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1. Introduction and Some Preliminaries

Differential equations with piecewise constant argument, which were firstly considered by
Cooke and Wiener [1] and Shah and Wiener [2], combine properties of both differential and
difference equations and usually describe hybrid dynamical systems and have applications
in certain biomedical models in the work of Busenberg and Cooke [3]. Over the years, more
attention has been paid to the existence, uniqueness, and spectrum containment of almost
periodic solutions of this type of equations (see, e.g., [4–12] and reference there in).

If g1(t) and g2(t) are almost periodic, then the module containment property
mod(g1) ⊂ mod(g2) can be characterized in several ways (see [13–16]). For periodic function
this inclusion just means that the minimal period of g1(t) is a multiple of the minimal period
of g2(t). Some properties of basic frequencies (the base of spectrum) were discussed for
almost periodic functions by Cartwright. In [17], Cartwright compared basic frequencies (the
base of spectrum) of almost periodic differential equations (ODE) ẋ = ψ(x, t), x ∈ Rn, with
those of its unique almost periodic solution. For scalar equation, n = 1, Cartwright’s results
in [17] implied that the number of basic frequencies of ẋ = ψ(x, t), x ∈ R, is the same as that
of basic frequencies of its unique solution.



2 Advances in Difference Equations

The spectrum containment of almost periodic solution of equation (x(t) + px(t − 1))′′ =
qx([t]) + f(t) was studied in [9, 10]. Up to now, there have been no papers concerning the
spectrum containment of almost periodic solution of equation

(x(t) + px(t − 1))′′ = qx
(
2
[
t + 1
2

])
+ f(t), (1.1)

where [·] denotes the greatest integer function, p, q are nonzero real constants, |p|/= 1,
q /= − 2(p2 + 1), and f(t) is almost periodic. In this paper, we investigate the existence,
uniqueness, and spectrum containment of almost periodic solutions of (1.1). The main result
obtained in this paper is different from that given in [17] for ordinary differential equations
(ODE, for short). This clearly shows differences between ODE and EPCA. Moreover, it is
also different from that given in [9, 10] for equation (x(t) + px(t − 1))′′ = qx([t]) + f(t).
This is due to the difference between [t] and 2[(t + 1)/2]. As well known, both solutions
of (1.1) and equation (x(t) + px(t − 1))′′ = qx([t]) + f(t) can be constructed by the solutions
of corresponding difference equations. However, noticing the difference between [t] and
2[(t + 1)/2], the solution of difference equation corresponding to the latter can be obtained
directly (see [4]), while the solution {xn} of difference equation corresponding to the former
(i.e., (1.1)) cannot be obtained directly. In fact, {xn} consists of two parts: {x2n} and {x2n+1}.
We will first obtain {x2n} by solving a difference equation and then obtain {x2n+1} from {x2n}.
(Similar technology can be seen in [8].) A detailed account will be given in Section 2.

Now, We give some preliminary notions, definitions, and theorem. Throughout this
paper Z, R, and C denote the sets of integers, real, and complex numbers, respectively. The
following preliminaries can be found in the books, for example, [13–16].

Definition 1.1. (1) A subset P of R is said to be relatively dense in R if there exists a number
p > 0 such that P ∩ [t, t + p]/= ∅ for all t ∈ R.

(2)A continuous function f : R → R is called almost periodic (abbreviated asAP(R))
if the ε-translation set of f

T
(
f, ε
)
=
{
τ ∈ R :

∣∣f(t + τ) − f(t)∣∣ < ε, ∀t ∈ R} (1.2)

is relatively dense for each ε > 0.

Definition 1.2. Let f be a bounded continuous function. If the limit

lim
T→∞

1
2T

∫T
−T
f(t)dt (1.3)

exists, then we call the limit mean of f and denote it byM(f).

If f ∈ AP(R), then the limit

lim
T→∞

1
2T

∫T+s
−T+s

f(t)dt (1.4)

exists uniformly with respect to s ∈ R. Furthermore, the limit is independent of s.
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For any λ ∈ R and f ∈ AP(R) since the function fe−iλ· is in AP(R), the mean exists
for this function. We write

a
(
λ; f
)
=M

(
fe−iλ·

)
, (1.5)

then there exists at most a countable set of λ’s for which a(λ; f)/= 0. The set

Λf =
{
λ : a

(
λ; f
)
/= 0
}

(1.6)

is called the frequency set (or spectrum) of f . It is clear that if f(t) =
∑n

k=1 cke
iλkt, then

a(λ; f) = ck if λ = λk, for some k = 1, . . . , n; and a(λ; f) = 0 if λ/=λk, for any k = 1, . . . , n.
Thus, Λf = {λk, k = 1, . . . , n}.

Members of Λf are called the Fourier exponents of f , and a(λ; f)’s are called the
Fourier coefficients of f . Obviously, Λf is countable. Let Λf = {λk} and Ak = a(λk; f). Thus f
can associate a Fourier series:

f(t) ∼
∞∑
k=1

Ake
iλkt. (1.7)

The Approximation Theorem

Let f ∈ AP(R) andΛf = {λk}. Then for any ε > 0 there exists a sequence {σε} of trigonometric
polynomials

σε(t) =
n(ε)∑
k=1

bk,εe
iλkt (1.8)

such that

‖σε − f‖ ≤ ε, (1.9)

where bk,ε is the product of a(λk; f) and certain positive number (depending on ε and λk)
and limε→ 0bk,ε = a(λk; f).

Definition 1.3. (1) For a sequence {g(n) : n ∈ Z}, define [g(n), g(n+p)] = {g(n), . . . , g(n+p)}
and call it sequence interval with length p ∈ Z. A subset P of Z is said to be relatively dense
in Z if there exists a positive integer p such that P ∩ [n, n + p]/= ∅ for all n ∈ Z.

(2)A bounded sequence g : Z → R is called an almost periodic sequence (abbreviated
asAPS(R)) if the ε-translation set of g

T
(
g, ε
)
=
{
τ ∈ Z :

∣∣g(n + τ) − g(n)∣∣ < ε, ∀n ∈ Z} (1.10)

is relatively dense for each ε > 0.
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For an almost periodic sequence {g(n)}, it follows from the lemma in [13] that

a
(
z; g
)
= lim

N→∞
1
2N

N∑
k=−N

z−kg(k), ∀z ∈ S1 = {z ∈ C : |z| = 1} (1.11)

exists. The set

σb
(
g
)
=
{
z : a

(
z; g
)
/= 0, z ∈ S1

}
(1.12)

is called the Bohr spectrum of {g(n)}. Obviously, for almost periodic sequence g(n) =∑m
k=1 rkz

n
k
, a(z; g) = rk if z = zk, for some k = 1, . . . , m; a(z; g) = 0 if z/= zk, for any k = 1, . . . , m.

So, σb(g) = {zk, k = 1, . . . , m}.

2. The Statement of Main Theorem

We begin this section with a definition of the solution of (1.1).

Definition 2.1. A continuous function x : R → R is called a solution of (1.1) if the following
conditions are satisfied:

(i) x(t) satisfies (1.1) for t ∈ R, t /=n ∈ Z;
(ii) the one-sided second-order derivatives (x(t) + px(t − 1))′′ exist at n, n ∈ Z.

In [8], the authors pointed out that if x(t) is a solution of (1.1), then (x(t) + px(t − 1))′

are continuous at t ∈ R, which guarantees the uniqueness of solution of (1.1) and cannot be
omitted.

To study the spectrum of almost periodic solution of (1.1), we firstly study the solution
of (1.1). Let

f
(1)
n =

∫n+1
n

∫s
n

f(σ)dσ ds, f
(2)
n =

∫n−1
n

∫s
n

f(σ)dσ ds, hn = f (1)
n + f (2)

n . (2.1)

Suppose that x(t) is a solution of (1.1), then (x(t) + px(t − 1))′ exist and are continuous
everywhere on R. By a process of integrating (1.1) two times in t ∈ [2n − 1, 2n + 1) or t ∈
[2n, 2n + 2) as in [7, 8, 18], we can easily get

x(2n + 1) +
(
p − 2 − q)x(2n) + (1 − 2p

)
x(2n − 1) + px(2n − 2) = h2n,

(
1 − q

2

)
x(2n + 2) +

(
p − 2

)
x(2n + 1) +

(
1 − 2p − q

2

)
x(2n) + px(2n − 1) = h2n+1.

(2.2)

These lead to the difference equations

px2n−2 +
(
1 − 2p

)
x2n−1 +

(
p − 2 − q)x2n + x2n+1 = h2n, (2.3)

px2n−1 +
(
1 − 2p − q

2

)
x2n +

(
p − 2

)
x2n+1 +

(
1 − q

2

)
x2n+2 = h2n+1. (2.4)
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Suppose that |p|/= 1. First, multiply the two sides of (2.3) and (2.4) by p and (2p − 1),
respectively, then add the resulting equations to get

x2n+1 =
1

2(p − 1)2
(
ph2n − p

(
p − 2 − q)x2n − p2x2n−2 + (2p − 1

)
h2n+1

)

− 1

2(p − 1)2
((

2p − 1
)(

1 − q

2

)
x2n+2 +

(
2p − 1

)(
1 − 2p − q

2

)
x2n
)
.

(2.5)

Similarly, one gets

x2n−1 =
1

2(p − 1)2
((
2 − p)h2n − (2 − p)(p − 2 − q)x2n − (2 − p)px2n−2)

+
1

2(p − 1)2
(
h2n+1 −

(
1 − q

2

)
x2n+2 −

(
1 − 2p − q

2

)
x2n
)
.

(2.6)

Replacing 2n by (2n + 2) in (2.6) and comparing with (2.5), one gets

(
1 − q

2

)
x2n+4 −

(
p2 − 2pq + 3q + 2

)
x2n+2 +

(
2p2 + 2pq − q

2
+ 1
)
x2n − p2x2n−2

= h2n+3 +
(
2 − p)h2n+2 + (1 − 2p

)
h2n+1 − ph2n.

(2.7)

The corresponding homogeneous equation is

(
1 − q

2

)
x2n+4 −

(
p2 − 2pq + 3q + 2

)
x2n+2 +

(
2p2 + 2pq − q

2
+ 1
)
x2n − p2x2n−2 = 0. (2.8)

We can seek the particular solution as x2n = ξn for this homogeneous difference
equation. At this time, ξ will satisfy the following equation:

p1(ξ) =
(
1 − q

2

)
ξ3 −

(
p2 − 2pq + 3q + 2

)
ξ2 +

(
2p2 + 2pq − q

2
+ 1
)
ξ − p2 = 0. (2.9)

From the analysis above one sees that if x(t) is a solution of (1.1) and |p|/= 1, then one
gets (2.3) and (2.4). In fact, a solution of (1.1) is constructed by the common solution {xn} of
(2.3) and (2.4). Moreover, it is clear that {xn} consists of two parts: {x2n} and {x2n+1}. {x2n}
can be obtained by solving (2.7), and {x2n+1} can be obtained by substituting {x2n} into (2.5)
or (2.6). Without loss of generality, we consider (2.5) only. These will be shown in Lemmas
2.5 and 2.6.

Lemma 2.2. If f ∈ AP(R), then {f (i)
n }, {hn} ∈ APS(R), i = 1, 2.

Lemma 2.3. Suppose that |p|/= 1 and q /= −2(p2 +1), then the roots of polynomial p1(ξ) are of moduli
different from 1.
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Lemma 2.4. Suppose thatX is a Banach space,L(X) denotes the set of bounded linear operators from
X to X, A ∈ L(X), and ‖A‖ < 1, then Id −A is bounded invertible and

(Id −A)−1 =
∞∑
n=0

An,

∥∥∥(I −A)−1
∥∥∥ ≤ 1

(1 − ‖A‖) ,
(2.10)

where A0 = Id, and Id is an identical operator.

The proofs of Lemmas 2.2, 2.3, and 2.4 are elementary, and we omit the details.

Lemma 2.5. Suppose that |p|/= 1 and q /= − 2(p2 + 1), then (2.7) has a unique solution {x2n} ∈
APS(R).

Proof. As the proof of Theorem 9 in [8], define A : X → X by A{x2n} = {x2n+2}, where X
is the Banach space consisting of all bounded sequences {xn} in C with ‖{xn}‖ = supn∈Z|xn|.
It follows from Lemmas 2.2–2.4 that (2.7) has a unique solution {x2n} = P(A)−1{h2n+5 + (2 −
p)h2n+4 + (1 − 2p)h2n+3 − ph2n+2} ∈ APS(R).

Substituting x2n into (2.5), we obtain x2n+1. Easily, we can get {x2n+1} ∈ APS(R).
Consequently, the common solution {xn} of (2.3) and (2.4) can be obtained. Furthermore,
we have that {xn} ∈ APS(R) is unique.

Lemma 2.6. Suppose that |p|/= 1 and q /= − 2(p2 + 1), f ∈ AP(R). Let {xn} ∈ APS(R) be the
common solution of (2.3) and (2.4). Then (1.1) has a unique solution x(t) ∈ AP(R) such that
x(n) = xn, n ∈ Z. In this case the solution x(t) is given for t ∈ R by

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
k=0

(−p)kω(t − k), ∣∣p∣∣ < 1,

−
∞∑
k=1

(−p)−kω(t + k), ∣∣p∣∣ > 1,
(2.11)

where

ω(t) = x2n + px2n−1 + y2n(t − 2n) +
qx2n(t − 2n)2

2
+
∫ t
2n

∫ s
2n
f(σ)dσ ds,

y2n = x2n+1 +
(
p − 1 − q

2

)
x2n − px2n−1 − f (1)

2n ,

(2.12)

for t ∈ [2n − 1, 2n + 1), n ∈ Z; {y2n} ∈ APS(R), ω(t) ∈ AP(R).

The proof is easy, we omit the details. Since the almost periodic solution x(t) of (1.1)
is constructed by the common almost periodic solution of (2.3) and (2.4), easily, we have that
(x(t) + px(t − 1))′ are continuous at t ∈ R. It must be pointed out that in many works only one
of (2.3) and (2.4) is considered while seeking the unique almost periodic solution of (1.1), and
it is not true for the continuity of (x(t) + px(t − 1))′ on R, consequently, it is not true for the
uniqueness (see [8]).
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The expressions of x2n, x2n+1, y2n, ω(t), and x(t) are important in the process of
studying the spectrum containment of the almost periodic solution of (1.1). Before giving
the main theorem, we list the following assumptions which will be used later.

(H1) |p|/= 1, q /= − 2(p2 + 1).

(H2) kπ /∈Λf , for all k ∈ Z.

(H3) If λ ∈ Λf , then λ + kπ /∈Λf , 0/= k ∈ Z.

Our result can be formulated as follows.

Main Theorem

Let f ∈ AP(R) and (H1) be satisfied. Then (1.1) has a unique almost periodic solution x(t)
and Λx ⊂ Λf + {kπ : k ∈ Z}. Additionally, if (H2) and (H3) are also satisfied, then Λf + {kπ :
k ∈ Z} ⊂ Λx, that is, the following spectrum relation Λx = Λf + {kπ : k ∈ Z} holds, where the
sum of sets A and B is defined as A + B = {a + b : a ∈ A, b ∈ B}.

We postpone the proof of this theorem to the next section.

3. The Proof of Main Theorem

To show the Main Theorem, we need some more lemmas.

Lemma 3.1. Let f ∈ AP(R), then σb(f
(i)
2n ), σb(f

(i)
2n+1), σb(h2n), σb(h2n+1) ⊂ ei2Λf , i = 1, 2. If (H3) is

satisfied, then σb(f
(i)
2n ) = σb(f

(i)
2n+1) = e

i2Λf , i = 1, 2. Furthermore, if (H3) and (H2) are both satisfied,
then σb(h2n) = σb(h2n+1) = ei2Λf .

Proof. Since f ∈ AP(R), by Lemma 2.2 we know that {f (i)
2n }, {f

(i)
2n+1}, {h2n}, {h2n+1} ∈ APS(R),

i = 1, 2. It follows from The Approximation Theorem that, for any m > 0, m ∈ Z, there exists
Pm(t) =

∑n(m)
k=1 bk,me

iλkt, λk ∈ Λf such that ‖Pm − f‖ ≤ 1/m,where limm→∞bk,m = a(λk; f), and
we can assume that bk,meiλkt and bk,me

−iλkt appear together in the trigonometric polynomial
Pm(t). Define

Q
(1)
m,2n =

∫2n+1

2n

∫s
2n
Pm(σ)dσ ds =

n(m)∑
k=1

c
(1)
k,me

i2λkn,

Q
(2)
m,2n =

∫2n−1

2n

∫s
2n
Pm(σ)dσ ds =

n(m)∑
k=1

c
(2)
k,m
ei2λkn,

Q
(1)
m,2n+1 =

∫2n+2

2n+1

∫s
2n+1

Pm(σ)dσ ds =
n(m)∑
k=1

c
(1)
k,me

iλkei2λkn,

Q
(2)
m,2n+1 =

∫2n

2n+1

∫s
2n+1

Pm(σ)dσ ds =
n(m)∑
k=1

c
(2)
k,m
eiλkei2λkn,

(3.1)
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where

c
(1)
k,m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bk,m
2
, λk = 0,

−bk,m
(
eiλk − 1 − iλk

)
λ2
k

, λk /= 0,
c
(2)
k,m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bk,m
2
, λk = 0,

−bk,m
(
e−iλk − 1 + iλk

)
λ2
k

, λk /= 0.

(3.2)

Obviously, σb(Q
(i)
m,2n), σb(Q

(i)
m,2n+1) ⊂ ei2Λf , i = 1, 2, for all m ∈ Z. For any z ∈ S1, a(z; f (i)

2n ) =

limm→∞a(z;Q
(i)
m,2n), a(z; f

(i)
2n+1) = limm→∞a(z;Q

(i)
m,2n+1), thus, we have σb(f

(i)
2n ), σb(f

(i)
2n+1) ⊂

ei2Λf , i = 1, 2.
Since h2n = f (1)

2n + f (2)
2n and h2n+1 = f

(1)
2n+1 + f

(2)
2n+1, for all n ∈ Z. For all z ∈ S1, we have

a(z;h2n) = a
(
z; f (1)

2n

)
+ a
(
z; f (2)

2n

)
, (3.3)

a(z;h2n+1) = a
(
z; f (1)

2n+1

)
+ a
(
z; f (2)

2n+1

)
. (3.4)

Thus, σb(f
(i)
2n ) ⊂ ei2Λf and σb(f

(i)
2n+1) ⊂ ei2Λf imply σb(h2n) ⊂ ei2Λf and σb(h2n+1) ⊂ ei2Λf ,

respectively, i = 1, 2.
If (H3) is satisfied, then for any λj ∈ Λf , we have

a
(
ei2λj ; f (1)

2n

)
= lim

m→∞
a
(
ei2λj ;Q(1)

m,2n

)
= lim

m→∞
c
(1)
j,m

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a
(
λj ; f

)
2

, λj = 0,

−a(λj ; f)(eiλj − 1 − iλj
)

λ2j
, λj /= 0,

a
(
ei2λj ; f (2)

2n

)
= lim

m→∞
a
(
ei2λj ;Q(2)

m,2n

)
= lim

m→∞
c
(2)
j,m

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a
(
λj ; f

)
2

, λj = 0,

−a(λj ; f)(e−iλj − 1 + iλj
)

λ2j
, λj /= 0,

a
(
ei2λj ; f (1)

2n+1

)
= lim

m→∞
a
(
ei2λj ;Q(1)

m,2n+1

)
= lim

m→∞
eiλj c

(1)
j,m,

a
(
ei2λj ; f (2)

2n+1

)
= lim

m→∞
a
(
ei2λj ;Q(2)

m,2n+1

)
= lim

m→∞
eiλj c

(2)
j,m.

(3.5)

Easily, we have a(ei2λj ; f (i)
2n )/= 0 and a(ei2λj ; f (i)

2n+1)/= 0, that is, ei2λj ⊂ σb(f
(i)
2n ), e

i2λj ⊂ σb(f
(i)
2n+1),

i = 1, 2. By the arbitrariness of λj , we get ei2Λf ⊂ σb(f
(i)
2n ) and ei2Λf ⊂ σb(f

(i)
2n+1). So, e

i2Λf =
σb(f

(i)
2n ) = σb(f

(i)
2n+1), i = 1, 2.
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If (H3) and (H2) are both satisfied, suppose that there exists z0 = ei2λj ∈ ei2Λf such that
a(z0;h2n) = 0. (H2) implies eiλj /= ± 1. Moreover, since (H3) holds, we have a(z0; f

(i)
2n )/= 0, i =

1, 2. a(z0;h2n) = a(z0; f
(1)
2n ) + a(z0; f

(2)
2n ) leads to e

iλj = 1, which contradicts with eiλj /= ± 1. So,
ei2Λf ⊂ σb(h2n). Noticing that σb(h2n) ⊂ ei2Λf , we have ei2Λf = σb(h2n). Similarly, we can get
ei2Λf = σb(h2n+1). The proof is completed.

Lemma 3.2. Suppose that (H1) is satisfied, then σb(x2n) ⊂ ei2Λf . If (H1), (H2), and (H3) are all
satisfied, then σb(x2n) = ei2Λf , where {x2n} is the unique almost periodic sequence solution of (2.7).

Proof. Since (H1) holds, from Lemma 2.5 we know {x2n} = p1(A)−1{gn+1} ∈ APS(R), where
gn = h2n+3 + (2 − p)h2n+2 + (1 − 2p)h2n+1 − ph2n, for all n ∈ Z. For any z ∈ S1, it follows from
Lemma 2.3 that p1(z)/= 0. Noticing the expressions of {x2n} and gn, we obtain

za
(
z; gn

)
= p1(z)a(z;x2n), (3.6)

a
(
z; gn

)
=
(
z + 1 − 2p

)
a(z;h2n+1) +

(
2z − pz − p)a(z;h2n). (3.7)

Those equalities and Lemma 3.1 imply that σb(x2n) = σb(gn) and σb(x2n) ⊂ ei2Λf , when (H1)
is satisfied. If (H1), (H2), and (H3) are all satisfied, we only need to prove ei2Λf ⊂ σb(gn).
Suppose that there exists z0 = ei2λj ∈ ei2Λf , obviously, eiλj /= ± 1, such that a(z0; gn) = 0.
From Lemma 3.1, a(z0;h2n)/= 0, a(z0;h2n+1)/= 0. Thus, 0 = (z0+1−2p)a(z0;h2n+1)+(2z0−pz0−
p)a(z0;h2n), that is, (ei2λj+1−2p)eiλj = pei2λj−2ei2λj+p, which leads to eiλj = p. This contradicts
with (H1). Thus, ei2Λf ⊂ σb(gn), that is, ei2Λf ⊂ σb(x2n). Noticing that σb(x2n) ⊂ ei2Λf , so,
ei2Λf = σb(x2n). The proof is completed.

As mentioned above, the common almost periodic sequence solution {xn} of (2.3) and
(2.4) consists of two parts: {x2n} and {x2n+1}, where {x2n} ∈ APS(R) is the unique solution of
(2.7), and {x2n+1} is obtained by substituting {x2n} into (2.5). Obviously, {x2n+1} ∈ APS(R).
In the following, we give the spectrum containment of {x2n+1}.

Lemma 3.3. Suppose that (H1) is satisfied, then σb(x2n+1) ⊂ ei2Λf . If (H1), (H2), and (H3) are all
satisfied, then σb(x2n+1) = ei2Λf .

Proof. Since {x2n}, {h2n}, {h2n+1} ∈ APS(R), {x2n+1} ∈ APS(R). Noticing the expression of
x2n+1, for any z ∈ S1, we have

2
(
p − 1

)2
a(z, x2n+1) = pa(z, h2n) +

(
2p − 1

)
a(z, h2n+1) − z−1p2(z)a(z, x2n), (3.8)

where p2(z) = (2p − 1)(1 − q/2)z2 + (−3p2 + 2p − 1 − 2pq + q/2)z + p2. If (H1) is satisfied, it
follows from Lemmas 3.1 and 3.2 that σb(x2n+1) ⊂ ei2Λf .

If (H1), (H2), and (H3) are all satisfied, supposing there exists z0 = ei2λj ∈ ei2Λf ,
obviously, eiλj /= ± 1, such that a(z0;x2n+1) = 0, that is, z−10 p2(z0)a(z0, x2n) = pa(z0, h2n) +
(2p−1)a(z0, h2n+1).Noticing (3.3)–(3.7), this equality is equivalent to (p2(ei2λj )(ei2λj +1−2p)−
p1(ei2λj )(2p − 1))eiλj + p2(ei2λj )(2ei2λj − pei2λj − p) − pp1(ei2λj ) = 0, that is, (q − 2)ei3λj + (2p − 4 −
2q)ei2λj+(4p+q−2)eiλj+2p = 0. Considering equation (q−2)x3+(2p−4−2q)x2+(4p+q−2)x+2p =
0, its roots are x1, x3, and x2, obviously, xi /= ± 1, i = 1, 2, 3. We claim that |xi|/= 1, i = 1, 2, 3, that
is, this equation has no imaginary root. Otherwise, suppose that |x1| = 1 and x3 = x1, then by
the relationship between roots and coefficient of three-order equation, we know q = 0, which
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leads to a contradiction. Thus (q − 2)ei3λj + (2p − 4 − 2q)ei2λj + (4p + q − 2)eiλj + 2p /= 0; this
contradiction shows ei2Λf ⊂ σb(x2n+1). Noticing that σb(x2n+1) ⊂ ei2Λf , thus, σb(x2n+1) = ei2Λf .
The proof is completed.

Lemma 3.4. Suppose that (H1) is satisfied, then σb(y2n) ⊂ ei2Λf . If (H1), (H2), and (H3) are all
satisfied, then σb(y2n) = ei2Λf , where {y2n} is defined in Lemma 2.6.

Proof. From Lemma 2.6, we have y2n = x2n+1 + (p − 1 − q/2)x2n − px2n−1 − f (1)
2n , for all n ∈ Z.

For any z ∈ S1

a
(
z, y2n

)
=
(
1 − pz−1

)
a(z, x2n+1) +

(
p − 1 − q

2

)
a(z, x2n) − a

(
z, f

(1)
2n

)
. (3.9)

Since (H1) holds, it follows from Lemmas 3.1–3.3 that we have σb(y2n) ⊂ ei2Λf .
If (H1), (H2), and (H3) are all satisfied, supposing there exists z0 = ei2λj ∈ ei2Λf such

that a(z0; y2n) = 0, it follows from (H2) that eiλj /= ± 1. Notice that (3.3)–(3.8), a(z0;y2n) = 0
is equivalent to p(z0−p)a(z0, h2n)+(z0−p)(2p−1)a(z0, h2n+1)−2(p − 1)2z0a(z0, f

(1)
2n )+((p−1−

q/2)2(p − 1)2z20 − (z0 − p)p2(z0))p1(z0)−1((z0 + 1 − 2p)a(z0, h2n+1) + (2z0 − pz0 − p)a(z0, h2n)) =
0. This equality is equivalent to eiλj − 1 − iλj = (eiλj + e−iλj − 2)p1(ei2λj )

−1((1 − q/2)ei6λj +
(1 + q/2)ei5λj + (pq − p2 − 1 − 3q/2)ei4λj − (p2 + 1 + q/2)ei3λj + (p2 + pq)ei2λj + p2eiλj ). Since
λj ∈ R, that is, λj = λj , this leads to e−i5λj (eiλj − 1)2(eiλj + 1)2(ei2λj + 1)(−pei4λj + (p2 + 1 − 2p −
q/2)ei3λj + (2p2 − 2p + 2 + q)ei2λj + (p2 + 1 − 2p − q/2)eiλj − p) = 0. We firstly claim that the
equation −px4 + (p2 + 1 − 2p − q/2)x3 + (2p2 − 2p + 2 + q)x2 + (p2 + 1 − 2p − q/2)x − p = 0
has no imaginary root, that is, equations x2 + (a/2 −

√
a2/4 − b + 2)x + 1 − √

1 − a = 0 and
x2 + (a/2 +

√
a2/4 − b + 2)x + 1 +

√
1 − a = 0 both have no imaginary roots, where a = (q/2 −

1−p2+2p)/p, b = (2p−q−2−2p2)/p. If these two equations have imaginary roots, then a = 1,
b = 4− 4(p+ 1/p). Since p /= 0, |p|/= 1, then b < −4 or b > 12. If the first equation has imaginary
roots, then −4 < b ≤ 9/4, which contradicts with b < −4 or b > 12. If the second equation has
imaginary roots, then 0 < b ≤ 9/4, which also contradicts with b < −4 or b > 12. The claim
follows. Thus −pei4λj +(p2+1−2p−q/2)ei3λj +(2p2−2p+2+q)ei2λj +(p2+1−2p−q/2)eiλj −p /= 0,
and eiλj = ±i. Substituting eiλj = ±i into eiλj − 1− iλj = (eiλj + e−iλj − 2)p1(ei2λj )

−1((1−q/2)ei6λj +
(1+q/2)ei5λj+(pq−p2−1−3q/2)ei4λj−(p2+1+q/2)ei3λj+(p2+pq)ei2λj+p2eiλj ), we get λj = 0. This
is impossible. Thus, for any z0 = ei2λj ∈ ei2Λf , we have a(z0;y2n)/= 0, that is, ei2Λf ⊂ σb(y2n).
Noticing that σb(y2n) ⊂ ei2Λf , we have σb(y2n) = ei2Λf . The proof has finished.

In Lemma 2.6, we have given the expression of the almost periodic solution of (1.1)
explicitly by a known function ω. This brings more convenience to study the spectrum
containment of almost periodic solution of (1.1). Now, we are in the position to show the
Main Theorem.

The proof of Main Theorem

Since (H1) is satisfied, by Lemma 2.6, (1.1) has a unique almost periodic solution x(t)
satisfying x(t)+px(t−1) = ω(t). Thus, for any λ ∈ R,we have a(λ;ω(t)) = (1+pe−iλ)a(λ;x(t)).
Since (H1) holds, then Λx = Λω. We only need to prove Λω ⊂ Λf + {kπ, k ∈ Z}when (H1) is
satisfied, and Λf + {kπ, k ∈ Z} = Λω when (H1)–(H3) are all satisfied.
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When (H1) is satisfied, we prove Λω ⊂ Λf + {kπ, k ∈ Z} firstly. For any
λ/∈Λf + {kπ, k ∈ Z}, it follows from Lemmas 3.1–3.4 that ei2λ /∈ σb(x2n), ei2λ /∈ σb(x2n+1) and
ei2λ /∈ σb(y2n), that is, a(ei2λ;x2n) = a(ei2λ;y2n) = a(ei2λ;x2n+1) = 0. From the expression of ω(t)
given in Lemma 2.6, we know

a(λ;ω(t)) = lim
N→∞

1
4N

N∑
j=−N

∫2j+1

2j−1

∫ t
2j

∫s
2j
f(σ)e−iλtdσ ds dt. (3.10)

As mentioned in Lemma 3.1, for any m > 0, m ∈ Z, there exists Pm(t) =
∑n(m)

k=1 bk,me
iλkt, λk ∈

Λf such that Pm(t) → f(t), asm → ∞. By simple calculation, we have

0 = lim
N→∞

1
4N

N∑
j=−N

∫2j+1

2j−1

∫ t
2j

∫ s
2j
Pm(σ)e−iλtdσ ds dt, ∀m > 0, m ∈ Z. (3.11)

Therefore, a(λ;ω(t)) = 0, that is, λ/∈Λω, which implies Λω ⊂ Λf + {kπ, k ∈ Z}.
Additionally, if (H2) and (H3) are also satisfied, to show the equalityΛω = Λf+{kπ, k ∈

Z}, we only need to show the inverse inclusion, that is, Λf + {kπ, k ∈ Z} ⊂ Λω. For any

m > 0, m, n ∈ Z, define ĥm,2n = Q
(1)
m,2n + Q

(2)
m,2n, ĥm,2n+1 = Q

(1)
m,2n+1 + Q

(2)
m,2n+1, {x̂m,2n} =

p1(A)−1{ĝm,n+1}, where ĝm,n = ĥm,2n+3 + (2 − p)ĥm,2n+2 + (1 − 2p)ĥm,2n+1 − pĥm,2n, and define

ŷm,2n = x̂m,2n+1 +
(
p − 1 − q

2

)
x̂m,2n − px̂m,2n−1 −Q(1)

m,2n,

2(p − 1)2x̂m,2n+1 = pĥm,2n − p
(
p − 2 − q)x̂m,2n − p2x̂m,2n−2 + (2p − 1

)
ĥm,2n+1

−(2p − 1
)(

1 − q

2

)
x̂m,2n+2 −

(
2p − 1

)(
1 − 2p − q

2

)
x̂m,2n,

ω̂m(t) = x̂m,2n + px̂m,2n−1 + ŷm,2n(t − 2n) +
qx̂m,2n(t − 2n)2

2
+
∫ t
2n

∫s
2n
Pm(σ)dσ ds,

(3.12)

t ∈ [2n − 1, 2n + 1), then, {ĥm, 2n}, {ĥm,2n+1}, {ĝm,n}, {x̂m,2n}, {x̂m,2n+1}, {ŷm,2n} ∈
APS(R), ω̂m(t) ∈ AP(R), and as m → ∞, {ĥm,2n} → {h2n}, {ĥm,2n+1} → {h2n+1}, {ĝm,n} →
{gn}, {x̂m,2n} → {x2n}, {x̂m,2n+1} → {x2n+1}, {ŷm, 2n} → {y2n} in APS(R), ωm(t) → ω(t)
in AP(R), which implies for any λ ∈ R, a(λ;ωm(t)) → a(λ;ω(t)) as m → ∞, where
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Q
(i)
m,2n,Q

(i)
m,2n+1, and Pm(t) are as in Lemma 3.1, i = 1, 2. Similarly as above, for all z ∈ S1,

we can get

a
(
z; ĥm,2n

)
= a
(
z;Q(1)

m,2n

)
+ a
(
z;Q(2)

m,2n

)
,

a
(
z; ĥm,2n+1

)
= a
(
z;Q(1)

m,2n+1

)
+ a
(
z;Q(2)

m,2n+1

)
,

a
(
z, ŷm,2n

)
=
(
1 − pz−1

)
a(z, x̂m,2n+1) +

(
p − 1 − q

2

)
a(z, x̂m,2n) − a

(
z,Q

(1)
m,2n

)
,

2(p − 1)2a(z, x̂m,2n+1) = pa
(
z, ĥm,2n

)
+
(
2p − 1

)
a
(
z, ĥm,2n+1

)
− z−1p2(z)a(z, x̂m,2n),

a
(
z; ĝm,n

)
= z−1p1(z)a(z; x̂m,2n) =

(
z + 1 − 2p

)
a
(
z; ĥm,2n+1

)
+
(
2z − pz − p)a(z; ĥm,2n

)
.

(3.13)

We claim: Λf ⊂ Λω. Suppose that the claim is false, then there would exist λj ∈ Λf such that
λj /∈Λω. Noticing (H2) and (H3), an elementary calculation leads to

2a
(
λj ;ωm

)
=

(
2λ2j + qλ

2
j − 2q

)(
eiλj − e−iλj) + i2qλj(eiλj + e−iλj)

2iλ3j
a
(
ei2λj ; x̂m,2n

)

+
pe−2iλj

(
eiλj − e−iλj)
iλj

a
(
ei2λj ; x̂m,2n+1

)
+
iλj
(
eiλj + e−iλj

)
λ2j

a
(
ei2λj ; ŷm,2n

)

+
e−iλj − eiλj

λ2j
a
(
ei2λj ; ŷm,2n

)
+
−2iλj + 2

(
eiλj − e−iλj) − iλj(eiλj + e−iλj)

iλ3j
bj,m.

(3.14)

From the above equality, we have −λ2j p1(ei2λj )2a(λj ;ωm) = bj,mc1, where, c1 = 2p1(ei2λj ) −
q(eiλj − 1)3(eiλj + 1)3(eiλj − p)/iλ3j . So, −λ2j p1(ei2λj )2a(λj ;ω(t)) = a(λj ; f)c1. Since λj /∈Λω,

a(λj ;ω) = 0, we have c1 = 0, which is equivalent to 2iλ3j = q(eiλj − 1)3(eiλj + 1)3(eiλj −
p)/p1(ei2λj ). Since λj ∈ R, that is, λj = λj , this leads to p(eiλj − 1)3(eiλj +1)(pei4λj +ei3λj (q/2−1−
p2+2p)+ei2λj (−q−2−2p2+2p)+eiλj (q/2−1−p2+2p)+p) = 0. Noticing λj ∈ Λf , it follows from

(H2) that eiλj /= ±1, that is, (eiλj − 1)3(eiλj +1)/= 0. From Lemma 3.4, we know that the equation
px4 +x3(q/2−1−p2 +2p)+x2(−q−2−2p2 +2p)+x(q/2−1−p2 +2p)+p = 0 has no imaginary
root. Thus pei4λj + ei3λj (q/2−1−p2 +2p)+ ei2λj (−q−2−2p2 +2p)+ eiλj (q/2−1−p2 +2p)+p /= 0,
which leads to a contradiction. The claim follows.
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Now we are able to prove Λf + {kπ, k ∈ Z} ⊂ Λω. For any λj0 ∈ Λf let λj = λj0 +
kπ, 0/= k ∈ Z. Noticing (H2) and (H3), eiλj0 /= ± 1, eiλj0 /= p, and we have

2a
(
λj ;ωm

)
=

(
2λ2j + qλ

2
j − 2q

)(
eiλj − e−iλj) + i2qλj(eiλj + e−iλj)

2iλ3j
a
(
ei2λj ; x̂m,2n

)

+
pe−2iλj

(
eiλj − e−iλj)
iλj

a
(
ei2λj ; x̂m,2n+1

)
+
iλj
(
eiλj + e−iλj

)
λ2j

a
(
ei2λj ; ŷm,2n

)

+
e−iλj − eiλj

λ2j
a
(
ei2λj ; ŷm,2n

)
+

(
e−iλj − eiλj
−iλjλ2j0

− iλj
(
eiλj + e−iλj

)
+ e−iλj − eiλj

iλ2j λj0

)
bj0,m.

(3.15)

The above equality is equivalent to −λ2j0p1(ei2λj )2a(λj ;ωm(t)) = (−1)k(−q(eiλj0 − 1)
3
(eiλj0 +

1)3(eiλj0 − p)/iλ3j )bj0,m. So, −λ2j0p1(ei2λj )2a(λj ;ω(t)) = (−1)k(−q(eiλj0 − 1)
3
(eiλj0 + 1)

3
(eiλj0 −

p)/iλ3j )a(λj0 ; f)/= 0, which implies that λj ∈ Λω, that is, Λf + {kπ, k /= 0} ⊂ Λω. From the
claim above, we get Λf + {kπ, k ∈ Z} ⊂ Λω. This completes the proof.
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