
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2008, Article ID 867635, 6 pages
doi:10.1155/2008/867635

Research Article
Reducibility and Stability Results for
Linear System of Difference Equations

Aydin Tiryaki1 and Adil Misir2

1 Department of Mathematics and Computer Sciences, Faculty of Arts and Science, Izmir University,
35340 Izmir, Turkey

2 Department of Mathematics, Faculty of Arts and Science, Gazi University, Teknikokullar,
06500 Ankara, Turkey

Correspondence should be addressed to Adil Misir, adilm@gazi.edu.tr

Received 8 August 2008; Revised 22 October 2008; Accepted 29 October 2008

Recommended by Martin J. Bohner

We first give a theorem on the reducibility of linear system of difference equations of the form
x(n + 1) = A(n)x(n). Next, by the means of Floquet theory, we obtain some stability results.
Moreover, some examples are given to illustrate the importance of the results.

Copyright q 2008 A. Tiryaki and A. Misir. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the homogeneous linear system of difference equations

x(n + 1) = A(n)x(n), n ∈ N = {0, 1, 2, . . .}, (1.1)

where A(n) = (aij(n)) is a k × k nonsingular matrix with real entries and x(n) = (x1(n),
x2(n), . . . , xk(n))

T ∈ R
k.

If for some n0 ≥ 0,

x(n0) = x0 (1.2)

is specified, then (1.1) is called an initial value problem (IVP). The solution of this IVP is
given by

x
(
n, n0, x0

)
=

(
n−1∏

i=n0

A(i)

)

x0 := Φ(n)x0, (1.3)
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where Φ(n) is the fundamental matrix defined by

n−1∏

i=n0

A(i) =

⎧
⎨

⎩

A(n − 1)A(n − 2) · · ·A(n0
)
, if n > n0,

I, if n = n0.
(1.4)

However, (1.1) is called reducible to equation

y(n + 1) = B(n)y(n), (1.5)

if there is a nonsingular matrix H(n)with real entries such that

x(n) = H(n)y(n). (1.6)

Let S(n) be a k × k matrix function whose entries are real-valued functions defined for
n ≥ n0. Consider the system

z(n + 1) = S(n)z(n), n ≥ n0. (1.7)

LetH(n) be a fundamental matrix of (1.7) satisfyingH(n0) = I. ThisH(n) can be used
to transform (1.1) into (1.5).

Stability properties of (1.1) can be deduced by considering the reduced form (1.5)
under some additional conditions. In this study, we first give a theorem on the reducibility of
(1.1) into the form of (1.5) and then obtain asymptotic stability of the zero solution of (1.1).

2. Reducible systems

In this section, we give a theorem on the structure of the matrix S(n), and provide an example
for illustration. The results in this section are discrete analogues of the ones given in [1].

Theorem 2.1. The homogeneous linear difference system (1.1) is reducible to (1.5) under the
transformation (1.6) if and only if there exists a k × k regular real matrix S(n) such that

A(n + 1)S(n) = S(n + 1)A(n) + S(n + 1)S(n)H(n)(ΔB(n))H−1(n),

A
(
n0
)
= S
(
n0
)
B
(
n0
) (2.1)

hold.

Proof. Let S(n) and H(n) be defined as above. Under the transformation (1.6), (1.1) becomes

H(n + 1)y(n + 1) = A(n)H(n)y(n), (2.2)

and after reorganizing, we get

y(n + 1) = H−1(n)S−1(n)A(n)H(n)y(n). (2.3)

Thus, (1.1) is reducible to (1.5)with

B(n) = H−1(n)S−1(n)A(n)H(n). (2.4)

Clearly, B(n) is the unique solution of the IVP:

ΔB(n) = F(n),

B
(
n0
)
= S−1(n0

)
A
(
n0
)
,

(2.5)

where F(n) := Δ(H−1(n)S−1(n)A(n)H(n)).
This problem is equivalent to solving (2.1).
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Corollary 2.2. The homogeneous linear system of difference equation (1.1) is reducible to

y(n + 1) = By(n), (2.6)

with a constant matrix B under transformation (1.6) if and only if there exists a k × k regular real
matrix S(n) defined for n ≥ n0, such that

A(n + 1)S(n) = S(n + 1)A(n), (2.7)

A
(
n0
)
= S
(
n0
)
B (2.8)

hold.

Below, we give an example for Corollary 2.2 in the special case k = 2. To obtain the
matrix H(n), we choose a suitable form of the matrix S(n).

Example 2.3. Consider the system

x(n + 1) =

[
a11(n) a12(n)

a21(n) a22(n)

]

x(n), (2.9)

where

(i) aij(n) are real-valued functions defined for n ≥ n0 such that aij(n)/= 0 for all i, j =
1, 2,

(ii) detA/= 0 for all n ≥ n0,

(iii) Θ(n) := a12(n + 1)a22(n) + a12(n)a11(n + 1)/= 0.

We also assume that for all n ≥ n0,

Θ(n − 1)
[
a21(n + 1)
a12(n − 1)

− a22(n + 1)a11(n + 1)
a12(n + 1)a12(n − 1)

]
+ Θ(n)

[
a11(n)a22(n + 1)
a12(n)a12(n + 1)

+
a11(n)a11(n + 2)
a12(n)a12(n + 2)

]

−Θ(n + 1)
[

a11(n)a11(n + 1)
a12(n + 1)a12(n + 2)

+
a21(n)

a12(n + 2)

]
= 0.

(2.10)

It is easy to verify that if we take

S(n) =

[
s11(n) 0

s21(n) s22(n)

]

, (2.11)

where

s11(n) =
Θ(n − 1)
a12(n − 1)

, (2.12)

s22(n) =
Θ(n)

a12(n + 1)
, (2.13)

s21(n) =
a11(n)Θ(n)

a12(n)a12(n + 1)
− a11(n + 1)Θ(n − 1)
a12(n − 1)a12(n + 1)

, (2.14)
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then (2.7) holds. Moreover, from (2.8) we have

B = S−1(n0)A(n0). (2.15)

In case s21(n) = 0 for every n ≥ n0, that is,

a11(n)Θ(n)
a12(n)a12(n + 1)

− a11(n + 1)Θ(n − 1)
a12(n − 1)a12(n + 1)

= 0, n ≥ n0, (2.16)

the relations (2.10), (2.12), and (2.13) take the form

a12(n + 1)a22(n)
a11(n + 1)a12(n)

=
a22(n + 1)a21(n)
a11(n)a21(n + 1)

= α,

s11(n) = α1a11(n),

s22(n) = α2a22(n),

(2.17)

where α/= 0 is a real constant and α1, α2 are arbitrary real constants such that α1/α2 = α.

Corollary 2.4. If there exists a k × k regular constant matrix S such that

A(n + 1)S = SA(n), (2.18)

then (1.1) reduces to (2.6) with B = S−1A(n0).

It should be noted that in case the constantmatrices S andB commute, that is, SB = BS,
then A(n)must be a constant matrix as well.

3. Stability of linear systems

It turns out that to obtain a stability result, one needs take S(n), a periodic matrix [2]. Indeed,
this allows using the Floquet theory for linear periodic system (1.7).

We need the following three well-known theorems [3–5].

Theorem 3.1. Let Φ(n) be the fundamental matrix of (1.1) with Φ(n0) = I.
The zero solution of (1.1) is

(i) stable if and only if there exists a positive constant M such that

‖Φ(n)‖ ≤ M for n ≥ n0 ≥ 0; (3.1)

(ii) asymptotically stable if and only if

lim
n→∞

‖Φ(n)‖ = 0, (3.2)

where ‖·‖ is a norm inR
k×k.
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Theorem 3.2. Consider system (1.1) with A(n) = A, a constant regular matrix. Then its zero
solution is

(i) stable if and only if ρ(A) ≤ 1 and the eigenvalues of unit modulus are semisimple;

(ii) asymptotically stable if and only if ρ(A) < 1, where ρ(A) = max{|λ| : λ is an eigenvalue
of A} is the spectral radius of A.

Consider the linear periodic system

z(n + 1) = S(n)z(n), (3.3)

where n ∈ Z, S(n +N) = S(n), for some positive integer N.
From the literature, we know that if Ψ(n), with Ψ(n0) = I is a fundamental matrix

of (3.3), then there exists a constant C matrix, whose eigenvalues are called the Floquet
exponents, and periodic matrix P(n)with period N such that Ψ(n) = P(n)Cn−n0 .

Theorem 3.3. The zero solution of (3.3) is

(i) stable if and only if the Floquet exponents have modulus less than or equal to one; those with
modulus of one are semisimple;

(ii) asymptotically stable if and only if all the Floquet exponents lie inside the unit disk.

In view of Theorems 3.1, 3.2, and 3.3, we obtain from Corollary 2.2 the following new
stability criteria for (1.1).

Theorem 3.4. The zero solution of (1.1) is stable if and only if there exists a k × k regular periodic
matrix S(n) satisfying (2.8) such that

(i) the Floquet exponents of S(n) have modulus less than or equal to one; those with modulus
of one are semisimple;

(ii) ρ(S−1(n0)A(n0)) ≤ 1; those eigenvalues of S−1(n0)A(n0) of unit modulus are semisimple.

Theorem 3.5. The zero solution of (1.1) is asymptotically stable if and only if there exists a k × k
regular periodic matrix S(n) satisfying (2.8) such that either

(i) all the Floquet exponents of S(n) lie inside the unit disk and ρ(S−1(n0)A(n0)) ≤ 1; those
eigenvalues of S−1(n0)A(n0) of unit modulus are semisimple; or

(ii) the Floquet exponents of S(n) have modulus less than or equal to one; those with modulus
of one are semisimple; and ρ(S−1(n0)A(n0)) < 1.

Remark 3.6. Let S(n) be periodic with period N. The Floquet exponents mentioned in
Theorem 3.3 are the eigenvalues of C, where CN = S(N − 1)S(N − 2) · · ·S(0).

Example 3.7. Consider the system

x(n + 1) =

[
(−1)n βn+1

β−n (−1)n
]

x(n), 0 < β < 1. (3.4)
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Note that the conditions of Example 2.3 are all satisfied. It follows that

S(n) =

[
(−1)nβ 0

0 (−1)n+1
]

, N = 2. (3.5)

Now,

C2 = S(1)S(0) =

[−β2 0

0 −1

]

, (3.6)

for which the eigenvalues are λ1 = −1, λ2 = −β2.
On the other hand, for

B = S−1(0)A(0) =

⎡

⎣
1
β

1

−1 −1

⎤

⎦ , (3.7)

ρ(B) < 1 if 2/3 < β < 1, and ρ(B) = 1 if β = 2/3.
Applying Theorems 3.4 and 3.5, we see that the zero solution of (3.4) is asymptotically

stable if 2/3 < β < 1, and is stable if β = 2/3.
In fact, the unique solution of (3.4) satisfying x(0) = x0 is

x(n) = H(n)Bnx0 =
1

μ2 − μ1

⎡

⎣ Q (−1)n(n − 1)
2

βn(μn
2 − μn

1)

(−1)n(n+1)/2(μn
1 − μn

2) M

⎤

⎦x0, (3.8)

where μ1 = (−γ −
√
γ2 − 4γ)/2, μ2 = (−γ +

√
γ2 − 4γ)/2, γ = 1−1/β, Q = (−1)n(n−1)/2βn(μn

1(μ2−
1/β) − μn

2(μ1 − 1/β)), and M = (−1)n(n+1)/2(μn
2(μ2 + 1) − μn

1(μ1 + 1)).
It is easy to see that limn→∞‖x(n)‖ = 0 if 2/3 < β < 1, and x(n) is bounded if β = 2/3.

Remark 3.8. In the computation of H(n)Bn, H(n) is calculated by using Example 2.3, and Bn

is obtained by the method given in [6, 7].
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