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1. Introduction

The study of multipoint BVPs for linear second-order ordinary differential equations was ini-
tiated by Il’in and Moiseev [1]. Since then many authors studied more general nonlinear mul-
tipoint boundary value problems. We refer readers to [2–5] and the references therein.

Motivated by works mentioned above, in this paper, we study the existence of positive
solutions for the following second-order singularm -point boundary value problem:

(
p(t)x′(t)

)′ + g(t)f
(
t, x(t)

)
= 0, 0 < t < 1,

ax(0) − b lim
t→0+

p(t)x′(t) =
m−2∑

i=1

aix
(
ξi
)
,

cx(1) + d lim
t→1−

p(t)x′(t) =
m−2∑

i=1

bix
(
ξi
)
,

(1.1)

where a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, ρ := ad + ac
∫1
0

(
1/p(s)

)
ds + bc > 0, ξi ∈ (0, 1), ai, bi ∈

(0,+∞)(i = 1, 2, . . . , m − 2), p ∈ C([0, 1], [0,+∞)), g ∈ C((0, 1), [0,+∞)), and g may be singular
at t = 0 and/or at t = 1.
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Under the assumption that f is sublinear, that is, f0 = limx→0(f(x)/xα) = ∞ and f∞ =
limx→0(f(x)/xβ) = 0, or that f is superlinear, that is, f0 = 0, f∞ = ∞, there are many results
available in literature (see, e.g., [2–4]). However, we remark that α = β = 1 in [2–4]. So it
is interesting and important to discuss the existence of positive solutions for BVP (1.1) when
0 < α < 1, 0 < β < 1, or α > 1, β > 1. Many difficulties occur when we deal with them,
for example, the construction of cone and operator. So we need to introduce some new tools
and methods to investigate the existence of positive solutions for BVP (1.1). Moreover, the
methods used in this paper are different from those in [2–4] and the results obtained in this
paper generalize some results in [2–4] to some degree.

To obtain positive solutions of (1.1), the following fixed point theorem in cones is funda-
mental.

Lemma 1.1 (see [6, 7]). Let Ω1 and Ω2 be two bounded open sets in a real Banach space E such that
0 ∈ Ω1 and Ω1 ⊂ Ω2. Let operator A : P ∩ (Ω2 \Ω1) → P be completely continuous, where P is a cone
in E. Suppose that one of the two conditions is satisfied.

(i) There exists x0 ∈ P \ {θ} such that x −Ax/= tx0, for all x ∈ P ∩ ∂Ω2, t ≥ 0, and Ax/=μx,
for all x ∈ P ∩ ∂Ω1, μ ≥ 1.

(ii) There exists x0 ∈ P \ {θ} such that x −Ax/= tx0, for all x ∈ P ∩ ∂Ω1, t ≥ 0, and Ax/=μx,
for all x ∈ P ∩ ∂Ω2, μ ≥ 1.

Then, A has at least one fixed point in P ∩ (Ω2 \Ω1).

2. Preliminaries

The basic space used in this paper is E = C[0, 1]. It is well known that E is a real Banach space
with the norm ‖ · ‖ defined by ‖x‖ = max0≤t≤1|x(t)|. Let K be a cone of E, and let Kr = {x ∈ K :
‖x‖ < r}, ∂Kr = {x ∈ K : ‖x‖ = r}, Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R}, where 0 < r < R.

To establish the existence of multiple positive solutions in E of problem (1.1), let us list
the following assumptions:

(H1) p ∈ C([0, 1], [0,+∞)) and 0 <
∫1
0 (dt/p(t)) < +∞;

(H2) g ∈ C((0, 1), [0,+∞)), g(t)/≡0, on any subinterval of (0,1) and
∫1
0 g(t)dt < +∞;

(H3) f ∈ C([0, 1] × [0,+∞), [0,+∞)) and f(t, 0) = 0 uniformly with respect to t on [0, 1];
(H4) Δ < 0, ρ −∑m−2

i=1 aiφ(ξi) > 0, ρ −∑m−2
i=1 biψ(ξi) > 0, where

Δ =

∣∣∣
∣∣∣∣∣∣∣

−
m−2∑

i=1

aiψ
(
ξi
)

ρ −
m−2∑

i=1

aiφ
(
ξi
)

ρ −
m−2∑

i=1

biψ
(
ξi
) −

m−2∑

i=1

biφ
(
ξi
)

∣∣∣
∣∣∣∣∣∣∣

,

ψ(t) = b + a
∫ t

0

1
p(r)

dr, φ(t) = d + c
∫1

t

1
p(r)

dr, t ∈ [0, 1],

(2.1)

are linearly independent solutions of the equation (p(t)x′(t))′ = 0.
We remark that (H2) implies that g may be singular at t = 0 and/or at t = 1 and (2.1)

shows that ψ is nondecreasing on [0, 1] and φ is nonincreasing on [0, 1].
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Lemma 2.1. Assume that Δ/= 0. Then for any y ∈ E, the boundary value problem
(
p(t)x′(t)

)′ + y(t) = 0, 0 < t < 1,

ax(0) − b lim
t→0+

p(t)x′(t) =
m−2∑

i=1

aix
(
ξi
)
,

cx(1) + d lim
t→1−

p(t)x′(t) =
m−2∑

i=1

bix
(
ξi
)

(2.2)

has a unique solution x(t), and x(t) can be expressed in the form

x(t) =
∫1

0
G(t, s)y(s)ds +A

(
y(·))ψ(t) + B(y(·))φ(t), (2.3)

where

G(t, s) =
1
ρ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
b + a

∫ s

0

1
p(r)

dr

)(
d + c

∫1

t

1
p(r)

dr

)
, if 0 ≤ s ≤ t ≤ 1,

(
b + a

∫ t

0

1
p(r)

dr

)(
d + c

∫1

s

1
p(r)

dr

)
, if 0 ≤ t ≤ s ≤ 1,

(2.4)

A
(
y(·)) :=

1
Δ

∣∣∣∣∣∣∣∣∣∣

m−2∑

i=1

ai

∫1

0
G
(
ξi, t

)
y(t)dt ρ −

m−2∑

i=1

aiφ
(
ξi
)

m−2∑

i=1

bi

∫1

0
G
(
ξi, t

)
y(t)dt −

m−2∑

i=1

biφ
(
ξi
)

∣∣∣∣∣∣∣∣∣∣

, (2.5)

B
(
y(·)) :=

1
Δ

∣
∣∣∣∣∣∣∣∣∣

−
m−2∑

i=1

aiψ
(
ξi
) m−2∑

i=1

ai

∫1

0
G
(
ξi, t

)
y(t)dt

ρ −
m−2∑

i=1

biψ
(
ξi
) m−2∑

i=1

bi

∫1

0
G
(
ξi, t

)
y(t)dt.

∣
∣∣∣∣∣∣∣∣∣

. (2.6)

Proof. The proof follows by routine calculations.
It is not difficult to show that A(y(·)) and B(y(·)) have the following properties.

Proposition 2.2. From (2.5), one has

∣∣A
(
y(t)

)∣∣ ≤ 1
Δ

∣∣∣∣∣∣∣∣∣∣∣

m−2∑

i=1

ai

∫1

0
G
(
ξi, t

)
dt ρ −

m−2∑

i=1

aiφ
(
ξi
)

m−2∑

i=1

bi

∫1

0
G
(
ξi, t

)
dt −

m−2∑

i=1

biφ
(
ξi
)

∣∣∣∣∣∣∣∣∣∣∣

‖y‖ := Ã‖y‖. (2.7)

Proposition 2.3. From (2.6), one has

∣∣B
(
y(t)

)∣∣ ≤ 1
Δ

∣∣∣∣∣∣
∣∣∣∣

−
m−2∑

i=1

aiψ
(
ξi
) m−2∑

i=1

ai

∫1

0
G
(
ξi, t

)
dt

ρ −
m−2∑

i=1

biψ
(
ξi
) m−2∑

i=1

bi

∫1

0
G
(
ξi, t

)
dt

∣∣∣∣∣∣
∣∣∣∣

‖y‖ := B̃‖y‖. (2.8)
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By (2.4), one remarks that there exists τ > 0 such that for t, s ∈ Jθ,

G(t, s) ≥ τ, (2.9)

where θ ∈ (0, 1/2), Jθ = [θ, 1 − θ].

3. Main results

In this section, we apply Lemma 1.1 to establish the existence of positive solutions for BVP
(1.1). We consider the following two cases for 0 < α < 1, 0 < β < 1, and α > 1, β > 1. The case
0 < α < 1, 0 < β < 1 is treated in the following theorem.

Theorem 3.1. Suppose (H1)–(H4) and f satisfies the following conditions:
(H5)a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, ρ = ad + ac

∫1
0(1/p(s))ds + bc > 0;

(H6) there exists 0 < α < 1 such that 0 < lim infx→0+mint∈[0,1](f(t, x)/xα) ≤ +∞;
(H7) there exists 0 < β < 1 such that 0 ≤ lim supx→+∞maxt∈[0,1](f(t, x)/xβ) < +∞.
Then BVP (1.1) has at least one positive solution.

Proof. By Lemma 2.1, x ∈ C2[0, 1] is a solution of problem (1.1) if and only if x ∈ C[0, 1] is a
solution of the integral equation

x(t) =
∫1

0
G(t, s)g(s)f

(
s, x(s)

)
ds +A

(
g(·)f(·, x(·)))ψ(t) + B(g(·)f(·, x(·)))φ(t), (3.1)

where G(t, s) is defined by (2.4), and the definitions of A(g(·)f(·, x(·))) and B(g(·)f(·, x(·)))
are similar tothose of A(y(·)) and B(y(·)), respectively. For the sake of applying Lemma 1.1,
we construct a cone K in E by K = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}.

Define T : K → K by

(Tx)(t) =
∫1

0
G(t, s)g(s)f

(
s, x(s)

)
ds +A

(
g(·)f(·, x(·)))ψ(t) + B(g(·)f(·, x(·)))φ(t), (3.2)

then T : K → K is completely continuous.
Define w : [0, 1] → R by

cw(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, t ∈ [θ, 1 − θ],

0, t /∈
[
θ

8
, 1 − 7θ

8

]
,

8
7θ

(
t − θ

8

)
, t ∈

[
θ

8
, θ

]
,

−8
θ

(
t − 1 +

7θ
8

)
, t ∈

[
1 − θ, 1 − 7θ

8

]
.

(3.3)

Obviously, w is a nonnegative continuous function, that is, w ∈ K, and ‖w‖ = 1.
Suppose that there is a ε1 > 0 such that

x − Tx /= 0, ∀x ∈ K, 0 < ‖x‖ ≤ ε1 (3.4)
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(if not, then the conclusion holds). The conditions (H6) and f(t, 0) = 0 imply that there exist
σ > 0, ε2 > 0 such that

f(t, x) ≥ σxα, 0 ≤ x ≤ ε2. (3.5)

Let

ε3 = min
{
ε1, ε2,

(
τσ

∫1−θ

θ

g(s)ds
)1/(1−α)}

. (3.6)

Choose 0 < r < ε3. We now show that

x − Tx /= ζw, ∀x ∈ ∂Kr, ζ ≥ 0. (3.7)

In fact, if there exist x1 ∈ ∂Kr, ζ1 ≥ 0 such that x1 − Tx1 = ζ1w, then (3.7) implies that
ζ1 > 0. On the other hand, x1 = ζ1w + Tx1 ≥ ζ1w. So we can choose ζ∗ = sup{ζ | x1 ≥ ζw}, then
ζ1 ≤ ζ∗ < +∞, x1 ≥ ζ∗w. Therefore,

ζ∗ = ζ∗‖w‖ ≤ ‖x1‖ = r < ε3 ≤
(
τσ

∫1−θ

θ

g(s)ds
)1/(1−α)

. (3.8)

Consequently, for any t ∈ [0, 1], (2.9) and (3.5) imply

x1(t) =
∫1

0
G(t, s)g(s)f

(
s, x1(s)

)
ds +A

(
g(·)f(·, x1(·)

))
ψ(t)

+ B
(
g(·)f(·, x1(·)

))
φ(t) + ζ1w(t)

≥
∫1

0
G(t, s)g(s)σ

[
x1(s)

]α
ds + ζ1w(t)

≥
∫1−θ

θ

G(t, s)g(s)σ(ζ∗)α
[
w(s)

]α
ds + ζ1w(t)

≥ τσ(ζ∗)α
∫1−θ

θ

g(s)ds + ζ1w(t)

≥ (ζ∗ + ζ1)w(t),

(3.9)

that is, x1(t) ≥ (ζ∗ + ζ1)w(t), t ∈ [0, 1], which is a contradiction to the definition of ζ∗. Hence,
(3.7) holds.

Now turning to (H7), there exist m > 0, ε4 > 0, for t ∈ [0, 1], x ≥ ε4, such that f(t, x) ≤
mxβ. Letting μ = max0≤t≤1, 0≤x≤ε4f(t, x), then

0 ≤ f(t, x) ≤ mxβ + μ. (3.10)

Choosing R > ε4 such that

μM

R
+
mM

R1−β < 1, (3.11)
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whereM = maxt∈[0,1]
∫1
0 G(t, s)g(s)ds + Ã‖ψ‖ + B̃‖φ‖, now we prove that

Tx /=λx, ∀x ∈ ∂KR, λ ≥ 1. (3.12)

If not, then there exist x0 ∈ ∂KR, λ0 ≥ 1 such that Tx0 = λ0x0. By (2.7), (2.8), and (3.10), then
for any t ∈ [0, 1], we have

λ0x0(t) =
∫1

0
G(t, s)g(s)f

(
s, x0(s)

)
ds +A

(
g(·)f(·, x0(·)

))
ψ(t) + B

(
g(·)f(·, x0(·)

))
φ(t)

≤ (
μ +m‖x0‖β

)
[∫1

0
G(t, s)g(s)ds + Ã‖ψ‖ + B̃‖φ‖

]
;

(3.13)

so R ≤ λ0R = λ0‖x0‖ ≤ (μ +m‖x0‖β)[
∫1
0 G(t, s)g(s)ds + Ã‖ψ‖ + B̃‖φ‖], that is,

μM

R
+
mM

R1−β ≥ 1, (3.14)

which is a contradiction to (3.11). So (3.12) holds.
By (ii) of Lemma 1.1, (3.7) and (3.12) yield that T has a fixed point x ∈ Kr,R, r ≤ ‖x‖ ≤ R.

Thus it follows that BVP (1.1) has at least one positive solution x with r ≤ ‖x‖ ≤ R. The proof
is complete.

The following theorem deals with the case α > 1, β > 1.

Theorem 3.2. Suppose (H1)–(H4) and f satisfy the following conditions:
(H8) a ≥ 0, b > 0, c ≥ 0, d > 0, ρ = ad + ac

∫1
0 (1/p(s))ds + bc > 0;

(H9) there exists α > 1 such that 0 < lim infx→+∞mint∈[0,1] (f(t, x)/xα) ≤ +∞;
(H10) there exists β > 1 such that 0 ≤ lim supx→0+maxt∈[0,1](f(t, x)/xβ) < +∞.
Then BVP (1.1) has at least one positive solution.

Proof. By Lemma 2.1, x ∈ C2[0, 1] is a solution of problem (1.1) if and only if x ∈ C[0, 1] is
a solution of the integral equation (3.1). By (H8), we know that G(t, s) is positive and con-
tinuous function in [0, 1] × [0, 1]. For the sake of applying Lemma 1.1, we construct a cone
K∗ in E by K∗ = {x ∈ E : x ≥ 0,mint∈[0,1] x(t) ≥ Γ‖x‖}, where Γ = min{l/L,∇/Λ}, ∇ :=
min{mint∈[0,1]φ(t),mint∈[0,1]ψ(t)}, Λ := max{1, ‖φ‖, ‖ψ‖}, L = max(t,s)∈[0,1]×[0,1]G(t, s), l =
min(t,s)∈[0,1]×[0,1]G(t, s) > 0. Obviously, 0 < Γ < 1. Define T ∗ : K∗ → K∗ by

(T ∗x)(t) =
∫1

0
G(t, s)g(s)f

(
s, x(s)

)
ds +A

(
g(·)f(·, x(·)))ψ(t) + B(g(·)f(·, x(·)))φ(t). (3.15)

Then, for any x ∈ K∗, by (3.15), we obtain T ∗x ≥ 0 and

(T ∗x)(t) =
∫1

0
G(t, s)g(s)f

(
s, x(s)

)
ds +A

(
g(·)f(·, x(·)))ψ(t) + B(g(·)f(·, x(·)))φ(t)

≤
∫1

0
Lg(s)f

(
s, x(s)

)
ds + Λ

[
A
(
g(·)f(·, x(·))) + B(g(·)f(·, x(·)))], for t ∈ [0, 1].

(3.16)
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On the other hand, we have for t ∈ [0, 1],

(T ∗x)(t) =
∫1

0
G(t, s)g(s)f

(
s, x(s)

)
ds +A

(
g(·)f(·, x(·)))ψ(t) + B(g(·)f(·, x(·)))φ(t)

≥
∫1

0
lg(s)f

(
s, x(s)

)
ds +

∇
Λ
Λ
[
A
(
g(·)f(·, x(·))) + B(g(·)f(·, x(·)))]

=
l

L

∫1

0
Lg(s)f

(
s, x(s)

)
ds +

∇
Λ
Λ
[
A
(
g(·)f(·, x(·))) + B(g(·)f(·, x(·)))]

≥ Γ
[∫1

0
Lg(s)f

(
s, x(s)

)
ds + Λ

[
A
(
g(·)f(·, x(·))) + B(g(·)f(·, x(·)))]

]

≥ Γ‖T ∗x‖.

(3.17)

Therefore, T ∗K∗ ⊂ K∗ is completely continuous.
Define w∗(t) =

∫1
0G(t, s)g(s)ds, then w

∗ ∈ K∗ \ {θ} and

l

∫1

0
g(s)ds ≤ w∗(t) ≤ L

∫1

0
g(s)ds, ∀t ∈ [0, 1]. (3.18)

Considering (H9) and f(t, 0) = 0, there exist e > 0, ε5 > 0 such that

f(t, x) ≥ exα, x ≥ ε5. (3.19)

Choose R∗ > max{ε5Γ−1, Γ(−2α−1)/(α−1)e−1/(α−1)Ll−α/(α−1)(
∫1
0g(s)ds)

−1/(α−1)}. Suppose that
x /= T ∗x for x ∈ ∂K∗

R∗ (if not, then the conclusion holds). We now show that

x − T ∗x /= δw∗, ∀x ∈ ∂K∗
R∗ , δ ≥ 0. (3.20)

In fact, if there exist x0 ∈ ∂K∗
R∗ , δ0 ≥ 0 such that x0 − T ∗x0 = δ0w

∗, then δ0 > 0 (since
x /= T ∗x for any x0 ∈ ∂K∗

R∗). Noticing x0 = δ0w
∗ + T ∗x0 ≥ δ0w

∗, we can choose δ∗∗ = sup{δ∗ |
x0 ≥ δ∗w∗}, then δ0 ≤ δ∗∗ < +∞, x0 ≥ δ∗∗w∗.

From x0 ∈ K∗, ‖x0‖ = R∗, we have

x0(t) ≥ ΓR∗ > Γ−α/(α−1)e−1/(α−1)Ll−α/(α−1)
(∫1

0
g(s)ds

)−1/(α−1)

≥ Γ−α/(α−1)e−1/(α−1)l−α/(α−1)
(∫1

0
g(s)ds

)−α/(α−1)
L

∫1

0
g(s)ds

≥ Γ−α/(α−1)e−1/(α−1)l−α/(α−1)
(∫1

0
g(s)ds

)−α/(α−1)
w∗(t).

(3.21)

So, by the definition of δ∗∗, we have

δ∗∗ ≥ Γ−α/(α−1)e−1/(α−1)l−α/(α−1)
(∫1

0
g(s)ds

)−α/(α−1)
. (3.22)
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Noticing x0(t) ≥ ΓR∗ > ε5, 0 < Γ < 1, then (3.19) and (3.22) imply

x0(t) =
∫1

0
G(t, s)g(s)f

(
s, x0(s)

)
ds +A

(
g(·)f(·, x0(·)

))
ψ(t)

+ B
(
g(·)f(·, x0(·)

))
φ(t) + δ0w∗(t)

≥
∫1

0
G(t, s)g(s)e

[
x0(s)

]α
ds + δ0w∗(t)

≥
∫1

0
G(t, s)g(s)e

(
δ∗∗

)α[
w∗(s)

]α
ds + δ0w∗(t)

≥
∫1

0
G(t, s)g(s)e

(
δ∗∗l

∫1

0
g(s)ds

)α

ds + δ0w∗(t)

≥ Γα
∫1

0
G(t, s)g(s)e

(
δ∗∗l

∫1

0
g(s)ds

)α

ds + δ0w∗(t)

=
[
e

(
δ∗∗lΓ

∫1

0
g(s)ds

)α

+ δ0
]
w∗(t)

≥ (δ∗∗ + δ0)w∗(t),

(3.23)

which is a contradiction to the definition of δ∗∗. Hence, (3.20) holds.
Next, turning to (H10), there exist υ > 0, ε6 > 0, for t ∈ J, 0 ≤ x ≤ ε6, such that 0 ≤

f(t, x) ≤ υxβ. Choosing r∗ > 0 satisfies

r∗ <
{
ε6, R

∗,
[
L

∫1

0
g(s)ds + Ã‖ψ‖ + B̃‖φ‖

]−1/(β−1)
υ−1/(β−1)

}
. (3.24)

Now we prove that

T ∗x /=μ∗x, ∀x ∈ ∂K∗
r∗ , μ

∗ ≥ 1. (3.25)

If not, then there exist x1 ∈ ∂K∗
r∗ , μ

∗
1 ≥ 1 such that T ∗x1 = μ∗

1x1 and

x1(t) ≤ μ∗
1x1(t)

=
∫1

0
G(t, s)g(s)f

(
s, x1(s)

)
ds +A

(
g(·)f(·, x1(·)

))
ψ(t) + B

(
g(·)f(·, x1(·)

))
φ(t)

≤ υ‖x1‖β
[
L

∫1

0
g(s)ds + Ã‖ψ‖ + B̃‖φ‖

]
.

(3.26)

Therefore, r∗ = ‖x1‖ ≤ υ‖x1‖β[L
∫1
0g(s)ds + Ã‖ψ‖ + B̃‖φ‖], that is, r∗ ≥ [L

∫1
0g(s)ds + Ã‖ψ‖

+B̃‖φ‖]−1/(β−1)υ−1/(β−1), which is a contradiction to (3.24). So (3.25) holds.
By (i) of Lemma 1.1, (3.20) and (3.25) yield that T ∗ has a fixed point x ∈ K∗

r∗,R∗ , r∗ ≤ ‖x‖ ≤
R∗. Thus it follows that BVP (1.1) has at least one positive solution x with r∗ ≤ ‖x‖ ≤ R∗. The
proof is complete.
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Remark 3.3. The condition about f in Theorem 3.1 is sublinear, while the condition about f
in Theorem 3.2 is superlinear. Generally, the problems of superlinearity are more difficult to
study than those of sublinearity. So we need stronger conditions in dealing with superlinear
problems. For example, the condition (H8) in Theorem 3.2 is stricter than (H5) in Theorem 3.1.
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