τ > t : τ ∈ T} (ρ(t) = sup{τ < t : τ ∈ T}) for all t ∈ T.

We assume throughout that T has the topology that it inherits from the standard
topology on R and say t is right-scattered, left-scattered, right-dense and left-dense if σ(t) >
t, ρ(t) < t, σ(t) = t and ρ(t) = t, respectively. Finally, we introduce the setsT

k andTk. which are
derived from the time scale T as follows. If T has a left-scatteredmaximum t∗1, then T

k = T−t∗1,
otherwise T

k = T. If T has a right-scattered minimum t∗2, then Tk = T − t∗2, otherwise Tk = T.

Definition 1.3. Fix t ∈ T and let y : T → R. Define yΔ(t) to be the number (if it exists) with
the property that given ε > 0 there is a neighborhoodU of twith

∣∣∣[y (σ (t)) − y (s)
] − yΔ (t) [σ (t) − s]

∣∣∣ < ε |σ (t) − s| (1.7)

for all s ∈ U, where yΔ denotes the (delta) derivative of y with respect to the first variable,
then

g (t) :=
∫ t

a

ω (t, τ)Δτ (1.8)

implies

gΔ (t) =
∫ t

a

ωΔ (t, τ)Δτ +ω (σ (t) , τ) . (1.9)

Definition 1.4. Fix t ∈ T and let y : T → R. Define y∇(t) to be the number (if it exists)
with the property that given ε > 0 there is a neighborhoodU of t with

∣∣∣[y (
ρ (t)

) − y (s)
] − y∇ (t)

[
ρ (t) − s]

∣∣∣ < ε ∣∣ρ (t) − s∣∣ (1.10)

for all s ∈ U. Call y∇(t) the nabla derivative of y(t) at the point t.
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If T = R then fΔ(t) = f∇(t) = f ′(t). If T = Z then fΔ(t) = f(t + 1) − f(t) is the forward
difference operator while f∇(t) = f(t) − f(t − 1) is the backward difference operator.

Definition 1.5. A function f : T → R is called rd-continuous provided it is continuous at all
right dense points of T and its left sided limit exists (finite) at left dense points of T. We let
C0

rd(T) denote the set of rd-continuous functions f : T → R.

Definition 1.6. A function f : T → R is called ld-continuous provided it is continuous at
all left dense points of T and its right sided limit exists (finite) at right dense points of T.
We let C0

ld(T) denote the set of ld-continuous functions f : T → R.

Definition 1.7. A function F : T
k → R is called a delta-antiderivative of f : T

k → R provided
FΔ(t) = f(t) holds for all t ∈ T

k. In this case we define the delta integral of f by

∫ t

a

f (s)Δs = F (t) − F (a) , (1.11)

for all a, t ∈ T.

Definition 1.8. A function Φ : Tk → R is called a nabla-antiderivative of f : Tk → R

provided Φ∇(t) = f(t) holds for all t ∈ Tk. In this case we define the nabla integral of f by

∫ t

a

f (s)∇s = Φ (t) −Φ(a) , (1.12)

for all a, t ∈ T.

2. Preliminaries

In this section, we provide some necessary background. In particular, we state some
properties of Green’s function associated with problem (1.1), and we then state a fixed-point
theorem which is crucial to prove our main results.

The basic space used in this paper is E = C[ρ(t1), tm]. It is well known that E is a
Banach space with the norm || · || defined by ||x|| = supt∈[ρ(t1),tm]|x(t)|. Let P be a cone of E,
Pr = {x ∈ P : ‖x‖ ≤ r}, ∂Pr = {x ∈ P : ‖x‖ = r}, where r > 0.

In this paper, the Green’s function of the corresponding homogeneous BVP is defined
by

G (t, s) =
1
d

⎧
⎨
⎩
ψ (t)φ (s) , if ρ (t1) ≤ t ≤ s ≤ tm,
ψ (s)φ (t) , if ρ (t1) ≤ s ≤ t ≤ tm,

(2.1)

where

d := αφ (t1) − βp (t1)φ∇ (t1) = γψ (tm) + δp (tm)ψ∇ (tm) , (2.2)
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and φ and ψ satisfy

−
(
pψ∇

)Δ
(t) + q (t)ψ (t) = 0, ψ (t1) = β, p (t1)ψ∇ (t1) = α,

−
(
pφ∇

)Δ
(t) + q (t)φ (t) = 0, φ (tm) = δ, p (tm)φ∇ (tm) = −γ,

(2.3)

respectively.

Lemma 2.1 (see [6]). Assume that (1.2) and (1.3) hold. Then d > 0 and the functions ψ and φ
satisfy

ψ (t) ≥ 0, t ∈ [
ρ (t1) , tm

]
, ψ (t) > 0, t ∈ (

ρ (t1) , tm
]
,

p (t)ψ∇ (t) ≥ 0, t ∈ [
ρ (t1) , tm

]
, φ (t) ≥ 0, t ∈ [

ρ (t1) , tm
]
,

φ (t) > 0, t ∈ [
ρ (t1) , tm

)
, p (t)φ∇ (t) ≤ 0, t ∈ [

ρ (t1) , tm
]
.

(2.4)

From Lemma 2.1 and the definition of G(t, s), we can prove that G(t, s) has the
following properties.

Proposition 2.2. For t, s ∈ [ξ1, ξ2], one has

G (t, s) > 0, (2.5)

where ξ1, ξ2 ∈ T
k
k, ρ(t1) < ξ1 < ξ2 < tm.

In fact, from Lemma 2.1, we have ψ(t) > 0, φ(t) > 0 for t ∈ [ξ1, ξ2]. Therefore (2.5)
holds.

Proposition 2.3. If (1.2) holds, then for t, s ∈ [ρ(t1), tm] × [ρ(t1), tm], one has

0 ≤ G (t, s) ≤ G (s, s) . (2.6)

Proof. In fact, from Lemma 2.1, we obtain ψ(t) ≥ 0, φ(t) ≥ 0 for t ∈ [ρ(t1), tm]. So G(t, s) ≥ 0.
On the other hand, from Lemma 2.1, we know that p(t)ψ∇(t) ≥ 0, p(t)φ∇(t) ≤ 0 for

t ∈ [ρ(t1), tm]. This together with p(t) > 0 implies that ψ∇(t) ≥ 0, φ∇(t) ≤ 0 for t ∈ [ρ(t1), tm].
Hence ψ(t) is nondecreasing on [ρ(t1), tm], φ is nonincreasing on [ρ(t1), tm]. So (2.6) holds.

Proposition 2.4. For all t ∈ [ξ1, ξ2], s ∈ [ρ(t1), tm] one has

G (t, s) ≥ σ (t)G (s, s) , (2.7)
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where

σ (t) := min

{
ψ (t)
ψ (tm)

,
φ (t)

φ
(
ρ (t1)

)
}
. (2.8)

Proof. In fact, for t ∈ [ξ1, ξ2], we have

G (t, s)
G (s, s)

≥ min
{
ψ (t)
ψ (s)

,
φ (t)
φ (s)

}
≥ min

{
ψ (t)
ψ (tm)

,
φ (t)

φ
(
ρ (t1)

)
}

=: σ (t) . (2.9)

Therefore (2.7) holds.

It is easy to see that 0 < σ(t) < 1, for t ∈ [ξ1, ξ2]. Thus, there exists γ > 0 such that
G(t, s) ≥ γG(s, s) for t ∈ [ξ1, ξ2], where

γ = min {σ (t) : t ∈ [ξ1, ξ2]} . (2.10)

We remark that Proposition 2.2 implies that there exists τ > 0 such that for t, s ∈ [ξ1, ξ2]

G (t, s) ≥ τ. (2.11)

Set

D :=

∣∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ (ti) d −
m−2∑
i=1

aiφ (ti)

d −
m−2∑
i=1

biψ (ti) −
m−2∑
i=1

biφ (ti)

∣∣∣∣∣∣∣∣∣∣
. (2.12)

Lemma 2.5 (see [6]). Assume that (1.2) and (1.3) hold. If D/= 0 and u ∈ Crd[t1, tm], then the
nonhomogeneous boundary value problem

−
[
p (t)x∇

]Δ
(t) + q (t)x (t) = u (t) , t1 < t < tm,

αx (t1) − βp (t1)x∇ (t1) =
m−1∑
i=2

aix (ti) ,

γx (tm) + δp (tm)x∇ (tm) =
m−1∑
i=2

bix (ti)

(2.13)

has a unique solution x for which the formula

x (t) =
∫ tm

t1

G (t, s)u (s)Δs + Γ (u (t))ψ (t) + Υ (u (t))φ (t) (2.14)



Advances in Difference Equations 7

holds, where

Γ (u (s)) :=
1
D

∣∣∣∣∣∣∣∣∣∣

m−1∑
i=2

ai

∫ tm

t1

G (ti, s)u (s)Δs d −
m−1∑
i=2

aiφ (ti)

m−1∑
i=2

bi

∫ tm

t1

G (ti, s)u (s)Δs −
m−1∑
i=2

biφ (ti)

∣∣∣∣∣∣∣∣∣∣
, (2.15)

Υ (u (s)) :=
1
D

∣∣∣∣∣∣∣∣∣∣

−
m−1∑
i=2

aiψ (ti)
m−1∑
i=2

ai

∫ tm

t1

G (ti, s)u (s)Δs

d −
m−1∑
i=2

biψ (ξi)
m−1∑
i=2

bi

∫ tm

t1

G (ti, s)u (s)Δs

∣∣∣∣∣∣∣∣∣∣
. (2.16)

By similar method, one can define

Γ0
(
f (t, x0 (t))

)
, Γ1

(
f (t, x1 (t))

)
, Γ2

(
f (t, x2 (t))

)
, Γ∗

(
f (t, x∗ (t))

)
,

Υ0
(
f (t, x0 (t))

)
, Υ1

(
f (t, x1 (t))

)
, Υ2

(
f (t, x2 (t))

)
, Υ∗

(
f (t, x∗ (t))

)
.

(2.17)

The following lemma is crucial to prove our main results.

Lemma 2.6 (see[29, 30]). Let Ω1 and Ω2 be two bounded open sets in a real Banach space E, such
that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let the operator A : P ∩ (Ω2 \Ω1) → P be completely continuous, where
P is a cone in E. Suppose that one of the two conditions

(i) Ax/≥x, ∀x ∈ P ∩ ∂Ω1; Ax/≤x, ∀x ∈ P ∩ ∂Ω2, (2.18)

or

(ii) Ax/≤x, ∀x ∈ P ∩ ∂Ω1; Ax/≥x, ∀x ∈ P ∩ ∂Ω2, (2.19)

is satisfied. Then A has at least one fixed point in P ∩ (Ω2 \Ω1).

3. Main Results

In this section, we apply Lemma 2.6 to establish the existence of at least two positive solutions
for BVP (1.1).

The following assumptions will stand throughout this paper.

(H1) There exist υj1 < 1, υj2 > 1 such that

inf
t∈[ξ1,ξ2]

cj1 (t) = τ1 > 0, inf
t∈[ξ1,ξ2]

cj2 (t) = τ2 > 0, j = 1, 2, . . . , n, (3.1)

where υj1, υj2, cj1(t) and cj2(t) are defined in (1.4), respectively.
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(H2) We have

D < 0, d −
m−1∑
i=2

aiφ (ti) > 0, d −
m−1∑
i=2

biψ (ti) > 0 (3.2)

for d and D given in (2.2) and (2.12), respectively.

If (H2) holds, then we can show that Γ(f(t, x)),Υ(f(t, x)) have the following
properties.

Proposition 3.1. If (1.2)–(1.4) and (H2) hold, then from (2.15), for x ∈ C[ρ(t1), tm], one has

∣∣Γ (f (t, x)
)∣∣ ≤ 1

D

∣∣∣∣∣∣∣∣∣∣

m−1∑
i=2

ai d −
m−1∑
i=2

aiφ (ti)

m−1∑
i=2

bi −
m−1∑
i=2

biφ (ti)

∣∣∣∣∣∣∣∣∣∣
M

n∑
j=1

∥∥cj
∥∥
L
‖x‖υj =: Γ̃M

n∑
j=1

∥∥cj
∥∥
L
‖x‖υj , (3.3)

where ‖cj‖L :=
∫ tm
t1
|cj(s)|Δs,M = max(t,s)∈[ρ(t1),tm]×[ρ(t1),tm]G(t, s).

Proof. Let

G =
m−1∑
i=2

ai

∫ tm

t1

G (ti, s) f (s, x (s))Δs, H = d −
m−1∑
i=2

aiφ (ti) ,

F =
m−1∑
i=2

bi

∫ tm

t1

G (ti, s) f (s, x (s))Δs, Q = −
m−1∑
i=2

biφ (ti) .

(3.4)

Then from (1.2)–(1.4) and (H2), we obtain G ≥ 0, F ≥ 0, H > 0, Q ≤ 0. Therefore, GQ ≤
0, −FH ≤ 0.

On the other hand, since

∫ tm

t1

G (ti, s) f (s, x (s))Δs ≤M
n∑
j=1

∥∥cj
∥∥
L
‖x‖υj =: Λ, (3.5)

we have G ≤ ∑m−1
i=2 aiΛ, F ≤ ∑m−1

i=2 biΛ. So one has

m−1∑
i=2

aiΛQ −H
m−1∑
i=2

biΛ ≤ GQ − FH ≤ 0. (3.6)

This and D < 0 imply (3.3) holds.
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Proposition 3.2. If (1.2)–(1.4) and (H2) hold, then from (2.16), x ∈ C[ρ(t1), tm], one has

∣∣Υ (
f (t, x)

)∣∣ ≤ 1
D

∣∣∣∣∣∣∣∣∣∣

−
m−1∑
i=2

aiψ (ti)
m−1∑
i=2

ai

d −
m−1∑
i=2

biψ (ξi)
m−1∑
i=2

bi

∣∣∣∣∣∣∣∣∣∣
M

n∑
j=1

∥∥cj
∥∥
L
‖x‖υj =: Υ̃M

n∑
j=1

‖cj‖L‖x‖υj . (3.7)

Proof. The proof is similar to that of Proposition 3.1. So we omit it.

For the sake of applying fixed point theorem on cone, we construct a cone in E =
C[ρ(t1), tm] by

P =
{
x ∈ E : x (t) ≥ 0, t ∈ [

ρ (t1) , tm
]
, min
t∈[ξ1,ξ2]

x (t) ≥ γ‖x‖
}
, (3.8)

where γ is defined in (2.10).
Define A : P → P by

(Ax) (t) =
∫ tm

t1

G (t, s) f (s, x (s))Δs + Γ
(
f (t, x (t))

)
ψ (t) + Υ

(
f (t, x (t))

)
φ (t) . (3.9)

By (2.14), it is well known that the problem (1.1) has a positive solution x if and only
if x ∈ P is a fixed point of A.

Lemma 3.3. Suppose that (1.2)–(1.4) and (H1)-(H2) hold. Then A(P) ⊂ P and A : P → P is
completely continuous.

Proof. For x ∈ P, by (2.14), we have Ax(t) ≥ 0 and

‖Ax‖ ≤
∫ tm

t1

G (s, s) f (s, x (s))Δs + Γ
(
f (t, x (t))

)
ψ (tm) + Υ

(
f (t, x (t))

)
φ
(
ρ (t1)

)
. (3.10)

On the other hand, for t ∈ [ξ1, ξ2], by (3.9),(3.10) and (2.7), we obtain

min
t∈[ξ1,ξ2]

Ax (t) = min
t∈[ξ1,ξ2]

[∫ tm

t1

G (t, s) f (s, x (s))Δs + Γ
(
f (t, x (t))

)
ψ (t) + Υ

(
f (t, x (t))

)
φ (t)

]

≥σ (t)

[∫ tm

t1

G (s, s) f (s, x (s))Δs+Γ
(
f (t, x (t))

)
ψ (tm)+Υ

(
f (t, x (t))

)
φ
(
ρ (t1)

)]

≥ σ (t) ‖Ax‖ ≥ γ‖Ax‖.
(3.11)

Therefore Ax ∈ P , that is, A(P) ⊂ P .
Next by standard methods and the Ascoli-Arzela theorem one can prove thatA : P →

P is completely continuous. So it is omitted.
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Theorem 3.4. Suppose that (1.2)–(1.4) and (H1)-(H2) hold. Then problem (1.1) has at least two
positive solutions provided

n∑
j=1

∥∥cj
∥∥
L

[
1 + Γ̃ψ (tn) + Υ̃φ (t1)

]
< M−1, (3.12)

where Γ̃, Υ̃ andM are defined in (3.3), (3.7) and in Proposition 3.1, respectively.

Proof. Let A be the cone preserving, completely continuous operator that was defined by
(3.9).

Let Sl = {x ∈ E : ‖x‖ < l}, where l > 0. Choosing r and r satisfy

0 < r < min
{
1, (ττ1(ξ2 − ξ1))1/(1−υj1)γυj1/(1−υj1)

}
,

r > max
{
1, (ττ2(ξ2 − ξ1))−1/(υj2−1)γ (−υj2)/(υj2−1)

}
.

(3.13)

Now we prove that

Ax/≤x, ∀x ∈ P ∩ ∂Sr, (3.14)

Ax/≤x, ∀x ∈ P ∩ ∂Sr. (3.15)

In fact, if there exists x1 ∈ P ∩ ∂Sr such that Ax1 ≤ x1, then for t ∈ [ξ1, ξ2], we have

x1 (t) ≥ Ax1 (t)

=
∫ tm

t1

G (t, s) f (s, x1 (s))Δs + Γ1
(
f (t, x1 (t))

)
ψ (t) + Υ1

(
f (t, x1 (t))

)
φ (t)

≥
∫ tm

t1

G (t, s) f (s, x1 (s))Δs

≥
∫ ξ2

ξ1

G (t, s) cj1 (s) [x1(s)]
υj1Δs

≥ ττ1 (ξ2 − ξ1) γυj1‖x1‖υj1 ,

(3.16)

where Γ1(f(t, x(t))), Υ1(f(t, x(t))) defined by (2.17).
Therefore r ≥ ττ1(ξ2 − ξ1)γυj1rυj1 , that is, r ≥ (ττ1(ξ2 − ξ1))1/(1−υj1 )γυj1/(1−υj1), which is a

contradiction. Hence (3.14) holds.
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Next, turning to (3.15). If there exists x2 ∈ P ∩ ∂Sr such that Ax2 ≤ x2, then for t ∈
[ξ1, ξ2], we have

x2 (t) ≥ Ax2 (t)

=
∫ tm

t1

G (t, s) f (s, x2 (s))Δs + Γ2
(
f (t, x2 (t))

)
ψ (t) + Υ2

(
f (t, x2 (t))

)
φ (t)

≥
∫ tm

t1

G (t, s) f (s, x2 (s))Δs

≥
∫ ξ2

ξ1

G (t, s) cj2 (s) [x2(s)]
υj2Δs

≥ ττ2 (ξ2 − ξ1) γυj2‖x2‖υj2 ,

(3.17)

where Γ2(f(t, x(t))), Υ2(f(t, x(t))) are defined by (2.17).
Therefore r ≥ ττ2(ξ2 − ξ1)γυj2rυj2 , that is, r ≤ (ττ2(ξ2 − ξ1))−1/(υj2−1)γ−υj2/(υj2−1), which is a

contradiction. Hence (3.15) holds.
It remains to prove

Ax/≥x, ∀x ∈ P ∩ ∂S1. (3.18)

In fact, if there exists x0 ∈ P ∩ ∂S1 such that Ax0 ≥ x0, then for t ∈ (t1, tm) ∩ T, we have

1 = ‖x0‖ ≤ ‖Ax0‖ ≤M
n∑
j=1

∥∥cj
∥∥
L
‖x0‖υj

[
1 + Γ̃ψ (tm) + Υ̃φ (t1)

]
(3.19)

that is,

n∑
j=1

∥∥cj
∥∥
L

[
1 + Γ̃ψ (tm) + Υ̃φ (t1)

]
≥M−1, (3.20)

which is a contradiction, where Γ0(f(t, x(t))), Υ0(f(t, x(t))) are defined by (2.17). Hence
(3.18) holds. From Lemma 2.6, (3.14), (3.15) and (3.18) yield that the problem (1.1) has at
least two solutions x∗, x∗∗ and x∗ ∈ P ∩(Sr \S1), x∗∗ ∈ P ∩(S1 \Sr). The proof is complete.
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4. Example

Example 4.1. To illustrate how ourmain results can be used in practice we present an example.
Let T = {0, 1/2, 1/4, . . . , 1/2n , . . . , 1}. Take p(t) ≡ 1, q(t) ≡ 0, α = 1, β = 0, γ = 1, δ =

0, t1 = 0, t2 = 1/2, tm = 1, a2 = 1/2, b2 = 1 in (1.1). Now we consider the following three
point boundary value problem

x∇Δ (t) = f (t, x (t)) , 0 < t < 1,

x (0) =
1
2
x

(
1
2

)
x (1) = x

(
1
2

)
,

(4.1)

where

f (t, x) =
1
10
tx1/2 +

1
20
t2x +

(
t − t2

)
x2. (4.2)

It is not difficult to see that

c1 (t) =
1
10
t, c2 (t) =

1
20
t2, c3 (t) = t − t2, v1 =

1
2
, v2 = 1, v3 = 2. (4.3)

On the other hand, by calculating we have ψ(t) = t, φ(t) = 1 − t, d = 1, d − ∑m−1
i=2 aiφ(ti) =

1 − 1/2 × 1/2 = 3/4 > 0, d −∑m−1
i=2 biψ(ti) = 1 − 1 × 1/2 = 1/2 > 0,

D =

∣∣∣∣∣∣∣

−1
4

3
4

1
2

−1
2

∣∣∣∣∣∣∣
= −1

4
< 0, G (t, s) =

⎧
⎨
⎩
s (1 − t) ,
t (1 − s) ,

(4.4)

andM = maxt,s∈[0,1]G(t, s) = 1/4, Γ̃ = 7/2, Υ̃ = 2.
Let υj1 = 1/2, υj2 = 2, cj1(t) = (1/10)t, cj2(t) = t − t2. Then υj1 < 1, υj2 > 1 and

inf
t∈[ξ1,ξ2]

cj1 (t) =
1
10
ξ1 > 0, inf

t∈[ξ1,ξ2]
cj2 (t) = min {ξ1 (1 − ξ1) , ξ2 (1 − ξ2)} > 0, j = 1, 2, 3. (4.5)

It follows that (H1) and (H2) hold.
Finally, we prove that

n∑
j=1

∥∥cj
∥∥
L

[
1 + Γ̃ψ (tn) + Υ̃φ (t1)

]
< M−1. (4.6)

In fact, from Γ̃ = 7/2, Υ̃ = 2, ψ(1) = 1, φ(0) = 1, we have 1 + Γ̃ψ(tn) + Υ̃φ(t1) = 13/2, and

n∑
j=1

∥∥cj
∥∥
L

[
1 + Γ̃ψ (tn) + Υ̃φ (t1)

]
=

2
5
× 13

2
=

13
5
< 4 =M−1. (4.7)
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Therefore, the conditions of Theorem 3.4 hold. Hence problem (4.1) has at least two positive
solutions.

Remark 4.2. Example 4.1 implies that there is a large number of functions that satisfy the
conditions of Theorem 3.4. In addition, the conditions of Theorem 3.4 are also easy to check.
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