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Nonnegative and compartmental dynamical system models are derived from mass and energy
balance considerations that involve dynamic states whose values are nonnegative. These models are
widespread in engineering and life sciences, and they typically involve the exchange of nonnegative
quantities between subsystems or compartments, wherein each compartment is assumed to be
kinetically homogeneous. In this paper, we develop a neuroadaptive control framework for
adaptive set-point regulation of discrete-time nonlinear uncertain nonnegative and compartmental
systems. The proposed framework is Lyapunov-based and guarantees ultimate boundedness of the
error signals corresponding to the physical system states and the neural network weighting gains.
In addition, the neuroadaptive controller guarantees that the physical system states remain in the
nonnegative orthant of the state space for nonnegative initial conditions.

Copyright q 2008 Wassim M. Haddad et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Neural networks have provided an ideal framework for online identification and control
of many complex uncertain engineering systems because of their great flexibility in
approximating a large class of continuous maps and their adaptability due to their inherently
parallel architecture. Even though neuroadaptive control has been applied to numerous
engineering problems, neuroadaptive methods have not been widely considered for problems
involving systems with nonnegative state and control constraints [1, 2]. Such systems are
commonly referred to as nonnegative dynamical systems in the literature [3–8]. A subclass of
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nonnegative dynamical systems are compartmental systems [8–18]. Compartmental systems
involve dynamical models that are characterized by conservation laws (e.g., mass and
energy) capturing the exchange of material between coupled macroscopic subsystems known
as compartments. The range of applications of nonnegative systems and compartmental
systems includes pharmacological systems, queuing systems, stochastic systems (whose
state variables represent probabilities), ecological systems, economic systems, demographic
systems, telecommunications systems, and transportation systems, to cite but a few examples.
Due to the severe complexities, nonlinearities, and uncertainties inherent in these systems,
neural networks provide an ideal framework for online adaptive control because of their
parallel processing flexibility and adaptability.

In this paper, we extend the results of [2] to develop a neuroadaptive control framework
for discrete-time nonlinear uncertain nonnegative and compartmental systems. The proposed
framework is Lyapunov-based and guarantees ultimate boundedness of the error signals
corresponding to the physical system states as well as the neural network weighting gains.
The neuroadaptive controllers are constructed without requiring knowledge of the system
dynamics while guaranteeing that the physical system states remain in the nonnegative orthant
of the state space. The proposed neuro control architecture is modular in the sense that if a
nominal linear design model is available, the neuroadaptive controller can be augmented to
the nominal design to account for system nonlinearities and system uncertainty. Furthermore,
since in certain applications of nonnegative and compartmental systems (e.g., pharmacological
systems for active drug administration) control (source) inputs as well as the system states
need to be nonnegative, we also develop neuroadaptive controllers that guarantee the control
signal as well as the physical system states remain nonnegative for nonnegative initial
conditions.

The contents of the paper are as follows. In Section 2, we provide mathematical
preliminaries on nonnegative dynamical systems that are necessary for developing the main
results of this paper. In Section 3, we develop new Lyapunov-like theorems for partial
boundedness and partial ultimate boundedness for nonlinear dynamical systems necessary
for obtaining less conservative ultimate bounds for neuroadaptive controllers as compared
to ultimate bounds derived using classical boundedness and ultimate boundedness notions.
In Section 4, we present our main neuroadaptive control framework for adaptive set-point
regulation of nonlinear uncertain nonnegative and compartmental systems. In Section 5,
we extend the results of Section 4 to the case where control inputs are constrained to be
nonnegative. Finally, in Section 6 we draw some conclusions.

2. Mathematical preliminaries

In this section we introduce notation, several definitions, and some key results concerning
linear and nonlinear discrete-time nonnegative dynamical systems [19] that are necessary for
developing the main results of this paper. Specifically, for x ∈ R

n we write x ≥≥ 0 (resp.,
x >> 0) to indicate that every component of x is nonnegative (resp., positive). In this case, we
say that x is nonnegative or positive, respectively. Likewise, A ∈ R

n×m is nonnegative or positive
if every entry of A is nonnegative or positive, respectively, which is written as A ≥≥ 0 or
A >> 0, respectively. In this paper it is important to distinguish between a square nonnegative
(resp., positive) matrix and a nonnegative-definite (resp., positive-definite) matrix. Let R

n

+ and
R
n
+ denote the nonnegative and positive orthants of R

n, that is, if x ∈ R
n, then x ∈ R

n

+ and



Wassim M. Haddad et al. 3

x ∈ R
n
+ are equivalent, respectively, to x ≥≥ 0 and x >> 0. Finally, we write (·)T to denote

transpose, tr(·) for the trace operator, λmin(·) (resp., λmax(·)) to denote the minimum (resp.,
maximum) eigenvalue of a Hermitian matrix, ‖·‖ for a vector norm, and Z+ for the set of all
nonnegative integers. The following definition introduces the notion of a nonnegative (resp.,
positive) function.

Definition 2.1. A real function u : Z+ → R
m is a nonnegative (resp., positive) function if u(k) ≥≥ 0

(resp., u(k) >> 0), k ∈ Z+.

The following theorems give necessary and sufficient conditions for asymptotic stability
of the discrete-time linear nonnegative dynamical system

x(k + 1) = Ax(k), x(0) = x0, k ∈ Z+, (2.1)

where A ∈ R
n×n is nonnegative and x0 ∈ R

n

+ , using linear and quadratic Lyapunov functions,
respectively.

Theorem 2.2 (see [19]). Consider the linear dynamical system G given by (2.1) where A ∈ R
n×n is

nonnegative. Then G is asymptotically stable if and only if there exist vectors p, r ∈ R
n such that p >> 0

and r >> 0 satisfy

p = ATp + r. (2.2)

Theorem 2.3 (see [6, 19]). Consider the linear dynamical system G given by (2.1) where A ∈ R
n×n

is nonnegative. Then G is asymptotically stable if and only if there exist a positive diagonal matrix
P ∈ R

n×n and an n × n positive-definite matrix R such that

P = ATPA + R. (2.3)

Next, consider the controlled discrete-time linear dynamical system

x(k + 1) = Ax(k) + Bu(k), x(0) = x0, k ∈ Z+, (2.4)

where

B =

[
B̂

0(n−m)×m

]
, (2.5)

A ∈ R
n×n is nonnegative and B̂ ∈ R

m×m is nonnegative such that rank B̂ = m. The
following theorem shows that discrete-time linear stabilizable nonnegative systems possess
asymptotically stable zero dynamics with x̂ � [x1, . . . , xm] viewed as the output. For the
statement of this result, let spec(A) denote the spectrum of A, let C1 � {s ∈ C : |s| ≥ 1},
and let A ∈ R

n×n in (2.4) be partitioned as

A =

[
A11 A12

A21 A22

]
, (2.6)

where A11 ∈ R
m×m, A12 ∈ R

m×(n−m), A21 ∈ R
(n−m)×m, and A22 ∈ R

(n−m)×(n−m) are nonnegative
matrices.
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Theorem 2.4. Consider the discrete-time linear dynamical system G given by (2.4), where A ∈ R
n×n

is nonnegative and partitioned as in (2.6), and B ∈ R
n×m is nonnegative and is partitioned as in (2.5)

with rank B̂ = m. Then there exists a gain matrix K ∈ R
m×n such that A + BK is nonnegative and

asymptotically stable if and only if A22 is asymptotically stable.

Proof. First, let K be partitioned as K = [K1, K2], where K1 ∈ R
m×m and K2 ∈ R

m×(n−m), and
note that

(A + BK)T =

⎡
⎣
(
A11 + B̂K1

)T AT
21(

A12 + B̂K2
)T AT

22

⎤
⎦ . (2.7)

Assume that A + BK is nonnegative and asymptotically stable, and suppose that, ad absurdum,
A22 is not asymptotically stable. Then, it follows from Theorem 2.2 that there does not exist a
positive vector p2 ∈ R

n−m
+ such that (AT

22 − I)p2 << 0. Next, since A12 + B̂K2 is nonnegative it
follows that (A12 + B̂K2)

T p1 ≥≥ 0 for any positive vector p1 ∈ R
m
+ . Thus, there does not exist

a positive vector p � [pT
1 , p

T
2 ]

T such that [(A + BK)T − I]p << 0, and hence, it follows from
Theorem 2.2 that A + BK is not asymptotically stable leading to a contradiction. Hence, A22

is asymptotically stable. Conversely, suppose that A22 is asymptotically stable. Then taking
K1 = B̂ −1(As − A11) and K2 = −B̂ −1A12, where As is nonnegative and asymptotically stable,
it follows that spec(A + BK) ∩ C1 = [spec(As) ∪ spec(A22)] ∩ C1 = Ø, and hence, A + BK is
nonnegative and asymptotically stable.

Next, consider the discrete-time nonlinear dynamical system

x(k + 1) = f
(
x(k)

)
, x(0) = x0, k ∈ Z+, (2.8)

where x(k) ∈ D, D is an open subset of R
n with 0 ∈ D, and f : D → R

n is continuous on D.
Recall that the point xe ∈ D is an equilibrium point of (2.8) if xe = f(xe). Furthermore, a subset
Dc ⊆ D is an invariant set with respect to (2.8) if Dc contains the orbits of all its points. The
following definition introduces the notion of nonnegative vector fields [19].

Definition 2.5. Let f = [f1, . . . , fn]
T : D → R

n, where D is an open subset of R
n that contains R

n

+ .
Then f is nonnegative with respect to x̂ � [x1, . . . , xm]

T, m ≤ n, if fi(x) ≥ 0 for all i = 1, . . . , m, and
x ∈ R

n

+ . f is nonnegative if fi(x) ≥ 0 for all i = 1, . . . , n, and x ∈ R
n

+ .

Note that if f(x) = Ax, where A ∈ R
n×n, then f is nonnegative if and only if A is

nonnegative [19].

Proposition 2.6 (see [19]). Suppose R
n

+ ⊂ D. Then R
n

+ is an invariant set with respect to (2.8) if and
only if f : D → R

n is nonnegative.

In this paper, we consider controlled discrete-time nonlinear dynamical systems of the
form

x(k + 1) = f
(
x(k)

)
+G

(
x(k)

)
u(k), x(0) = x0, k ∈ Z+, (2.9)

where x(k) ∈ R
n, k ∈ Z+, u(k) ∈ R

m, k ∈ Z+, f : R
n → R

n is continuous and satisfies f(0) = 0,
and G : R

n → R
n×m is continuous.

The following definition and proposition are needed for the main results of the paper.
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Definition 2.7. The discrete-time nonlinear dynamical system given by (2.9) is nonnegative if for
every x(0) ∈ R

n

+ and u(k) ≥≥ 0, k ∈ Z+, the solution x(k), k ∈ Z+, to (2.9) is nonnegative.

Proposition 2.8 (see [19]). The discrete-time nonlinear dynamical system given by (2.9) is
nonnegative if f(x) ≥≥ 0 and G(x) ≥≥ 0, x ∈ R

n

+ .

It follows from Proposition 2.8 that a nonnegative input signal G(x(k))u(k), k ∈ Z+, is
sufficient to guarantee the nonnegativity of the state of (2.9).

Next, we present a time-varying extension to Proposition 2.8 needed for the main
theorems of this paper. Specifically, we consider the time-varying system

x(k + 1) = f
(
k, x(k)

)
+G

(
x(k)

)
u(k), x(k0) = x0, k ≥ k0, (2.10)

where f : Z+ × R
n → R

n is continuous in k and x on Z+ × R
n and f(k, 0) = 0, k ∈ Z+, and

G : R
n → R

n×m is continuous. For the following result, the definition of nonnegativity holds
with (2.9) replaced by (2.10).

Proposition 2.9. Consider the time-varying discrete-time dynamical system (2.10) where f(k, ·) :
R
n → R

n is continuous on R
n for all k ∈ Z+ and f(·, x) : Z+ → R

n is continuous on Z+ for all x ∈ R
n.

If for every k ∈ Z+, f(k, ·) : R
n → R

n is nonnegative and G : R
n → R

n×m is nonnegative, then the
solution x(k), k ≥ k0, to (2.10) is nonnegative.

Proof. The result is a direct consequence of Proposition 2.8 by equivalently representing the
time-varying discrete-time system (2.10) as an autonomous discrete-time nonlinear system by
appending another state to represent time. Specifically, defining y(k − k0) � x(k) and yn+1(k −
k0) � k, it follows that the solution x(k), k ≥ k0, to (2.10) can be equivalently characterized by
the solution y(κ), κ ≥ 0, where κ � k − k0, to the discrete-time nonlinear autonomous system

y(κ + 1) = f
(
yn+1(κ), y(κ)

)
+G

(
y(κ)

)
û(κ), y(0) = y0, κ ≥ 0, (2.11)

yn+1(κ + 1) = yn+1(κ) + 1, yn+1(0) = k0, (2.12)

where û(κ) � u(κ + k0). Now, since yi(κ) ≥ 0, κ ≥ 0, for i = 1, . . . , n + 1, and G(x(κ))û(κ) ≥≥ 0,
the result is a direct consequence of Proposition 2.8.

3. Partial boundedness and partial ultimate boundedness

In this section, we present Lyapunov-like theorems for partial boundedness and partial ultimate
boundedness of discrete-time nonlinear dynamical systems. These notions allow us to develop
less conservative ultimate bounds for neuroadaptive controllers as compared to ultimate
bounds derived using classical boundedness and ultimate boundedness notions. Specifically,
consider the discrete-time nonlinear autonomous interconnected dynamical system

x1(k + 1) = f1
(
x1(k), x2(k)

)
, x1(0) = x10, k ∈ Z+, (3.1)

x2(k + 1) = f2
(
x1(k), x2(k)

)
, x2(0) = x20, (3.2)

where x1 ∈ D, D ⊆ R
n1 is an open set such that 0 ∈ D, x2 ∈ R

n2 , f1 : D × R
n2 → R

n1 is such
that, for every x2 ∈ R

n2 , f1(0, x2) = 0 and f1(·, x2) is continuous in x1, and f2 : D × R
n2 → R

n2

is continuous. Note that under the above assumptions the solution (x1(k), x2(k)) to (3.1) and
(3.2) exists and is unique over Z+.
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Definition 3.1 (see [20]). (i) The discrete-time nonlinear dynamical system (3.1) and (3.2) is
bounded with respect to x1 uniformly in x20 if there exists γ > 0 such that, for every δ ∈ (0, γ),
there exists ε = ε(δ) > 0 such that ‖x10‖ < δ implies ‖x1(k)‖ < ε for all k ∈ Z+. The discrete-time
nonlinear dynamical system (3.1) and (3.2) is globally bounded with respect to x1 uniformly in x20

if, for every δ ∈ (0,∞), there exists ε = ε(δ) > 0 such that ‖x10‖ < δ implies ‖x1(k)‖ < ε for all
k ∈ Z+.

(ii) The discrete-time nonlinear dynamical system (3.1) and (3.2) is ultimately bounded
with respect to x1 uniformly in x20 with ultimate bound ε if there exists γ > 0 such that, for every
δ ∈ (0, γ), there exists K = K(δ, ε) > 0 such that ‖x10‖ < δ implies ‖x1(k)‖ < ε, k ≥ K.
The discrete-time nonlinear dynamical system (3.1) and (3.2) is globally ultimately bounded with
respect to x1 uniformly in x20 with ultimate bound ε if, for every δ ∈ (0,∞), there exists K =
K(δ, ε) > 0 such that ‖x10‖ < δ implies ‖x1(k)‖ < ε, k ≥ K.

Note that if a discrete-time nonlinear dynamical system is (globally) bounded with
respect to x1 uniformly in x20, then there exists ε > 0, such that it is (globally) ultimately
bounded with respect to x1 uniformly in x20 with an ultimate bound ε. Conversely, if a discrete-
time nonlinear dynamical system is (globally) ultimately bounded with respect to x1 uniformly
in x20 with an ultimate bound ε, then it is (globally) bounded with respect to x1 uniformly
in x20. The following results present Lyapunov-like theorems for boundedness and ultimate
boundedness for discrete-time nonlinear systems. For these results define ΔV (x1, x2) �
V (f(x1, x2)) − V (x1, x2), where f(x1, x2) � [fT

1 (x1, x2), fT
2 (x1, x2)]

T and V : D × R
n2 → R

is a given continuous function. Furthermore, let Bδ(x), x ∈ R
n, δ > 0, denote the open ball

centered at x with radius δ and let Bδ(x) denote the closure of Bδ(x), and recall the definitions
of class-K, class-K∞, and class-KL functions [20].

Theorem 3.2. Consider the discrete-time nonlinear dynamical system (3.1) and (3.2). Assume that
there exist a continuous function V : D × R

n2 → R and class-K functions α(·) and β(·) such that

α
(∥∥x1

∥∥) ≤ V (x1, x2) ≤ β
(∥∥x1

∥∥), x1 ∈ D, x2 ∈ R
n2 , (3.3)

ΔV
(
x1, x2

)
≤ 0, x1 ∈ D, ‖x1‖ > μ, x2 ∈ R

n2 , (3.4)

where μ > 0 is such that Bα−1(β(μ))(0) ⊂ D. Furthermore, assume that sup(x1,x2)∈Bμ(0)×Rn2V (f(x1, x2))
exists. Then the discrete-time nonlinear dynamical system (3.1) and (3.2) is bounded with respect to x1

uniformly in x20. Furthermore, for every δ ∈ (0, γ), x10 ∈ Bδ(0) implies that ‖x1(k)‖ ≤ ε, k ∈ Z+,
where

ε = ε(δ) � α−1(max
{
η, β(δ)

})
, (3.5)

η ≥ max{β(μ), sup(x1,x2)∈Bμ(0)×Rn2V (f(x1, x2))} = max{β(μ), sup(x1,x2)∈Bμ(0)×Rn2 (V (x1, x2) +

ΔV (x1, x2))}, and γ � sup{r > 0 : Bα−1(β(r))(0) ⊂ D}. If, in addition, D = R
n1 and α(·) is a class-K∞

function, then the discrete-time nonlinear dynamical system (3.1) and (3.2) is globally bounded with
respect to x1 uniformly in x20 and for every x10 ∈ R

n1 , ‖x1(k)‖ ≤ ε, k ∈ Z+, where ε is given by (3.5)
with δ = ‖x10‖.

Proof. See [20, page 786].
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Theorem 3.3. Consider the discrete-time nonlinear dynamical system (3.1) and (3.2). Assume there
exist a continuous function V : D × R

n2 → R and class-K functions α(·) and β(·) such that (3.3)
holds. Furthermore, assume that there exists a continuous functionW : D → R such thatW(x1) > 0,
‖x1‖ > μ, and

ΔV
(
x1, x2

)
≤ −W

(
x1
)
, x1 ∈ D,

∥∥x1
∥∥ > μ, x2 ∈ R

n2 , (3.6)

where μ > 0 is such that Bα−1(β(μ))(0) ⊂ D. Finally, assume sup(x1,x2)∈Bμ(0)×Rn2V (f(x1, x2)) exists.
Then the nonlinear dynamical system (3.1), (3.2) is ultimately bounded with respect to x1 uniformly
in x20 with ultimate bound ε � α−1(η), where η > max{β(μ), sup(x1,x2)∈Bμ(0)×Rn2V (f(x1, x2))} =
max{β(μ), sup(x1,x2)∈Bμ(0)×Rn2 (V (x1, x2) + ΔV (x1, x2))}. Furthermore, lim supk→∞‖x1(k)‖ ≤
α−1(η). If, in addition, D = R

n and α(·) is a class-K∞ function, then the nonlinear dynamical system
(3.1) and (3.2) is globally ultimately bounded with respect to x1 uniformly in x20 with ultimate bound
ε.

Proof. See [20, page 787].

The following result on ultimate boundedness of interconnected systems is needed for
the main theorems in this paper. For this result, recall the definition of input-to-state stability
given in [21].

Proposition 3.4. Consider the discrete-time nonlinear interconnected dynamical system (3.1) and
(3.2). If (3.2) is input-to-state stable with x1 viewed as the input and (3.1) and (3.2) are ultimately
bounded with respect to x1 uniformly in x20, then the solution (x1(k), x2(k)), k ∈ Z+, of the
interconnected dynamical system (3.1)-(3.2), is ultimately bounded.

Proof. Since system (3.1)-(3.2) is ultimately bounded with respect to x1 (uniformly in x20), there
exist positive constants ε andK = K(δ, ε) such that ‖x1(k)‖ < ε, k ≥ K. Furthermore, since (3.2)
is input-to-state stable with x1 viewed as the input, it follows that x2(K) is finite, and hence,
there exist a class-KL function η(·, ·) and a class-K function γ(·) such that∥∥x2(k)

∥∥ ≤ η(∥∥x2(K)
∥∥, k −K) + γ(max

K≤i≤k

∥∥x1(i)
∥∥)

< η
(∥∥x2(K)

∥∥, k −K) + γ(ε)
≤ η
(∥∥x2(K)

∥∥, 0) + γ(ε), k ≥ K,

(3.7)

which proves that the solution (x1(k), x2(k)), k ∈ Z+ to (3.1) and (3.2) is ultimately bounded.

4. Neuroadaptive control for discrete-time nonlinear nonnegative
uncertain systems

In this section, we consider the problem of characterizing neuroadaptive feedback control laws
for discrete-time nonlinear nonnegative and compartmental uncertain dynamical systems to
achieve set-point regulation in the nonnegative orthant. Specifically, consider the controlled
discrete-time nonlinear uncertain dynamical system G given by

x(k + 1) = fx
(
x(k), z(k)

)
+G

(
x(k), z(k)

)
u(k), x(0) = x0, k ∈ Z+, (4.1)

z(k + 1) = fz
(
x(k), z(k)

)
, z(0) = z0, (4.2)
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where x(k) ∈ R
nx , k ∈ Z+, and z(k) ∈ R

nz , k ∈ Z+, are the state vectors, u(k) ∈ R
m, k ∈ Z+, is the

control input, fx : R
nx × R

nz → R
nx is nonnegative with respect to x but otherwise unknown

and satisfies fx(0, z) = 0, z ∈ R
nz , fz : R

nx × R
nz → R

nz is nonnegative with respect to z but
otherwise unknown and satisfies fz(x, 0) = 0, x ∈ R

nx , and G : R
nx × R

nz → R
nx×m is a known

nonnegative input matrix function. Here, we assume that we have m control inputs so that the
input matrix function is given by

G(x, z) =

[
BuGn(x, z)

0(n−m)×m

]
, (4.3)

where Bu = diag[b1, . . . , bm] is a positive diagonal matrix and Gn : R
nx × R

nz → R
m×m is a

nonnegative matrix function such that detGn(x, z)/= 0, (x, z) ∈ R
nx × R

nz . The control input
u(·) in (4.1) is restricted to the class of admissible controls consisting of measurable functions
such that u(k) ∈ R

m, k ∈ Z+. In this section, we do not place any restriction on the sign of
the control signal and design a neuroadaptive controller that guarantees that the system states
remain in the nonnegative orthant of the state space for nonnegative initial conditions and are
ultimately bounded in the neighborhood of a desired equilibrium point.

In this paper, we assume that fx(·, ·) and fz(·, ·) are unknown functions with fx(·, ·) given
by

fx(x, z) = Ax + Δf(x, z), (4.4)

where A ∈ R
nx×nx is a known nonnegative matrix and Δf : R

nx × R
nz → R

nx is an unknown
nonnegative function with respect to x and belongs to the uncertainty set F given by

F =
{
Δf : R

nx × R
nz → R

nx : Δf(x, z) = Bδ(x, z), (x, z) ∈ R
nx × R

nz
}
, (4.5)

where B � [Bu, 0m×(n−m)]
T and δ : R

nx × R
nz → R

m is an uncertain continuous function such
that δ(x, z) is nonnegative with respect to x. Furthermore, we assume that for a given xe ∈ R

nx
+

there exist ze ∈ R
nz
+ and ue ∈ R

m

+ such that

xe = Axe + Δf
(
xe, ze

)
+G

(
xe, ze

)
ue, (4.6)

ze = fz
(
xe, ze

)
. (4.7)

In addition, we assume that (4.2) is input-to-state stable at z(k) ≡ ze with x(k) − xe viewed as
the input, that is, there exist a class-KL function η(·, ·) and a class-K function γ(·) such that

∥∥z(k) − ze
∥∥ ≤ η(∥∥z0 − ze

∥∥, k) + γ(max
0≤i≤k

∥∥x(i) − xe
∥∥), k ≥ 0, (4.8)

where ‖·‖ denotes the Euclidean vector norm. Unless otherwise stated, henceforth we use ‖·‖
to denote the Euclidean vector norm. Note that (xe, ze) ∈ R

nx
+ × R

nz
+ is an equilibrium point of

(4.1) and (4.2) if and only if there exists ue ∈ R
m

+ such that (4.6) and (4.7) hold.
Furthermore, we assume that, for a given ε ∗i > 0, the ith component of the vector function

δ(x, z) − δ(xe, ze) −Gn(xe, ze)ue can be approximated over a compact set Dcx ×Dcz ⊂ R
nx
+ ×R

nz
+
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by a linear in the parameters neural network up to a desired accuracy so that for i = 1, . . . , m,
there exists εi(·, ·) such that |εi(x, z)| < ε ∗i , (x, z) ∈ Dcx × Dcz, and

δi(x, z) − δi
(
xe, ze

)
−
[
Gn
(
xe, ze

)
ue
]
i =W

T
i σi(x, z) + εi(x, z), (x, z) ∈ Dcx × Dcz, (4.9)

where Wi ∈ R
si , i = 1, . . . , m, are optimal unknown (constant) weights that minimize the

approximation error over Dcx × Dcz, σi : R
nx × R

nz → R
si , i = 1, . . . , m, are a set of basis

functions such that each component of σi(·, ·) takes values between 0 and 1, εi : R
nx ×R

nz → R,
i = 1, . . . , m, are the modeling errors, and ‖Wi‖ ≤ w ∗i , where w ∗i , i = 1, . . . , m, are bounds for
the optimal weights Wi, i = 1, . . . , m.

Since fx(·, ·) is continuous, we can choose σi(·, ·), i = 1, . . . , m, from a linear space X of
continuous functions that forms an algebra and separates points in Dcx × Dcz. In this case, it
follows from the Stone-Weierstrass theorem [22, page 212] thatX is a dense subset of the set of
continuous functions on Dcx × Dcz. Now, as is the case in the standard neuroadaptive control
literature [23], we can construct the signal uadi = Ŵ T

i σi(x, z) involving the estimates of the
optimal weights as our adaptive control signal. However, even though Ŵ T

i σi(x, z), i = 1, . . . , m,
provides adaptive cancellation of the system uncertainty, it does not necessarily guarantee that
the state trajectory of the closed-loop system remains in the nonnegative orthant of the state
space for nonnegative initial conditions.

To ensure nonnegativity of the closed-loop plant states, the adaptive control signal is
assumed to be of the form Ŵ T

i σ̂i(x, z, Ŵi), i = 1, . . . , m, where σ̂i : R
nx ×R

nz ×R
si → R

si is such
that each component of σ̂i(·, ·, ·) takes values between 0 and 1 and σ̂i(j)(x, z, Ŵi) = 0, whenever
Ŵi(j) > 0 for all i = 1, . . . , m, j = 1, . . . , si, where σ̂i(j)(·, ·, ·) and Ŵi(j) are the jth element of
σ̂i(·, ·, ·) and Ŵi, respectively. This set of functions do not generate an algebra in X, and hence,
if used as an approximator for δi(·, ·), i = 1, . . . , m, will generate additional conservatism in the
ultimate bound guarantees provided by the neural network controller. In particular, since each
component of σi(·, ·) and σ̂i(·, ·, ·) takes values between 0 and 1, it follows that

∥∥σi(x, z) − σ̂i(x, z, Ŵi

)∥∥ ≤ √si, (
x, z, Ŵi

)
∈ Dcx × Dcz × R

si , i = 1, . . . , m. (4.10)

This upper bound is used in the proof of Theorem 4.1 below.
For the remainder of the paper we assume that there exists a gain matrix K ∈ R

m×nx such
that A + BK is nonnegative and asymptotically stable, where A and B have the forms of (2.6)
and (2.5), respectively. Now, partitioning the state in (4.1) as x = [xT

1 , x
T
2 ]

T, where x1 ∈ R
m and

x2 ∈ R
nx−m, and using (4.3), it follows that (4.1) and (4.2) can be written as

x1(k + 1) = A11x1(k) +A12x2(k) + Δf
(
x1(k), x2(k), z(k)

)
+ BuGn

(
x1(k), x2(k), z(k)

)
u(k),

x1(0) = x10, k ∈ Z+,

(4.11)

x2(k + 1) = A21x1(k) +A22x2(k), x2(0) = x20, (4.12)

z(k + 1) = fz
(
x1(k), x2(k), z(k)

)
, z(0) = z0. (4.13)

Thus, since A + BK is nonnegative and asymptotically stable, it follows from Theorem 2.4 that
the solution x2(k) ≡ x2e ∈ R

nx−m
+ of (4.12) with x1(k) ≡ x1e ∈ R

m
+ , where x1e and x2e satisfy

x2e = A21x1e +A22x2e, is globally exponentially stable, and hence, (4.12) is input-to-state stable
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at x2(k) ≡ x2e with x1(k) − x1e viewed as the input. Thus, in this paper we assume that the
dynamics (4.12) can be included in (4.2) so that nx = m. In this case, the input matrix (4.3) is
given by

G(x, z) = BuGn(x, z) (4.14)

so that B = Bu. Now, for a given desired set point (xe, ze) ∈ R
nx
+ × R

nz
+ and for some ε1, ε2 > 0,

our aim is to design a control input u(k), k ∈ Z+, such that ‖x(k)−xe‖ < ε1 and ‖z(k)−ze‖ < ε2

for all k ≥ K, where K ∈ Z+, and x(k) ≥≥ 0 and z(k) ≥≥ 0, k ∈ Z+, for all (x0, z0) ∈ R
nx
+ × R

nz
+ .

However, since in many applications of nonnegative systems and, in particular, compartmental
systems, it is often necessary to regulate a subset of the nonnegative state variables which
usually include a central compartment, here we only require that ‖x(k) − xe‖ < ε1, k ≥ K.

Theorem 4.1. Consider the discrete-time nonlinear uncertain dynamical system G given by (4.1) and
(4.2) where fx(·, ·) and G(·, ·) are given by (4.4) and (4.14), respectively, fx(·, ·) is nonnegative with
respect to x, fz(·, ·) is nonnegative with respect to z, and Δf(·, ·) is nonnegative with respect to x and
belongs to F. For a given xe ∈ R

nx
+ assume there exist nonnegative vectors ze ∈ R

nz
+ and ue ∈ R

nx
+

such that (4.6) and (4.7) hold. Furthermore, assume that (4.2) is input-to-state stable at z(k) ≡ ze

with x(k) − xe viewed as the input. Finally, let K ∈ R
nx×nx be such that −K is nonnegative and

As � A + BuK is nonnegative and asymptotically stable. Then the neuroadaptive feedback control law

u(k) = G−1
n
(
x(k), z(k)

)[
K
(
x(k) − xe

)
− Ŵ T(k)σ̂

(
x(k), z(k), Ŵ(k)

)]
, (4.15)

where

Ŵ(k) � block-diag
[
Ŵ1(k), . . . , Ŵnx(k)

]
, (4.16)

Ŵi(k) ∈ R
si , k ∈ Z+, i = 1, . . . , nx, and σ̂(x, z, Ŵ) � [σ̂ T

1 (x, z, Ŵ1), . . . , σ̂T
nx(x, z, Ŵnx)]

T with
σ̂i(j)(x, z, Ŵi) = 0 whenever Ŵi(j) > 0, i = 1, . . . , nx, j = 1, . . . , si,—with update law

Ŵi(k + 1) = Ŵi(k) +
qi
∥∥P 1/2(x(k) − xe

)∥∥
1 +

∥∥P 1/2
(
x(k) − xe

)∥∥ 2

[
ẽi(k)σ̂i

(
x(k), z(k), Ŵi(k)

)
− γiŴi(k)

]
,

Ŵi(0) = Ŵi0, i = 1, . . . , nx,
(4.17)

where P � diag[p1, . . . , pnx] > 0 satisfies

P = AT
s PAs + R (4.18)

for positive definite R ∈ R
nx×nx , qi and γi are positive constants satisfying biqisi < 2 and qiγi ≤ 1,

i = 1, . . . , nx, and ẽ(k) � x(k+1)−xe−As(x(k)−xe) = [ẽ1(k), ẽ2(k), . . . , ẽnx(k)]
T—guarantees that

there exists a positively invariant set Dα ⊂ R
nx
+ × R

nz
+ × R

s×nx such that (xe, ze,W) ∈ Dα, whereW �
block-diag[W1, . . . ,Wnx], and the solution (x(k), z(k), Ŵ(k)), k ∈ Z+, of the closed-loop system
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Neuro adaptive controller Plant

Internal dynamics
(z-dynamics)

Controlled dynamics
(x-dynamics)

Neural network
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z

Gn(x)u x
−

+

... ...
...

Figure 1: Block diagram of the closed-loop system.

given by (4.1), (4.2), (4.15), and (4.17) is ultimately bounded for all (x(0), z(0), Ŵ(0)) ∈ Dα with
ultimate bound ‖P 1/2(x(k) − xe)‖ < ε, k ∈ Z+, where

ε �
√
eη − 1, (4.19)

η � α 2
x + ηw +

1
2

(
α

a
+ β
)
+ 2
(

1 +
1
c

)(
α + ξηw

)
, αx � max

{
aβ + α

a
(
μ1 − cμ2

) , 1 + c
c(2 − a − ξ)

}
,

α �
nx∑
i=1

pib
2
i

(
ε ∗i +

√
siw

∗
i

) 2
, β �

nx∑
i=1

pibiγiw
∗2
i , ηw > (2 + ζ)(α + aβ)/(2aζ),

(4.20)

μ1 � λmin(R)/λmax(P), μ2 � λmax(AT
s PAs)/λmin(P), ξ � max{b1q1s1, . . . , bnxqnxsnx}, ζ �

min{q1γ1, . . . , qnxγnx}, and a and c are positive constants satisfying a < 2−ξ and cμ2 < μ1, respectively.
Furthermore, x(k) ≥≥ 0 and z(k) ≥≥ 0, k ∈ Z+, for all (x0, z0) ∈ R

nx
+ × R

nz
+ .

Proof. See Appendix A.

A block diagram showing the neuroadaptive control architecture given in Theorem 4.1
is shown in Figure 1. It is important to note that the adaptive control law (4.15) and (4.17)
does not require the explicit knowledge of the optimal weighting matrix W and constants
δ(xe, ze) and ue. All that is required is the existence of the nonnegative vectors ze and ue such
that the equilibrium conditions (4.6), and (4.7) hold. Furthermore, in the case where Bu =
diag[b1, . . . , bnx] is an unknown positive diagonal matrix but bi ≤ b, i = 1, . . . , nx, where b is
known, we can take the gain matrix K to be diagonal so that K = diag[k1, . . . , knx], where ki is
such that −1/b ≤ ki < 0, i = 1, . . . , nx. In this case, taking A in (4.4) to be the identity matrix, As

is given by As = diag[1 + b1k1, . . . , 1 + bnxknx] which is clearly nonnegative and asymptotically
stable, and hence, any positive diagonal matrix P satisfies (4.18). Finally, it is important to note
that the control input signal u(k), k ∈ Z+, in Theorem 4.1 can be negative depending on the
values of x(k), k ∈ Z+. However, as is required for nonnegative and compartmental dynamical
systems the closed-loop plant states remain nonnegative.

Next, we generalize Theorem 4.1 to the case where the input matrix is not necessarily
nonnegative. For this result rowi(K) denotes the ith row of K ∈ R

nx×nx .
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Theorem 4.2. Consider the discrete-time nonlinear uncertain dynamical system G given by (4.1) and
(4.2), where fx(·, ·) and G(·, ·) are given by (4.4) and (4.14), respectively, fx(·, ·) is nonnegative with
respect to x, fz(·, ·) is nonnegative with respect to z, and Δf(·, ·) is nonnegative with respect to x and
belongs to F. For a given xe ∈ R

nx
+ , assume there exist a nonnegative vector ze ∈ R

nz
+ and a vector

ue ∈ R
nx such that (4.6) and (4.7) hold with fx(xe, ze) ≤≤ xe. Furthermore, assume that (4.2) is

input-to-state stable at z(k) ≡ ze with x(k) − xe viewed as the input. Finally, let K ∈ R
nx×nx be such

that (sgn bi)rowi(K) ≤≤ 0, i = 1, . . . , nx, andAs � A+BuK is nonnegative and asymptotically stable.
Then the neuroadaptive feedback control law (4.15), where Ŵ(k) is given by (4.16) with Ŵi(k) ∈ R

si ,
k ∈ Z+, i = 1, . . . , nx, and σ̂(x, z, Ŵ) � [σ̂T

1 (x, z, Ŵ1), . . . , σ̂T
nx(x, z, Ŵnx)]

T with σ̂i(j)(x, z, Ŵi) = 0
whenever Ŵi(j) > 0, i = 1, . . . , nx, j = 1, . . . , si,—with update law

Ŵi(k + 1) = Ŵi(k) +
qi‖P 1/2(x(k) − xe)‖

1 + ‖P 1/2(x(k) − xe)‖ 2

[(
sgn bi

)
ẽi(k)σ̂i

(
x(k), z(k), Ŵi(k)

)
− γiŴi(k)

]
,

Ŵi(0) = Ŵi0, i = 1, . . . , nx,

(4.21)

where P � diag[p1, . . . , pnx] > 0 satisfies (4.18), qi and γi are positive constants satisfying |bi|qisi < 2
and qiγi ≤ 1, i = 1 . . . , nx, ẽ(k) � x(k + 1) − xe − As(x(k) − xe) = [ẽ1(k), ẽ2(k), . . . , ẽnx(k)]

T—
guarantees that there exists a positively invariant setDα ⊂ R

nx
+ ×R

nz
+ ×R

s×nx such that (xe, ze,W) ∈ Dα,
whereW � block-diag[W1, . . . ,Wnx], and the solution (x(k), z(k), Ŵ(k)), k ∈ Z+, of the closed-loop
system given by (4.1), (4.2), (4.15), and (4.21) is ultimately bounded for all (x(0), z(0), Ŵ(0)) ∈ Dα
with ultimate bound ‖P 1/2(x(k) − xe)‖ < ε, k ≥ K, where ε is given by (4.19) with bi replaced by |bi|
in β and ξ, i = 1, . . . , nx. Furthermore, x(k) ≥≥ 0 and z(k) ≥≥ 0, k ∈ Z+, for all (x0, z0) ∈ R

nx
+ ×R

nz
+ .

Proof. The proof is identical to the proof of Theorem 4.1 with Q replaced by Q = diag[q1/
p1|b1|, . . . , qnx/pnx |bnx |].

Finally, in the case where Bu is an unknown diagonal matrix but the sign of each diagonal
element is known and 0 < |bi| ≤ b, i = 1, . . . , nx, where b is known, we can take the gain matrix
K to be diagonal so that K = diag[k1, . . . , knx], where ki is such that −1/b ≤ (sgn bi)ki < 0,
i = 1, . . . , nx. In this case, taking A in (4.4) to be the identity matrix, As is given by As =
diag[1 + b1k1, . . . , 1 + bnxknx] which is nonnegative and asymptotically stable.

Example 4.3. Consider the nonlinear uncertain system (4.1) with

fx(x, z) =

[
x1 + x2 + ax1 sinπx2

0.5x1 + 0.25x2

]
, G(x, z) =

⎡
⎢⎣

b

1 + x 2
1 + x 2

2

0

⎤
⎥⎦ , (4.22)

where a, b ∈ R are unknown. For simplicity of exposition, here we assume that there is
no internal dynamics. Note that fx(x, z) and G(x, z) in (4.22) can be written in the form
of (4.4) and (4.3) with A =

[
0.1 0.1
0.5 0.25

]
, Δf(x) = [ax1 sinπx2, 0]

T, Bu = b, and Gn(x) =
1/(1 + x 2

1 + x 2
2 ). Furthermore, note that Δf(x, z) is unknown and belongs to F. Since for

xe= [0.5, 1]T there exists ue ∈ R+ such that (4.6) is satisfied, it follows from Theorem 4.2
that the neuroadaptive feedback control law (4.15) with K = [−0.1, 0] and update law (4.21)
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Figure 2: State trajectories and control signal versus time.

guarantees that the closed-loop systems trajectory is ultimately bounded and remains in the
nonnegative orthant of the state space for nonnegative initial conditions. With a = 0.9, b = 1,
σ1(x, z) = [1/(1 + e−cx1), . . . , 1/(1 + e−6cx1), 1/(1 + e−cx2), . . . , 1/(1 + e−6cx2)]T, c = 0.5, q1 = 0.1,
γ1 = 0.1, and initial conditions x(0) = [2, 1]T and W(0) = [0, . . . , 0]T ∈ R

12, Figure 2 shows the
state trajectories versus time and the control signal versus time.

5. Neuroadaptive control for discrete-time nonlinear nonnegative uncertain
systems with nonnegative control

As discussed in the introduction, control (source) inputs of drug delivery systems for
physiological and pharmacological processes are usually constrained to be nonnegative as
are the system states. Hence, in this section we develop neuroadaptive control laws for
discrete-time nonnegative systems with nonnegative control inputs. In general, unlike linear
nonnegative systems with asymptotically stable plant dynamics, a given set point xe ∈ R

n
+ for

a discrete-time nonlinear nonnegative dynamical system

x(k + 1) = f
(
x(k)

)
+ u(k), x(0) = x0, k ∈ Z+, (5.1)

where x(k) ∈ R
n, u(k) ∈ R

n, and f : R
n → R

n, may not be asymptotically stabilizable with

a constant control u(k) ≡ ue ∈ R
n

+ . Hence, we assume that the set point xe ∈ R
n
+ satisfying

xe = f(xe) + ue is a unique equilibrium point in the nonnegative orthant with u(k) ≡ ue and is
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also asymptotically stable for all x0 ∈ R
n

+ . This implies that the equilibrium solution x(k) ≡ xe

to (5.1) with u(k) ≡ ue is asymptotically stable for all x0 ∈ R
n

+ .
In this section, we assume that A in (4.4) is nonnegative and asymptotically stable,

and hence, without loss of generality (see [19, Proposition 3.1]), we can assume that A
is an asymptotically stable compartmental matrix [19]. Furthermore, we assume that the
control inputs are injected directly into m separate compartments so that Bu and Gn(x, z)
in (4.14) are such that Bu = diag[b1, . . . , bnx] is a positive diagonal matrix and Gn(x, z) =
diag[gn1(x, z), . . . , gnnx(x, z)], where gni : R

nx
+ × R

nz
+ → R+, i = 1, . . . , m, is a known positive

diagonal matrix function. For compartmental systems, this assumption is not restrictive since
control inputs correspond to control inflows to each individual compartment. For the statement
of the next theorem, recall the definitions of W and Ŵ(k), k ∈ Z+, given in Theorem 4.1.

Theorem 5.1. Consider the discrete-time nonlinear uncertain dynamical system G given by (4.1) and
(4.2), where fx(·, ·) and G(·, ·) are given by (4.4) and (4.14), respectively, A is nonnegative and
asymptotically stable, fx(·, ·) is nonnegative with respect to x, fz(·, ·) is nonnegative with respect to
z, and Δf(·, ·) is nonnegative with respect to x and belongs to F. For a given xe ∈ R

nx
+ assume

there exist positive vectors ze ∈ R
nz
+ and ue ∈ R

nx
+ such that (4.6) and (4.7) hold and the set point

(xe, ze) ∈ R
nx
+ × R

nz
+ is asymptotically stable with constant control u(k) ≡ ue ∈ R

nx
+ for all x0 ∈ R

n
+.

In addition, assume that (4.2) is input-to-state stable at z(k) ≡ ze with x(k) − xe viewed as the input.
Then the neuroadaptive feedback control law

ui(k) = max
{

0, ûi(k)
}
, i = 1, . . . , nx, (5.2)

where

ûi(k) = −g−1
ni

(
x(k), z(k)

)
ŴT

i (k)σi
(
x(k), z(k)

)
, (5.3)

and Ŵi(k) ∈ R
si , k ∈ Z+, i = 1, . . . , nx,—with update law

Ŵi(k + 1) = Ŵi(k) +
qi
∥∥P 1/2(x(k) − xe

)∥∥
1 +

∥∥P 1/2
(
x(k) − xe

)∥∥ 2

[
γẽi(k)σi

(
x(k), z(k)

)
− Ŵi(k)

]
,

Ŵi(0) = Ŵi0, i = 1, . . . , nx,

(5.4)

where P � diag[p1, . . . , pnx] > 0 satisfies

P = ATPA + R (5.5)

for positive definite R ∈ R
nx×nx , γ and qi are positive constants satisfying biqiγ < 1 and qi ≤ 1 −

bisiγ , i = 1, . . . , nx, ẽ(k) � x(k + 1) − xe − A(x(k) − xe) = [ẽ1(k), . . . , ẽnx(k)]
T—guarantees that

there exists a positively invariant set Dα ⊂ R
nx
+ × R

nz
+ × R

s×nx such that (xe, ze,W) ∈ Dα and the
solution (x(k), z(k), Ŵ(k)), k ∈ Z+, of the closed-loop system given by (4.1), (4.2), (5.2), and (5.4)
is ultimately bounded for all (x(0), z(0), Ŵ(0)) ∈ Dα with ultimate bound ‖P 1/2(x(k) − xe)‖ < ε,
k ≥ K, where ε �

√
eη − 1,

η � α 2
x+ ηw+

1
2

(
αγ

a
+ β
)
+ 2
(

1+
1
c

)(
α+ ξηw

)
, αx � max

{
αγ + aβ

a
(
μ1 − cμ2

) , 1 + c
cγ(1 − a − γξ)

}
,

α �
nx∑
i=1
pib

2
i ε
∗2
i , β �

nx∑
i=1
pib

2
i w

∗2
i , ηw > (2 + ζ)(αγ + aβ)/(2aζ),

(5.6)
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μ1 � λmin(R)/λmax(P), μ2 � λmax(ATPA)/λmin(P), ξ � max{b1q1s1, . . . , bnxqnxsnx}, ζ �
min{q1, . . . , qnx}, and a and c are positive constants satisfying a < 1 − γξ and cμ2 < μ1. Furthermore,
u(k) ≥≥ 0, x(k) ≥≥ 0, and z(k) ≥≥ 0, k ∈ Z+, for all (x0, z0) ∈ R

nx
+ × R

nz
+ .

Proof. See Appendix B.

6. Conclusion

In this paper, we developed a neuroadaptive control framework for adaptive set-point
regulation of discrete-time nonlinear uncertain nonnegative and compartmental systems.
Using Lyapunov methods, the proposed framework was shown to guarantee ultimate
boundedness of the error signals corresponding to the physical system states and the neural
network weighting gains while additionally guaranteeing the nonnegativity of the closed-loop
system states associated with the plant dynamics.

Appendices

A. Proof of Theorem 4.1

In this appendix, we prove Theorem 4.1. First, note that with u(k), k ∈ Z+, given by (4.15), it
follows from (4.1), (4.4), and (4.14) that

x(k + 1) = Ax(k) + Δf
(
x(k), z(k)

)
+ BuK(x(k) − xe) − BuŴ

T(k)σ̂
(
x(k), z(k), Ŵ(k)

)
,

x(0) = x0, k ∈ Z+.
(A.1)

Now, defining ex(k) � x(k)−xe and ez(k) � z(k)−ze, using (4.5)–(4.7), (4.9), andAs = A+BuK,
it follows from (4.2) and (A.1) that

ex(k + 1) = Asex(k) + (A − I)xe + Δf
(
x(k), z(k)

)
− BuŴ

T(k)σ̂
(
x(k), z(k), Ŵ(k)

)
= Asex(k) + Bu

[
δ
(
x(k), z(k)

)
− δ
(
xe, ze

)
−Gn

(
xe, ze

)
ue − ŴT(k)σ

(
x(k), z(k)

)]
+ BuŴ

T(k)
[
σ
(
x(k), z(k)

)
− σ̂
(
x(k), z(k), Ŵ(k)

)]
= Asex(k) + Bu

[
WTσ

(
x(k), z(k)

)
+ ε
(
x(k), z(k)

)
− ŴT(k)σ

(
x(k), z(k)

)]
+ BuŴ

T(k)
[
σ
(
x(k), z(k)

)
− σ̂
(
x(k), z(k), Ŵ(k)

)]
= Asex(k) − BuW̃

T(k)σ̂
(
x(k), z(k), Ŵ(k)

)
+ Bu

[
ε
(
x(k), z(k)

)
−WTσ̃

(
x(k), z(k), Ŵ(k)

)]
= Asex(k) − BuW̃

T(k)σ̂
(
x(k), z(k), Ŵ(k)

)
+ Bur(k), ex(0) = x0 − xe, k ∈ Z+,

(A.2)

ez(k + 1) = f̃z
(
ex(k), ez(k)

)
, ez(0) = z0 − ze, (A.3)

where f̃z(ex, ez) � fz(ex + xe, ez + ze), ε(x, z) � [ε1(x, z), . . . , εnx(x, z)]
T, σ(x, z) �

[σT
1 (x, z), . . . , σ

T
nx(x, z)]

T, W̃(k) � Ŵ(k)−W , σ̃(x, z, Ŵ) � σ̂(x, z, Ŵ)−σ(x, z), and r � ε(x, z)−
WTσ̃(x, z, Ŵi) = [r1, . . . , rnx]

T. Furthermore, since As is nonnegative and asymptotically stable,
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it follows from Theorem 2.3 that there exist a positive diagonal matrix P = diag[p1, . . . , pnx] and
a positive-definite matrix R ∈ R

nx×nx such that (4.18) holds.
Next, to show that the closed-loop system given by (4.17), (A.2), and (A.3) is ultimately

bounded with respect to W̃ , consider the Lyapunov-like function

Vw
(
ex, ez, W̃

)
= tr W̃(k)Q−1W̃(k)T, (A.4)

where Q � diag[q̂1, . . . , q̂nx] = diag[q1/p1b1, . . . , qnx/pnxbnx]. Note that (A.4) satisfies (3.3) with

x1 = [q̂ −1/2
1 W̃T

1 , . . . , q̂
−1/2
nx W̃T

nx]
T
, x2 = [eT

x, e
T
z]

T, α(‖x1‖) = β(‖x1‖) = ‖x1‖ 2, where ‖x1‖ 2 =
tr W̃Q−1W̃T. Furthermore, α(‖x1‖) is a class-K∞ function. Now, using (4.17) and (A.2), it
follows that the difference of Vw(ex, ez, W̃) along the closed-loop system trajectories is given
by

ΔVw
(
ex(k), ez(k), W̃(k)

)
� tr W̃(k + 1)Q−1W̃T(k + 1) − tr W̃(k)Q−1W̃T(k)

=
nx∑
i=1

2pibi
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

[
ẽi(k)σ̂i

(
x(k), z(k), Ŵi(k)

)
− γiŴi(k)

]T
W̃i(k)

+
nx∑
i=1

pibiqi
∥∥P 1/2ex(k)

∥∥ 2

(
1 +

∥∥P 1/2ex(k)
∥∥ 2) 2

∥∥ẽi(k)σ̂i(x(k), z(k), Ŵi(k)
)
− γiŴi(k)

∥∥ 2

=
nx∑
i=1

2pibi
∥∥P 1/2ex(k)

∥∥ri(k)ẽi(k)
1 +

∥∥P 1/2ex(k)
∥∥ 2

−
nx∑
i=1

2pi
∥∥P 1/2ex(k)

∥∥ẽ 2
i (k)

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
nx∑
i=1

2pibiγi
∥∥P 1/2ex(k)

∥∥ŴT
i (k)W̃i(k)

1 +
∥∥P 1/2ex(k)

∥∥ 2

+
nx∑
i=1

pibiqi
∥∥P 1/2ex(k)

∥∥ 2

(
1 +

∥∥P 1/2ex(k)
∥∥ 2) 2

∥∥ẽi(k)σ̂i(x(k), z(k), Ŵi(k)
)
− γiŴi(k)

∥∥ 2
.

(A.5)

Next, using

nx∑
i=1

2pibiriẽi ≤ a−1
nx∑
i=1

pib
2
i r

2
i + a

∥∥P 1/2ẽ
∥∥ 2
, (A.6)

nx∑
i=1

pibiqi
∥∥ẽiσ̂i(x, z, Ŵi

)
− γiŴi

∥∥ 2 ≤
nx∑
i=1

2pibiqisiẽ 2
i +

nx∑
i=1

2pibiqiγ 2
i

∥∥Ŵi

∥∥ 2
, (A.7)

2W̃T
i Ŵi =

∥∥W̃i

∥∥ 2 +
∥∥Ŵi

∥∥ 2 −
∥∥Wi

∥∥ 2
, (A.8)

nx∑
i=1

2pibiqisi
∥∥P 1/2ex

∥∥2
ẽ 2
i(

1 +
∥∥P 1/2ex

∥∥ 2) 2
≤
ξ
∥∥P 1/2ẽ

∥∥ 2∥∥P 1/2ex
∥∥

1 +
∥∥P 1/2ex

∥∥ 2
, (A.9)
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it follows that

ΔVw
(
ex(k), ez(k), W̃(k)

)

≤
a−1
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

nx∑
i=1

pib
2
i r

2
i (k) +

a
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
2
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
−

nx∑
i=1

pibiγi
∥∥W̃i(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
nx∑
i=1

pibiγi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

nx∑
i=1

pibiγi
∥∥Wi

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

+
nx∑
i=1

2pibiqisi
∥∥P 1/2ex(k)

∥∥ 2
ẽ 2
i (k)(

1 +
∥∥P 1/2ex(k)

∥∥ 2) 2
+

nx∑
i=1

2pibiqiγ 2
i

∥∥P 1/2ex(k)
∥∥ 2∥∥Ŵi(k)

∥∥ 2

(
1 +

∥∥P 1/2ex(k)
∥∥ 2) 2

≤
(α/a)

∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+
a
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
2
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
−

nx∑
i=1

pibiγi
∥∥W̃i(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
nx∑
i=1

pibiγi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

β
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

+
ξ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

nx∑
i=1

2pibiqiγ 2
i

∥∥P 1/2ex(k)
∥∥ 2∥∥Ŵi(k)

∥∥ 2

(
1 +

∥∥P 1/2ex(k)
∥∥ 2) 2

= −
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
(2 − a − ξ)

−
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

(
nx∑
i=1

pibiγi
∥∥W̃i(k)

∥∥ 2 − α
a
− β
)

−
nx∑
i=1

pibiγi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

(
1 −

2qiγi
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

)
.

(A.10)

Furthermore, note that since, by assumption, 2 − a − ξ > 0 and qiγi ≤ 1, i = 1, . . . , nx, it follows
that

1 −
2qiγi

∥∥P 1/2ex
∥∥

1 +
∥∥P 1/2ex

∥∥ 2
≥ 0, i = 1, . . . , nx. (A.11)
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Hence,

ΔVw
(
ex(k), ez(k), W̃(k)

)
≤ −

∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

(
nx∑
i=1

pibiγi
∥∥W̃i(k)

∥∥ 2 − α
a
− β
)

≤ −
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

(
ζ
nx∑
i=1

∥∥q̂ −1/2
i W̃i(k)

∥∥ 2 − α
a
− β
)
.

(A.12)

Now, for

ζ
nx∑
i=1

∥∥q̂ −1/2
i W̃i

∥∥ 2
>
α

a
+ β, (A.13)

it follows that ΔVw(ex(k), ez(k), W̃(k)) ≤ 0 for all k ∈ Z+, that is, ΔVw(ex(k), ez(k), W̃(k)) ≤ 0
for all (ex(k), ez(k), W̃(k)) ∈ (Rnx × R

nz × R
nx×s) \ D̃w and k ∈ Z+, where

D̃w �
{(

ex, ez, W̃
)
∈ R

nx × R
nz × R

nx×s :
nx∑
i=1

∥∥q̂ −1/2
i W̃i

∥∥ 2 ≤
α + aβ
aζ

}
. (A.14)

Furthermore, it follows from (A.12) that

ΔVw
(
ex, ez, W̃

)
≤

∥∥P 1/2ex
∥∥

1 +
∥∥P 1/2ex

∥∥ 2

(
α

a
+ β
)
≤ 1

2

(
α

a
+ β
)
,
(
ex, ez, W̃

)
∈ R

nx × R
nz × R

nx×s.

(A.15)

Hence, it follows from (A.4) and (A.15) that

sup
(W̃,ex,ez)∈Bμ(0)×Rnx×Rnz

(
Vw
(
ex, ez, W̃

)
+ ΔVw

(
ex, ez, W̃

))
≤
(

1
2
+

1
ζ

)(
α

a
+ β
)
, (A.16)

where μ 2 = (α+aβ)/(aζ). Thus, it follows from Theorem 3.2 that the closed-loop system given
by (4.17), (A.2), and (A.3) is globally bounded with respect to W̃ uniformly in (ex(0), ez(0)),
and for every W̃i(0) ∈ R

si ,
∑nx

i=1 ‖q̂
−1/2
i W̃i(k)‖ 2 ≤ εw, k ∈ Z+, where

εw � max
{
ηw, δw

}
, (A.17)

ηw ≥ (2 + ζ)(α + aβ)/(2aζ), and δw � ∑nx
i=1 ‖q̂

−1/2
i W̃i(0)‖ 2. Furthermore, to show that∑nx

i=1‖q̂
−1/2
i W̃i(k)‖ 2 < ε1, k ≥ K, suppose there exists k ∗ ∈ Z+ such that ex(k) = 0 for all k ≥ k ∗.

In this case, W̃(k + 1) = W̃(k), k ≥ k ∗, which implies W̃(k) = W̃(k ∗), k ≥ k ∗. Alternatively,
suppose there does not exist k ∗ ∈ Z+ such that ex(k) = 0 for all k ≥ k ∗. In this case, there
exists an infinite set Z

∗
+ � {k ∈ Z+ : ex(k)/= 0} ⊂ Z+. Now, with (A.13) satisfied, it follows

that ΔVw(ex(k), ez(k), W̃(k)) < 0 for all k ∈ Z
∗
+, that is, ΔVw(ex(k), ez(k), W̃(k)) < 0 for all

(ex(k), ez(k), W̃(k)) ∈ (Rnx × R
nz × R

nx×s) \ D̃w and k ∈ Z
∗
+, where D̃w is given by (A.14).

Furthermore, note that ΔVw(ex(k), ez(k), W̃(k)) = 0, k ∈ Z+ \ Z
∗
+, and (A.16) holds. Hence,

it follows from Theorem 3.3 that the closed-loop system given by (4.17), (A.2), and (A.3) is
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globally ultimately bounded with respect to W̃ uniformly in (ex(0), ez(0)) with ultimate bound
given by √ηw, where ηw > (2 + ζ)(α + aβ)/(2aζ).

Next, to show ultimate boundedness of the error dynamics, consider the Lyapunov-like
function

Ve
(
ex, ez, W̃

)
= ln

(
1 + eT

xPex
)
+ tr W̃Q−1W̃T. (A.18)

Note that (A.18) satisfies

α
(∥∥∥[xT

1 , x
T
2
]T
∥∥∥) ≤ Ve

(
x1, x2, x3

)
≤ β
(∥∥∥[xT

1 , x
T
2
]T
∥∥∥), (A.19)

with x1 = P 1/2ex, x2 = [q̂ −1/2
1 W̃T

1 , . . . , q̂
−1/2
nx W̃T

nx]
T, x3 = ez, α(‖[xT

1 , x
T
2 ]

T‖) = ln(1 + ‖[xT
1 , x

T
2 ]

T‖ 2),

and β(‖[xT
1 , x

T
2 ]

T‖) = ‖[xT
1 , x

T
2 ]

T‖ 2, where ‖[xT
1 , x

T
2 ]

T‖ 2 = eT
xPex + tr W̃Q−1W̃T. Furthermore, α(·)

is a class-K∞ function. Now, using (4.18), (A.10), and the definition of ẽ, it follows that the
difference of Ve(ex, ez, W̃) along the closed-loop system trajectories is given by

ΔVe
(
ex(k), ez(k), W̃(k)

)
� Ve

(
ex(k + 1), ez(k + 1), W̃(k + 1)

)
− Ve

(
ex(k), ez(k), W̃(k)

)

= ln
[

1 + eT
x(k + 1)Pex(k + 1)

1 + eT
x(k)Pex(k)

]

+ tr W̃(k + 1)Q−1W̃T(k + 1) − tr W̃(k)Q−1W̃T(k)

≤ e
T
x(k + 1)Pex(k + 1) − eT

x(k)Pex(k)

1 + eT
x(k)Pex(k)

+ ΔVw
(
ex(k), ez(k), W̃(k)

)

= − eT
x(k)Rex(k)

1 + eT
x(k)Pex(k)

+
2eT

x(k)A
T
s Pẽ(k)

1 + eT
x(k)Pex(k)

+
ẽT(k)Pẽ(k)

1 + eT
x(k)Pex(k)

+ ΔVw
(
ex(k), ez(k), W̃(k)

)

≤ −
∥∥R1/2ex(k)

∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

2eT
x(k)A

T
s Pẽ(k)

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

∥∥P 1/2ẽ(k)
∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
(2 − a − ξ)

−
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

(
nx∑
i=1

pibiγi
∥∥W̃i(k)

∥∥ 2 − αa−1 − β
)

−
nx∑
i=1

pibiγi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

(
1 −

2qiγi
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

)
,

(A.20)
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where in (A.20) we used lna − ln b = ln(a/b) and ln(1 + c) ≤ c for a, b > 0 and c > −1. Now,
noting a < 2 − ξ and cμ2 < μ1, using the inequalities

μ1
∥∥P 1/2ex

∥∥ 2 ≤
∥∥R1/2ex

∥∥ 2
,

2eT
xA

T
s Pẽ ≤ cμ2

∥∥P 1/2ex
∥∥ 2 + c−1∥∥P 1/2ẽ

∥∥ 2
,

(A.21)

and rearranging terms in (A.20) yields

ΔVe
(
ex(k), ez(k), W̃(k)

)

≤ −
μ1
∥∥P 1/2ex(k)

∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2
+
cμ2
∥∥P 1/2ex(k)

∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

c−1
∥∥P 1/2ẽ(k)

∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2

+
(α/a)

∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+
a
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

+
β
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2
−
(
2
∥∥P 1/2ex(k)

∥∥ − 1
)∥∥P 1/2ẽ(k)

∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2

+
ξ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
−

nx∑
i=1

pibiγi
∥∥W̃i(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
nx∑
i=1

pibiγi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

(
1 −

2qiγi
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

)

≤ −
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

[(
μ1 − cμ2

)∥∥P 1/2ex(k)
∥∥ − β − αa−1]

−
∥∥P 1/2ẽ(k)

∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2

[
(2 − a − ξ)

∥∥P 1/2ex(k)
∥∥ − 1 − c−1]

−
nx∑
i=1

pibiγi
∥∥W̃i(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
nx∑
i=1

pibiγi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

(
1 −

2qiγi
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

)

≤ −
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

[(
μ1 − cμ2

)∥∥P 1/2ex(k)
∥∥ − β − αa−1]

−
∥∥P 1/2ẽ(k)

∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2

[
(2 − a − ξ)

∥∥P 1/2ex(k)
∥∥ − 1 − c−1].

(A.22)

Now, for

∥∥P 1/2ex(k)
∥∥ > max

{
aβ + α

a
(
μ1 − cμ2

) , 1 + c
c(2 − a − ξ)

}
� αx, (A.23)
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W̃

ex

D̃er

Bound of W̃

D̃η

D̃e

D̃α

αx
εe

√
εw

Figure 3: Visualization of sets used in the proof of Theorem 4.1.

it follows that ΔVe(ex(k), ez(k), W̃(k)) ≤ −W(ex(k)) for all k ∈ Z+, where

W
(
ex
)

�
∥∥P 1/2ex

∥∥
1 +

∥∥P 1/2ex
∥∥ 2

[(
μ1 − cμ2

)∥∥P 1/2ex
∥∥ − β − αa−1], (A.24)

or, equivalently, ΔVe(ex(k), ez(k), W̃(k)) ≤ −W(ex(k)) for all (ex(k), ez(k), W̃(k)) ∈ D̃ e \ D̃ er,
k ∈ Z+, where (see Figure 3)

D̃ e �
{(
ex, ez, W̃

)
∈ R

nx × R
nz × R

nx×s : x ∈ Dx
}
, (A.25)

D̃ er �
{(
ex, ez, W̃

)
∈ R

nx × R
nz × R

nx×s :
∥∥P 1/2ex

∥∥ ≤ αx}. (A.26)

Next, we show that ‖x1(k)‖ < εe, k ∈ Z+. Since ‖x2(k)‖ 2 ≤ εw for all k ∈ Z+, it follows that, for
x1(k) ∈ Bαx(0), k ∈ Z+,

Ve
(
x1(k), x2(k), x3(k)

)
+ ΔVe

(
x1(k), x2(k), x3(k)

)
≤ α 2

x + εw + ΔVe
(
x1(k), x2(k), x3(k)

)
≤ α 2

x + εw +
1
2

(
α

a
+ β
)
+
(

1 +
1
c

)∥∥P 1/2ẽ(k)
∥∥ 2

≤ α 2
x + εw +

1
2

(
α

a
+ β
)
+
(

1 +
1
c

)(
2α + 2ξεw

)
� η.

(A.27)

Now, let δ ∈ (0, αx] and assume ‖x10‖ ≤ δ. If ‖x1(k)‖ ≤ αx, k ∈ Z+, then it follows that ‖x1(k)‖ ≤
αx ≤ α−1

(
β
(√

α 2
x + εw

))
≤ α−1(η), k ∈ Z+. Alternatively, if there exists K ∗ > 0 such that

‖x1(K ∗)‖ > αx, then, since ‖x10‖ ≤ αx, it follows that there exists κ ≤ K ∗, such that ‖x1(κ−1)‖ ≤
αx and ‖x1(k)‖ > αx, where k ∈ {κ, . . . , K ∗}. Hence, it follows that

α
(∥∥x1

(
K ∗
)∥∥) ≤ α(∥∥[xT

1

(
K ∗
)
, xT

2
(
K ∗
)]T∥∥)

≤ Ve
(
x1
(
K ∗
)
, x2
(
K ∗
)
, x3
(
K ∗
))

≤ Ve
(
x1(κ), x2(κ), x3(κ)

)
= ΔVe

(
x1(κ − 1), x2(κ − 1), x3(κ − 1)

)
+ Ve

(
x1(κ − 1), x2(κ − 1), x3(κ − 1)

)
≤ η,

(A.28)
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which implies that ‖x1(K ∗)‖ ≤ α−1(η). Next, let δ ∈ (αx, γ), where γ � sup{r > 0 : Bα−1(β(r))(0) ⊂
D̃ e} and assume x10 ∈ Bδ(0) and ‖x1(K)‖ > αx. Now, for every k̂ > 0 such that ‖x1(k)‖ ≥ αx,
k ∈ {0, . . . , k̂}, it follows that

α
(∥∥x1(k)

∥∥) ≤ α(∥∥[xT
1 (k), x

T
2 (k)

]T∥∥)
≤ Ve

(
x1(k), x2(k), x3(k)

)
≤ Ve

(
x10, x20, x30

)
≤ β
(∥∥[xT

10, x
T
20
]T∥∥)

≤ β
(√

δ 2 + εw

)
,

(A.29)

which implies that ‖x1(k)‖ ≤ α−1(β(
√
δ 2 + εw)), k ∈ {0, . . . , k̂}. Now, if there exists K ∗ > 0 such

that ‖x1(K ∗)‖ ≤ αx, then it follows as in the earlier case shown above that ‖x1(k)‖ ≤ α−1(η),
k ≥ K ∗. Hence, if x10 ∈ Bδ(0), then

∥∥x1(k)
∥∥ ≤ α−1

(
max

{
η, β

(√
δ 2 + εw

)})
� εe, k ∈ Z+. (A.30)

Finally, repeating the above arguments with ‖x2(k)‖ 2 ≤ εw, k ∈ Z+, replaced by ‖x2(k)‖ 2 ≤ ηw,
k ≥ K > 0, it can be shown that ‖x1(k)‖ < ε, k ≥ K, where ε =

√
eη − 1.

Next, define

D̃α �
{(
ex, ez, W̃

)
∈ R

nx × R
nz × R

nx×s : Ve
(
ex, ez, W̃

)
≤ α
}
, (A.31)

where α is the maximum value such that D̃α ⊆ D̃ e, and define

D̃ η �
{(
ex, ez, W̃

)
∈ R

nx × R
nz × R

nx×s : Ve
(
ex, ez, W̃

)
≤ ε 2

e
}
, (A.32)

where εe is given by (A.30). Assume that D̃ η ⊂ D̃α (see Figure 3) (this assumption is standard
in the neural network literature and ensures that in the error space D̃ e there exists at least one
Lyapunov level set D̃ η ⊂ D̃α. In the case where the neural network approximation holds in
R
nx ×R

nz , this assumption is automatically satisfied. See Remark A.1 for further details). Now,
for all (ex, ez, W̃) ∈ D̃ η ∩ (D̃ e \ D̃ er), ΔVe(ex, ez, W̃) ≤ 0. Alternatively, for all (ex, ez, W̃) ∈ D̃ η ∩
D̃ er, Ve(ex, ez, W̃) + ΔVe(ex, ez, W̃) ≤ η ≤ ε 2

e . Hence, it follows that D̃ η is positively invariant.
In addition, since (A.3) is input-to-state stable with ex viewed as the input, it follows from
Proposition 3.4 that the solution ez(k), k ∈ Z+, to (A.3) is ultimately bounded. Furthermore,
it follows from [21, Theorem 1] that there exist a continuous, radially unbounded, positive-
definite function Vz : R

nz → R, a class-K∞ function γ1(·), and a class-K function γ2(·) such
that

ΔVz
(
ez
)
≤ −γ1

(∥∥ez∥∥) + γ2
(∥∥ex∥∥). (A.33)

Since the upper bound for ‖ex‖ 2 is given by (eη − 1)/λmin(P), it follows that the set is given by

Dz �
{
z ∈ Dcz : Vz

(
z − ze

)
≤ max
‖z−ze‖=γ−1

1 (γ2(
√
eη−1/λmin(P 1/2)))

Vz(z − ze)
}
, (A.34)
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is also positively invariant as long as Dz ⊂ Dcz (see Remark A.1). Now, since D̃ η and Dz are
positively invariant, it follows that

Dα �
{
(x, z, Ŵ) ∈ R

nx × R
nz × R

nx×s :
(
x − xe, z − ze, Ŵ −W

)
∈ D̃ η, z ∈ Dz

}
(A.35)

is also positively invariant. In addition, since (4.1), (4.2), (4.15), and (4.17) are ultimately
bounded with respect to (x, Ŵ); and since (4.2) is input-to-state stable at z(k) ≡ ze with x(k) −
xe viewed as the input then it follows from Proposition 3.4 that the solution (x(k), z(k), Ŵ(k)),
k ∈ Z+, of the closed-loop system (4.1), (4.2), (4.15), and (4.17) is ultimately bounded for all
(x(0), z(0), Ŵ(0)) ∈ Dα.

Finally, to show that x(k) ≥≥ 0 and z(k) ≥≥ 0, k ∈ Z+, for all (x0, z0) ∈ R
nx
+ × R

nz
+ note

that the closed-loop system (4.1), (4.15), and (4.17), is given by

x(k + 1) = fx
(
x(k), z(k)

)
+ BuK

(
x(k) − xe

)
− BuŴ

T(k)σ̂
(
x(k), z(k), Ŵ(k)

)
=
(
A + BuK

)
x(k) + Δf

(
x(k), z(k)

)
− BuŴ

T(k)σ̂
(
x(k), z(k), Ŵ(k)

)
− BuKxe

= f̃
(
k, x(k), z(k)

)
+ v, x(0) = x0, k ∈ Z+,

(A.36)

where

f̃(k, x, z) �
(
A + BuK

)
x + Δf(x, z) − BuŴ

T(k)σ̂(x, z, Ŵ), v � −BuKxe. (A.37)

Note thatA+BuK and Δf(·, ·) are nonnegative and, since σ̂i(j)(x, z, Ŵi) = 0 whenever Ŵi(j) > 0,
i = 1, . . . , nx, j = 1, . . . , si, −ŴTσ̂(x, z, Ŵ) ≥≥ 0. Hence, since f̃(k, x, z) is nonnegative with
respect to x pointwise-in-time, fz(x, z) is nonnegative with respect to z, and v ≥≥ 0, it follows
from Proposition 2.9 that x(k) ≥≥ 0, k ∈ Z+, and z(k) ≥≥ 0, k ∈ Z+, for all (x0, z0) ∈ R

nx
+ × R

nz
+ .

Remark A.1. In the case where the neural network approximation holds in R
nx × R

nz , the
assumptions D̃ η ⊂ D̃α and Dz ⊂ Dcz invoked in the proof of Theorem 4.1 are automatically
satisfied. Furthermore, in this case the control law (4.15) ensures global ultimate boundedness
of the error signals. However, the existence of a global neural network approximator for
an uncertain nonlinear map cannot in general be established. Hence, as is common in the
neural network literature, for a given arbitrarily large compact set Dcx × Dcz ⊂ R

nx × R
nz ,

we assume that there exists an approximator for the unknown nonlinear map up to a desired
accuracy. Furthermore, we assume that in the error space D̃ e there exists at least one Lyapunov
level set such that D̃ η ⊂ D̃α. In the case where δ(·, ·) is continuous on R

nx × R
nz , it follows

from the Stone-Weierstrass theorem that δ(·, ·) can be approximated over an arbitrarily large
compact setDcx×Dcz. In this case, our neuroadaptive controller guarantees semiglobal ultimate
boundedness. An identical assumption is made in the proof of Theorem 5.1.

B. Proof of Theorem 5.1

In this appendix, we prove Theorem 5.1. First, define Ŵu(k) � block-diag[Ŵu1(k), . . . , Ŵu2(k)],
where

Ŵui(k) =

⎧⎨
⎩

0, if ûi(k) < 0,

Ŵi(k), otherwise,
i = 1, . . . , nx. (B.1)
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Next, note that with u(k), k ∈ Z+, given by (5.2), it follows from (4.1), (4.4), and (4.14) that

x(k + 1) = Ax(k) + Δf
(
x(k), z(k)

)
− BuŴ

T
u (k)σ

(
x(k), z(k)

)
, x(0) = x0, k ∈ Z+. (B.2)

Now, defining ex(k) � x(k)−xe and ez(k) � z(k)−ze and using (4.6), (4.7), and (4.9), it follows
from (4.2) and (B.2) that

ex(k + 1) = Aex(k) + (A − I)xe + Δf
(
x(k), z(k)

)
− BuŴ

T
u (k)σ

(
x(k), z(k)

)
= Aex(k) + Bu

[
δ
(
x(k), z(k)

)
− δ
(
xe, ze

)
−Gn

(
xe, ze

)
ue − ŴT(k)σ

(
x(k), z(k)

)]
+ Bu

(
Ŵ(k) − Ŵu(k)

)T
σ
(
x(k), z(k)

)
= Aex(k) − BuW̃

T(k)σ
(
x(k), z(k)

)
+ Buε

(
x(k), z(k)

)
+ Bu

(
Ŵ(k) − Ŵu(k)

)T
σ
(
x(k), z(k)

)
, ex(0) = x0 − xe, k ∈ Z+,

(B.3)

ez(k + 1) = f̃z
(
ex(k), ez(k)

)
, ez(0) = z0 − ze, (B.4)

where f̃z(ex, ez) � fz(ex + xe, ez + ze), and ε(x, z) � [ε1(x, z), . . . , εnx(x, z)]
T. Furthermore,

since A is nonnegative and asymptotically stable, it follows from Theorem 2.3 that there exist
a positive diagonal matrix P = diag[p1, . . . , pnx] and a positive-definite matrix R ∈ R

nx×nx such
that (5.5) holds.

Next, to show ultimate boundedness of the closed-loop system (5.4), (B.3), and (B.4),
consider the Lyapunov-like function

Vw(ex, ez, W̃) = tr W̃Q−1W̃T, (B.5)

where Q � diag[q̂1, . . . , q̂nx] = diag[q1/p1b1, . . . , qnx/pnxbnx] and W̃(k) � Ŵ(k) −W with W �
block-diag[W1, . . . ,Wnx]. Note that (B.5) satisfies (3.3) with x1 = [q̂ −1/2

1 W̃T
1 , . . . , q̂

−1/2
nx W̃T

nx]
T,

x2 = [eT
x, e

T
z]

T, α(‖x1‖) = β(‖x1‖) = ‖x1‖ 2, where ‖x1‖ 2 = tr W̃Q−1W̃T. Furthermore, α(‖x1‖) is
a class-K∞ function. Now, using (5.4) and (B.3), it follows that the difference of Vw(ex, ez, W̃)
along the closed-loop system trajectories is given by

ΔVw
(
ex(k), ez(k), W̃(k)

)
� tr W̃(k + 1)Q−1W̃T(k + 1) − tr W̃(k)Q−1W̃T(k)

=
nx∑
i=1

2pibi
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

(
γẽi(k)σi

(
x(k), z(k)

)
− Ŵi(k)

)T
W̃i(k)

+
nx∑
i=1

pibiqi
∥∥P 1/2ex(k)

∥∥ 2

(
1 +

∥∥P 1/2ex(k)
∥∥ 2) 2

∥∥γẽi(k)σi(x(k), z(k)) − Ŵi(k)
∥∥ 2
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=
nx∑
i=1

2pibiγ
∥∥P 1/2ex(k)

∥∥εi(x(k), z(k))ẽi(k)
1 +

∥∥P 1/2ex(k)
∥∥ 2

−
nx∑
i=1

2piγ
∥∥P 1/2ex(k)

∥∥ẽ 2
i (k)

1 +
∥∥P 1/2ex(k)

∥∥ 2

+
nx∑
i=1

2pibiγ
∥∥P 1/2ex(k)

∥∥ẽi(k)
1 +

∥∥P 1/2ex(k)
∥∥ 2

σT
i

(
x(k), z(k)

)[
Ŵi(k) − Ŵui(k)

]

−
nx∑
i=1

2pibi
∥∥P 1/2ex(k)

∥∥ŴT
i (k)W̃i(k)

1 +
∥∥P 1/2ex(k)

∥∥ 2

+
nx∑
i=1

pibiqi
∥∥P 1/2ex(k)

∥∥ 2

(
1 +

∥∥P 1/2ex(k)
∥∥ 2) 2

∥∥γẽi(k)σi(x(k), z(k)) − Ŵi(k)
∥∥ 2
.

(B.6)

Now, for each i ∈ {1, . . . , nx} and for the two cases given in (B.1), the right-hand side of
(B.6) gives the following:

(1) if ûi(k) < 0, then Ŵui(k) = 0. Now, using (A.8), (A.9), and the inequalities
nx∑
i=1

2pibiγεi(x, z)ẽi ≤ a−1αγ + aγ
∥∥P 1/2ẽ

∥∥ 2
, (B.7)

nx∑
i=1

2pibiγ ẽiσT
i (x, z)Ŵi ≤

nx∑
i=1

pib
2
i siγ

∥∥Ŵi

∥∥ 2 + γ
∥∥P 1/2ẽ

∥∥ 2
, (B.8)

nx∑
i=1

pibiqi
∥∥γẽiσi(x, z) − Ŵi

∥∥ 2 ≤
nx∑
i=1

2pibiqisiγ 2ẽ 2
i +

nx∑
i=1

2pibiqi
∥∥Ŵi

∥∥ 2
, (B.9)

nx∑
i=1

pibi
∥∥Wi

∥∥ 2 ≤ β, (B.10)

it follows that

ΔVw
(
ex(k), ez(k), W̃(k)

)

≤
(α/a)γ

∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+
aγ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
γ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

β
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

+
nx∑
i=1

pib
2
i γsi

∥∥Ŵi(k)
∥∥ 2∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

+
γ 2ξ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
−

nx∑
i=1

pibi
∥∥W̃i(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
nx∑
i=1

pibi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

nx∑
i=1

2pibiqi
∥∥P 1/2ex(k)

∥∥ 2∥∥Ŵi(k)
∥∥ 2

(
1 +

∥∥P 1/2ex(k)
∥∥ 2) 2

;

(B.11)
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(2) otherwise, Ŵui(k) = Ŵi(k), and hence, using (A.8), (A.9), (B.7), (B.9), and (B.10), it
follows that

ΔVw
(
ex(k), ez(k), W̃(k)

)

≤
(α/a)γ

∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+
aγ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
2γ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

β
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

+
γ 2ξ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
−

nx∑
i=1

pibi
∥∥W̃i(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

−
nx∑
i=1

pibi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+

nx∑
i=1

2pibiqi
∥∥P 1/2ex(k)

∥∥ 2∥∥Ŵi(k)
∥∥ 2

(
1 +

∥∥P 1/2ex(k)
∥∥ 2) 2

.

(B.12)

Hence, it follows from (B.6) that in either case

ΔVw
(
ex(k), ez(k), W̃(k)

)
≤ −

γ
∥∥P 1/2ẽ(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
(1 − a − γξ)

−
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

(
nx∑
i=1

pibi
∥∥W̃i(k)

∥∥ 2 −
αγ

a
− β
)

−
nx∑
i=1

pibi
∥∥Ŵi(k)

∥∥ 2∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

(
1 − bisiγ −

2qi
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

)
.

(B.13)

Furthermore, note that since, by assumption, 1 − a − γξ > 0 and biqiγ < 1, qi ≤ 1 − bisiγ ,
i = 1, . . . , nx, it follows that

1 − bisiγ −
2qi
∥∥P 1/2ex

∥∥
1 +

∥∥P 1/2ex
∥∥ 2
≥ 0, i = 1, . . . , nx. (B.14)

Hence,

ΔVw
(
ex(k), ez(k), W̃(k)

)
≤ −

∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2

(
nx∑
i=1

pibi
∥∥W̃i(k)

∥∥ 2 −
αγ

a
− β
)

≤ −
∥∥P 1/2ex(k)

∥∥
1 +

∥∥P 1/2ex(k)
∥∥ 2

(
ζ
nx∑
i=1

∥∥q̂ −1/2
i W̃i(k)

∥∥ 2 −
αγ

a
− β
)
.

(B.15)

Now, it follows using similar arguments as in the proof of Theorem 4.1 that the closed-
loop system (5.4), (B.3), and (B.4) is globally bounded with respect to W̃ uniformly in
(ex(0), ez(0)). If there does not exist k ∗ ∈ Z+ such that ex(k) = 0 for all k ≥ k ∗, it follows
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using similar arguments as in the proof of Theorem 4.1 that the closed-loop system (5.4), (B.3),
and (B.4) is globally ultimately bounded with respect to W̃ uniformly in (ex(0), ez(0)) with
ultimate bound given by √ηw, where ηw > (2 + ζ)(αγ + aβ)/(2aζ). Alternatively, if there exists
k ∗ ∈ Z+ such that ex(k) = 0 for all k ≥ k ∗, then W̃(k) = W̃(k ∗) for all k ≥ k ∗.

Next, to show ultimate boundedness of the error dynamics, consider the Lyapunov-like
function

Ve
(
ex, ez, W̃

)
= ln

(
1 + eT

xPex
)
+ tr W̃Q−1W̃T. (B.16)

Note that (B.16) satisfies (A.19) with x1 = P 1/2ex, x2 = [q̂ −1/2
1 W̃T

1 , . . . , q̂
−1/2
nx W̃T

nx]
T, x3 = ez,

α(‖[xT
1 , x

T
2 ]

T‖) = ln(1 + ‖[xT
1 , x

T
2 ]

T‖ 2), and β(‖[xT
1 , x

T
2 ]

T‖) = ‖[xT
1 , x

T
2 ]

T‖ 2, where ‖[xT
1 , x

T
2 ]

T‖ 2 =
eT
xPex + tr W̃Q−1W̃T. Furthermore, α(·) is a class-K∞ function. Now, using (5.5), (B.13), and

the definition of ẽ, it follows that the forward difference of Ve(ex, ez, W̃) along the closed-loop
system trajectories is given by

ΔVe
(
ex(k), ez(k), W̃(k)

)
� Ve

(
ex(k + 1), ez(k + 1), W̃(k + 1)

)
− Ve

(
ex(k), ez(k), W̃(k)

)

= ln
[
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T
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)
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)
,

(B.17)

where once again in (B.17) we used lna− ln b = ln(a/b) and ln(1+c) ≤ c for a, b > 0 and c > −1.
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Next, using (A.21) and (B.17) yields
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∥∥ 2

1 +
∥∥P 1/2ex(k)

∥∥ 2

+
γ(α/a)

∥∥P 1/2ex(k)
∥∥

1 +
∥∥P 1/2ex(k)

∥∥ 2
+
aγ
∥∥P 1/2ẽ(k)
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(B.18)

Now, using similar arguments as in the proof of Theorem 4.1 it follows that the solution
(x(k), z(k), Ŵ(k)), k ∈ Z+, of the closed-loop system (5.4), (B.3), and (B.4) is ultimately
bounded for all (x(0), z(0), Ŵ(0)) ∈ Dα given by (A.35) and ‖P 1/2ex(k)‖ < ε for k ≥ K.

Finally, u(k) ≥≥ 0, k ≥ 0, is a restatement of (5.2). Now, since G(x(k)) ≥≥ 0, k ∈ Z+, and
u(k) ≥≥ 0, k ∈ Z+, it follows from Proposition 2.8 that x(k) ≥≥ 0 and z(k) ≥≥ 0, k ∈ Z+, for all
(x0, z0) ∈ R

nx
+ × R

nz
+ .
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