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This paper is concerned with the existence and nonexistence of positive solutions of the p-Laplacian
functional dynamic equation on a time scale, [φp(x�(t))]∇ + λa(t)f(x(t), x(u(t))) = 0, t ∈ (0, T),
x0(t) = ψ(t), t ∈ [−τ, 0], x(0) − B0(x�(0)) = 0, x�(T) = 0. We show that there exists a λ∗ > 0
such that the above boundary value problem has at least two, one, and no positive solutions for
0 < λ < λ∗, λ = λ∗ and λ > λ∗, respectively.
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1. Introduction

Let T be a closed nonempty subset of R, and let T have the subspace topology inherited from
the Euclidean topology on R. In some of the current literature, T is called a time scale (please
see [1, 2]). For notation, we will use the convention that, for each interval J of R, J will denote
time-scale interval, that is, J := J ∩ T.

In this paper, let T be a time scale such that −τ, 0, T ∈ T. We are concerned with the
existence of positive solutions of the p-Laplacian dynamic equation on a time scale

[
φp

(
xΔ(t)

)]∇ + λa(t)f
(
x(t), x

(
μ(t)

))
= 0, t ∈ (0, T),

x0(t) = ψ(t), t ∈ [−τ, 0], x(0) − B0
(
xΔ(0)

)
= 0, xΔ(T) = 0,

(1.1)

where φp(u) is the p-Laplacian operator, that is, φp(u) = |u|p−2u, p > 1, (φp)
−1(u) = φq(u),

where 1/p + 1/q = 1.

(H1) The function f : (R+)2→R
+ is continuous and nondecreasing about each element;

f(0, 0) ≥ c > 0.
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(H2) The function a : T→R
+ is left dense continuous (i.e., a ∈ Cld(T,R+)) and does not

vanish identically on any closed subinterval of [0, T]. Here Cld(T,R+) denotes the set
of all left dense continuous functions from T to R

+.

(H3) ψ : [−τ, 0]→R
+ is continuous and τ > 0.

(H4) μ : [0, T]→[−τ, T] is continuous, μ(t) ≤ t for all t.
(H5) B0 : R→R is continuous and nondecreasing; B0(ks) = kB0(s), k ∈ R

+ and satisfies that
there exist β ≥ δ > 0 such that

δs ≤ B0(s) ≤ βs for s ∈ R
+. (1.2)

(H6) limx→∞ f(x, ψ(s))/xp−1 = ∞ uniformly in s ∈ [−τ, 0].
p-Laplacian problems with two-, three-, m-point boundary conditions for ordinary

differential equations and finite difference equations have been studied extensively, for
example, see [1–4] and references therein. However, there are not many concerning the p-
Laplacian problems on time scales, especially for p-Laplacian functional dynamic equations
on time scales.

The motivations for the present work stems from many recent investigations in [5–10]
and references therein. Especially, Kaufmann and Raffoul [7] considered a nonlinear functional
dynamic equation on a time scale and obtained sufficient conditions for the existence of
positive solutions, Li and Liu [10] studied the eigenvalue problem for second-order nonlinear
dynamic equations on time scales. In this paper, our results show that the number of positive
solutions of (1.1) is determined by the parameter λ. That is to say, we prove that there exists a
λ∗ > 0 such that (1.1) has at least two, one, and no positive solutions for 0 < λ < λ∗, λ = λ∗ and
λ > λ∗, respectively.

For convenience, we list the following well-known definitions which can be found in
[11–13] and the references therein.

Definition 1.1. For t < supT and r > infT, define the forward jump operator σ and the
backward jump operator ρ, respectively, as

σ(t) = inf{τ ∈ T | τ > t} ∈ T, ρ(r) = sup{τ ∈ T | τ < r} ∈ T ∀t, r ∈ T. (1.3)

If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is said to be left scattered. If σ(t) = t, t
is said to be right dense, and if ρ(r) = r, r is said to be left dense. If T has a right-scattered
minimumm, define Tκ = T − {m}; otherwise set Tκ = T. If T has a left-scattered maximumM,
define T

κ = T − {M}; otherwise set T
κ = T.

Definition 1.2. For x : T→R and t ∈ T
κ, define the deltaderivative of x(t), xΔ(t), to be the

number (when it exists), with the property that, for any ε > 0, there is a neighborhood U of t
such that

∣∣[x
(
σ(t)

) − x(s)] − xΔ(t)
[
σ(t) − s]∣∣ < ε∣∣σ(t) − s∣∣ ∀s ∈ U. (1.4)

For x : T→R and t ∈ Tκ, define the nabla derivative of x(t), x∇(t), to be the number (when it
exists), with the property that, for any ε > 0, there is a neighborhood V of t such that

∣∣[x
(
ρ(t)

) − x(s)] − x∇(t)
[
ρ(t) − s]∣∣ < ε∣∣ρ(t) − s∣∣ ∀s ∈ V. (1.5)

If T = R, then xΔ(t) = x∇(t) = x′(t). If T = Z, then xΔ(t) = x(t + 1) − x(t) is forward
difference operator while x∇(t) = x(t) − x(t − 1) is the backward difference operator.
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Definition 1.3. If FΔ(t) = f(t), then define the delta integral by
∫ t
af(s)Δs = F(t)−F(a). IfΦ∇(t) =

f(t), then define the nabla integral by
∫ t
af(s)∇s = Φ(t) −Φ(a).

The following lemma is crucial to prove our main results.

Lemma 1.4 ([14]). Let E be a Banach space and let P be a cone in E. For r > 0, define Pr = {x ∈ P :
||x|| < r}. Assume that F : Pr→P is completely continuous such that Fx /=x for x ∈ ∂Pr = {x ∈ P :
||x|| = r}.

(i) If ||Fx|| ≥ ||x|| for x ∈ ∂Pr, then i(F, Pr, P) = 0.

(ii) If ||Fx|| ≤ ||x|| for x ∈ ∂Pr, then i(F, Pr, P) = 1.

2. Positive solutions

We note that x(t) is a solution of (1.1) if and only if

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0

(
φq

(∫T

0
λa(r)f

(
x(r), x

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λa(r)f
(
x(r), x

(
μ(r)

))∇r
)
Δs, t ∈ [0, T],

ψ(t), t ∈ [−τ, 0].

(2.1)

Let E = Cld([0, T],R) be endowed with the norm ||x|| = maxt∈[0,T]|x(t)| and define the
cone of E by

P =
{
x ∈ E : x(t) ≥ δ

T + β
‖x‖ for t ∈ [0, T]

}
. (2.2)

Clearly, E is a Banach space with the norm ‖x‖. For each x ∈ E, extend x(t) to [−τ, T]
with x(t) = ψ(t) for t ∈ [−τ, 0].

Define Fλ : P→E as

Fλx(t) = B0

(
φq

(∫T

0
λa(r)f

(
x(r), x

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λa(r)f
(
x(r), x

(
μ(r)

))∇r
)
Δs, t ∈ [0, T].

(2.3)

We seek a fixed point, x1, of Fλ in the cone P . Define

x(t) =

⎧
⎨

⎩

x1(t), t ∈ [0, T],

ψ(t), t ∈ [−τ, 0].
(2.4)

Then x(t) denotes a positive solution of BVP (1.1).
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It follows from (2.3) that the following lemma holds.

Lemma 2.1. Let Fλ be defined by (2.3). If x ∈ P , then
(i) Fλ(P) ⊂ P.
(ii) Fλ : P→P is completely continuous.

The proof of Lemma 2.1 can be found in [15].
We need to define further subsets of [0, T] with respect to the delay μ. Set

Y1 :=
{
t ∈ [0, T] : μ(t) < 0

}
; Y2 :=

{
t ∈ [0, T] : μ(t) ≥ 0

}
. (2.5)

Throughout this paper, we assume Y1 /=∅ and φq(
∫
Y 1
a(r)∇r) > 0.

Lemma 2.2. Suppose that (H1)–(H5) hold. Then there exists a λ∗ > 0 such that the operator Fλ has a
fixed point x∗ ∈ P \ {θ} at λ∗, where θ is the zero element of the Banach space E.

Proof. Set

e(t) = B0

(
φq

(∫T

0
a(r)∇r

))
+
∫ t

0
φq

(∫T

s

a(r)∇r
)
Δs, t ∈ [0, T]. (2.6)

We know that e ∈ P. Let λ∗ =M−1
fe
,where

Mfe = max
r∈[0,T]

f
(
e(r), e

(
μ(r)

)) ≥ c > 0,

(
Fλ∗x

)
(t) = B0

(
φq

(∫T

0
λ∗a(r)f

(
x(r), x

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λ∗a(r)f
(
x(r), x

(
μ(r)

))∇r
)
Δs, t ∈ [0, T].

(2.7)

From above, we have

e(t) ≥ (
Fλ∗e

)
(t). (2.8)

Let x0(t) = e(t) and xn(t) = (Fλ∗xn−1)(t), n = 1, 2, . . . , t ∈ [0, T]. Then

x0(t) ≥ x1(t) ≥ · · · ≥ xn(t) ≥ · · · ≥ (
cλ∗

)q−1
e(t). (2.9)

By the Lebesgue dominated convergence theorem [16] together with (H3), it follows that
{xn}∞n=0 = {Fn

λ∗x0}∞n=0 decreases to a fixed point x∗ ∈ P \ {θ} of the operator Fλ∗ . The proof is
complete.

Lemma 2.3. Suppose that (H1)–(H6) hold and that I ⊂ [b,∞) for some b > 0. Then there exists a
constant CI > 0 such that for all λ ∈ I and all possible fixed points x of Fλ at λ, one has ||x|| < CI.

Proof. Set

S = {x ∈ P : Fλx = x, λ ∈ I}. (2.10)



Changxiu Song 5

We need to prove that there exists a constant CI > 0 such that ‖x‖ < CI for all x ∈ S. If the
number of elements of S is finite, then the result is obvious. If not, without loss of generality,
we assume that there exists a sequence {xn}∞n=0 such that limn→∞‖xn‖ = +∞, where xn ∈ P is
the fixed point of the operator Fλ defined by (2.3) at λn ∈ I (n = 1, 2, . . .).

Then

xn(t) ≥ δ

T + β
∥∥xn

∥∥, t ∈ [0, T]. (2.11)

We choose J > 0 such that

Jbq−1δ2

T + β
φq

(∫

Y 1

a(r)∇r
)
> 1, (2.12)

L > 0 such that

f
(
x, ψ(s)

) ≥ (Jx)p−1, x > L, s ∈ [−τ, 0]. (2.13)

In view of (H6) there exists anN sufficiently large such that ‖xN‖ > L. For t ∈ [0, T],we have

∥∥xN
∥∥ =

∥∥FλNxN
∥∥

=
(
FλNxN

)
(T)

≥ δφq
(∫T

0
λNa(r)f

(
xN(r), xN

(
μ(r)

))∇r
)

≥ δφq
(∫

Y 1

λNa(r)f
(
xN(r), ψ

(
μ(r)

))∇r
)

> δJbq−1min
t∈Y1

φq

(∫

Y 1

a(r)xp−1
N (r)∇r

)

≥ Jbq−1δ2

T + β
∥∥xN

∥∥φq

(∫

Y 1

a(r)∇r
)

>
∥∥xN

∥∥,

(2.14)

which is a contradiction. The proof is complete.

Lemma 2.4. Suppose that (H1)–(H5) hold and that the operator Fλ has a positive fixed point x in P at
λ > 0. Then for every λ∗ ∈ (0, λ) the operator Fλ has a fixed point x∗ ∈ P \ {θ} at λ∗, and x∗ < x.

Proof. Let x(t) be the fixed point of the operator Fλ at λ. Then

x(t) = B0

(
φq

(∫T

0
λa(r)f

(
x(r), x

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λa(r)f
(
x(r), x

(
μ(r)

))∇r
)
Δs

> B0

(
φq

(∫T

0
λ∗a(r)f

(
x(r), x

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λ∗a(r)f
(
x(r), x

(
μ(r)

))∇r
)
Δs,

(2.15)
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where 0 < λ∗ < λ. Set

(
Fλ∗x

)
(t) = B0

(
φq

(∫T

0
λ∗a(r)f

(
x(r), x

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λ∗a(r)f
(
x(r), x

(
μ(r)

))∇r
)
Δs,

(2.16)

x0(t) = x(t), and xn = Fλ∗xn−1 = (Fn
λ∗
x0)(t). Then

(
cλ∗

)(q−1)
e(t) ≤ xn+1 ≤ xn ≤ · · · ≤ x1(t) ≤ x0(t), (2.17)

where e(t) is also defined by (2.6), which implies that {Fn
λ∗
x}∞

n=0
decreases to a fixed point

x∗ ∈ P \ {θ} of the operator Fλ∗ , and x∗ < x. The proof is complete.

Lemma 2.5. Suppose that (H1)–(H6) hold. Let ∧ = {λ > 0 : Fλ have at least one fixed point at λ in P}.
Then ∧ is bounded above.

Proof. Suppose to the contrary that there exists a fixed point sequence {xn}∞n=0 ⊂ P of Fλ at λn
such that limn→∞ λn = ∞. Then we need to consider two cases:

(i) there exists a constantH > 0 such that ‖xn‖ ≤ H, n = 0, 1, 2 . . . ;

(ii) there exists a subsequence {xnk}∞k=1 such that limk→∞ ||xnk || = ∞ which is impossible
by Lemma 2.3.

Only (i) is considered. We can choose M > 0 such that f(0, 0) > MH, and further
f(xn, xn(μ)) > MH. For t ∈ [0, T], we have

xn(t) = B0

(
φq

(∫T

0
λna(r)f

(
xn(r), xn

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λna(r)f
(
xn(r), xn

(
μ(r)

))∇r
)
Δs.

(2.18)

Now we consider (2.18).Assume that the case (i) holds. Then

H ≥ xn(t) ≥ B0

(
φq

(∫T

0
(λna(r)MH)∇r

))
+
∫ t

0
φq

(∫T

s

(λna(r)MH)∇r
)
Δs

=
(
λnMH

)q−1
e(t)

≥ (
λnMH

)q−1 δ

T + β
‖e‖

(2.19)

leads to

1 ≥ (
λnM

)q−1
Hq−2 δ

T + β
‖e‖ for t ∈ [0, T], (2.20)

which is a contradiction. The proof is complete.

Lemma 2.6. Let λ∗ = sup∧. Then ∧ = (0, λ∗], where ∧ is defined just as in Lemma 2.5.
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Proof. In view of Lemma 2.4, it follows that (0, λ∗) ⊂ ∧. We only need to prove λ∗ ∈ ∧. In
fact, by the definition of λ∗, we may choose a distinct nondecreasing sequence {λn}∞n=1 ⊂ ∧
such that limn→∞ λn = λ∗. Let xn ∈ P be the positive fixed point of Fλ at λn, n = 1, 2, . . . .
By Lemma 2.3, {xn}∞n=1 is uniformly bounded, so it has a subsequence denoted by {xn}∞n=1,
converging to xλ∗ ∈ P. Note that

xn(t) = B0

(
φq

(∫T

0
λna(r)f

(
xn(r), xn

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λna(r)f
(
xn(r), xn

(
μ(r)

))∇r
)
Δs.

(2.21)

Taking the limitation n→∞ to both sides of (2.21), and using the Lebesgue dominated
convergence theorem [16], we have

xλ∗ = B0

(
φq

(∫T

0
λ∗a(r)f

(
xλ∗(r), xλ∗

(
μ(r)

))∇r
))

+
∫ t

0
φq

(∫T

s

λ∗a(r)f
(
xλ∗(r), xλ∗

(
μ(r)

))∇r
)
Δs,

(2.22)

which shows that Fλ has a positive fixed point xλ∗ at λ = λ∗. The proof is complete.

Theorem 2.7. Suppose that (H1)–(H6) hold. Then there exists a λ∗ > 0 such that (1.1) has at least two,
one, and no positive solutions for 0 < λ < λ∗, λ = λ∗ and λ > λ∗, respectively.

Proof. Assume that (H1)–(H5) hold. Then there exists a λ∗ > 0 such that Fλ has a fixed point
xλ∗ ∈ P \ {θ} at λ = λ∗. In view of Lemma 2.4, Fλ also has a fixed point xλ < xλ∗ , xλ ∈ P \ {θ}
and 0 < λ < λ∗. Note that f is continuous on (R+)2. For 0 < λ < λ∗, there exists a δ0 > 0 such
that

f
(
xλ∗(r)+ δ, xλ∗

(
μ(r)

)
+ δ

)− f(xλ∗(r), xλ∗
(
μ(r)

)) ≤ f(0, 0)
(
λ∗

λ
− 1

)
for r ∈ [0, T], 0 < δ ≤ δ0.

(2.23)

Hence,

λa(r)f
(
xλ∗(r) + δ, xλ∗

(
μ(r)

)
+ δ

) − λ∗a(r)f(xλ∗(r), xλ∗
(
μ(r)

))

= λa(r)
[
f
(
xλ∗(r) + δ, xλ∗

(
μ(r)

)
+ δ

) − f(xλ∗(r), xλ∗
(
μ(r)

))]

−(λ∗ − λ)a(r)f(xλ∗(r), xλ∗
(
μ(r)

))

≤ (
λ∗ − λ)a(r)f(0, 0) − (

λ∗ − λ)f(xλ∗(r), xλ∗
(
μ(r)

))

=
(
λ∗ − λ)a(r)[f(0, 0) − f(xλ∗(r), xλ∗

(
μ(r)

))]

≤ 0, ∀r ∈ [0, T].

(2.24)

From above, we have

Fλ
(
xλ∗ + δ

) ≤ Fλ∗
(
xλ∗

)
= xλ∗ < xλ∗ + δ. (2.25)



8 Advances in Difference Equations

Set R1 = ||xλ∗(t) + δ|| for t ∈ [0, T] and PR1 = {x ∈ P : ||x|| < R1}. We have Fλx /=x for x ∈ ∂R1.
By Lemma 2.1, i(Fλ, PR1 , P) = 1. In view of (H6), we can choose L > R1 > 0 such that

f
(
x, ψ(s)

) ≥ (Jx)p−1,

Jλq−1δ2

T + β
φq

(∫

Y 1

a(r)∇r
)
> 1 for x > L, s ∈ [−τ, 0].

(2.26)

Set

R2 =
T + β
δ

(L + 1), PR2 =
{
x ∈ P : ‖x‖ < R2

}
. (2.27)

Similar to Lemma 2.3, it is easy to obtain that

∥∥Fλx
∥∥ =

(
Fλx

)
(T)

≥ δφq
(∫T

0
λa(r)f

(
x(r), x

(
μ(r)

))∇r
)

≥ δφq
(∫

Y 1

λa(r)f
(
x(r), ψ

(
μ(r)

))∇r
)

> δJλq−1min
t∈Y1

{
x(t)

}
φq

(∫

Y 1

a(r)∇r
)

≥ Jλq−1δ2

T + β
‖x‖φq

(∫

Y 1

a(r)∇r
)

> ‖x‖ for x ∈ ∂PR2 .

(2.28)

In view of Lemma 2.1, i(Fλ, PR2 , P) = 0. By the additivity of fixed point index,

i
(
Fλ, PR2 \ PR1 , P

)
= i

(
Fλ, PR2 , P

) − i(Fλ, PR1 , P
)
= −1. (2.29)

So, Fλ has at least two fixed points in P . The proof is complete.
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