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1. Introduction

Let Z and R be the set of all integers and real numbers, respectively. For a, b ∈ Z, define
Z(a) = {a, a + 1, . . .}, Z(a, b) = {a, a + 1, . . . , b}, when a ≤ b.

In this paper, we consider the multiparameter semipositone discrete boundary value
problem

−Δ2u(t − 1) = λf(u(t)) + μg(u(t)), t ∈ Z(1,N),

u(0) = 0, u(N + 1) = 0,
(1.1)

where λ, μ > 0 are parameters,N ≥ 4 is a positive integer,Δu(t) = u(t+1)−u(t) is the forward
difference operator, Δ2u(t) = Δ(Δu(t)), f : [0,+∞)→R is a continuous positive function
satisfying f(0) > 0, and g : [0,+∞)→R is continuous and eventually strictly positive with
g(0) < 0.

We notice that for fixed μ > 0, λf(0) + μg(0) < 0 whenever λ > 0 is sufficiently
small. We call (1.1) a semipositone problem. Semipositone problems are derived from
[1], where Castro and Shivaji initially called them nonpositone problems, in contrast
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with the terminology positone problems, put forward by Keller and Cohen in [2], where
the nonlinearity was positive and monotone. Semipositone problems arise in bulking
of mechanical systems, design of suspension bridges, chemical reactions, astrophysics,
combustion, and management of natural resources; for example, see [3–6].

In general, studying positive solutions for semipositone problems is more difficult
than that for positone problems. The difficulty is due to the fact that in the semipositone case,
solutions have to live in regions where the nonlinear term is negative as well as positive.
However, many methods have been applied to deal with semipositone problems, the usual
approaches are quadrature method, fixed point theory, subsuper solutions method, and
degree theory. We refer the readers to the survey papers [7, 8] and references therein.

Due to its importance, in recent years, continuous semipositone problems have been
widely studied by many authors, see [9–15]. However, we noticed that there were only a
few papers on discrete semipositone problems. One can refer to [16–18]. In these papers,
semipositone discrete boundary value problems with one parameter were discussed, and
subsuper solutions method and fixed point theory were used to study them. To the authors’
best knowledge, there are no results established on semipositone discrete boundary value
problems with two parameters. Here we want to present a different approach to deal with
this topic. In [11], Costa et al. applied the nonsmooth critical point theory developed by
Chang [19] to study the existence andmultiplicity results of a class of semipositone boundary
value problems with one parameter. We think it is also an efficient tool in dealing with the
semipositone discrete boundary value problems with two parameters.

Our main objective in this paper is to apply the nonsmooth critical point theory to
deal with the positive solutions of semipositone problem (1.1). More precisely, we define the
discontinuous nonlinear terms

f1(s) =

⎧
⎨

⎩

0 if s ≤ 0,

f(s) if s > 0,

g1(s) =

{
0 if s ≤ 0,
g(s) if s > 0.

(1.2)

Now we consider the slightly modified problem

−Δ2u(t − 1) = λf1(u(t)) + μg1(u(t)), t ∈ Z(1,N),

u(0) = 0, u(N + 1) = 0.
(1.3)

Just to be on the convenient side, we define h(s) = λf(s) + μg(s), h1(s) = λf1(s) + μg1(s),
H(s) = λF(s) + μG(s),H1(s) = λF1(s) + μG1(s), where F(s) =

∫s
0f(τ)dτ , G(s) =

∫s
0g(τ)dτ ,

F1(s) =
∫ s

0
f1(τ)dτ =

{
0 if s ≤ 0,
F(s) if s > 0,

G1(s) =
∫ s

0
g1(τ)dτ =

{
0 if s ≤ 0
G(s) if s > 0.

(1.4)
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We will prove in Section 3 that the sets of positive solutions of (1.1) and (1.3) do
coincide. Moreover, any nonzero solution of (1.3) is nonnegative.

Our main results are as follows.

Theorem 1.1. Suppose that there are constants C1 > 0, α > 1, and β > 2 such that when s > 0 is
large enough,

f(s) < C1s
α, (1.5)

sf(s) ≥ βF(s) > 0, (1.6)

lim
s→+∞

g(s)
s

= 0. (1.7)

Then for fixed μ > 0, there is a λ > 0 such that for λ ∈ (0, λ), problem (1.3) has a nontrivial
nonnegative solution. Hence problem (1.1) has a positive solution.

Remark 1.2. By (1.6), there are constants C2, C3 > 0 such that for any s ≥ 0,

F(s) ≥ C2s
β − C3. (1.8)

Equations (1.6) and (1.8) imply that

lim
s→+∞

f(s)
s

= +∞, (1.9)

which shows that f is superlinear at infinity.

Remark 1.3. Equation (1.7) implies that g is sublinear at infinity. Moreover, it is easy to know
that

lim
s→+∞

G(s)
s2

= 0. (1.10)

Hence G is subquadratic at infinity.

Theorem 1.4. Suppose that the conditions of Theorem 1.1 hold. Moreover, g is increasing on [0,+∞).
Then there is a μ∗ > 0 such that for μ > μ∗, problem (1.1) has at least two positive solutions for
sufficiently small λ.

Theorem 1.5. Suppose that the conditions of Theorem 1.1 hold. Moreover, f is nondecreasing on
[0,+∞). Then for fixed μ > 0, problem (1.1) has no positive solution for sufficiently large λ.

2. Preliminaries

In this section, we recall some basic results on variational method for locally Lipschitz
functional I : X→R defined on a real Banach space X with norm ‖·‖. I is called locally
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Lipschitzian if for each u ∈ X, there is a neighborhood V = V (u) of u and a constant B = B(u)
such that

|I(x) − I(y)| ≤ B‖x − y‖, ∀x, y ∈ V. (2.1)

The following abstract theory has been developed by Chang [19].

Definition 2.1. For given u, z ∈ X, the generalized directional derivative of the functional I at
u in the direction z is defined by

I0(u; z) = lim sup
k→ 0 t→ 0

1
t
[I(u + k + tz) − I(u + k)]. (2.2)

The following properties are known:

(i) z→ I0(u; z) is subadditive, positively homogeneous, continuous, and convex;

(ii) |I0(u; z)| ≤ B‖z‖;
(iii) I0(u;−z) = (−I)0(u; z).

Definition 2.2. The generalized gradient of I at u, denoted by ∂I(u), is defined to be the
subdifferential of the convex function I0(u; z) at z = 0, that is,

w ∈ ∂I(u) ⊂ X∗ ⇐⇒ 〈w, z〉 ≤ I0(u; z), ∀z ∈ X. (2.3)

The generalized gradient ∂I(u) has the following main properties.

(1) For all u ∈ X, ∂I(u) is a nonempty convex and w∗-compact subset of X∗;

(2) ‖w‖X∗ ≤ B for all w ∈ ∂I(u).
(3) If I, J : X→R are locally Lipschitz functional, then

∂(I + J)(u) ⊂ ∂I(u) + ∂J(u). (2.4)

(4) For any λ > 0, ∂(λI)(u) = λ∂I(u).

(5) If I is a convex functional, then ∂I(u) coincides with the usual subdifferential of I
in the sense of convex analysis.

(6) If I is Gâteaux differential at every point of v of a neighborhood V of u and the
Gâteaux derivative is continuous, then ∂I(u) = {I ′

(u)}.
(7) The function

ζ(u) = min
w∈∂I(u)

‖w‖X∗ (2.5)

exists, that is, there is a w0 ∈ ∂I(u) such that ‖w0‖X∗ = minw∈∂I(u)‖w‖X∗ .

(8) I0(u; z) = max{〈w, z〉 | w ∈ ∂I(u)}.
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(9) If I has a minimum at u0 ∈ X, then 0 ∈ ∂I(u0).

Definition 2.3. u ∈ X is a critical point of the locally Lipschitz functional I if 0 ∈ ∂I(u).

Definition 2.4. I is said to satisfy Palais-Smale condition ((PS) condition for short) if any
sequence {un} such that I(un) is bounded and ζ(un) = minw∈∂I(un)‖w‖X∗ → 0 has a convergent
subsequence.

Lemma 2.5 (see [19, Mountain Pass Theorem]). LetX be a real Hilbert space and let I be a locally
Lipschitz functional satisfying (PS) condition. Suppose that I(0) = 0 and that the following hold.

(i) There exist constants ρ > 0 and a > 0 such that I(u) ≥ a if ‖u‖ = ρ.

(ii) There is an e ∈ X such that ‖e‖ > ρ and I(e) ≤ 0.

Then I possesses a critical value c ≥ a. Moreover, c can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)), (2.6)

where

Γ = {g ∈ C([0, 1], X) | γ(0) = 0, γ(1) = e}. (2.7)

Next we give the definitions of the subsolution and the supersolution of the following
boundary value problem:

−Δ2u(t − 1) = μg(u(t)), t ∈ Z(1,N),

u(0) = 0, u(N + 1) = 0.
(2.8)

Definition 2.6. If u1(t), t ∈ Z(0,N + 1) satisfies the following conditions:

−Δ2u1(t − 1) ≤ μg(u1(t)), t ∈ Z(1,N),

u1(0) ≤ 0, u1(N + 1) ≤ 0,
(2.9)

then u1 is called a subsolution of problem (2.8).

Definition 2.7. If u2(t), t ∈ Z(0,N + 1) satisfies the following conditions:

−Δ2u2(t − 1) ≥ μg(u2(t)), t ∈ Z(1,N),

u2(0) ≥ 0, u2(N + 1) ≥ 0,
(2.10)

then u2 is called a supersolution of problem (2.8).
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Lemma 2.8. Suppose that there exist a subsolution u1 and a supersolution u2 of problem (2.8) such
that u1(t) ≤ u2(t) in Z(1,N). Then there is a solution ǔ of problem (2.8) such that u1(t) ≤ ǔ(t) ≤
u2(t) in Z(1,N).

Remark 2.9. If (2.8) is replaced by (1.1), then we have similar definitions and results as
Definitions 2.6, 2.7, and Lemma 2.8

3. Proof of main results

Let E be the class of the functions u : Z(0,N +1)→R such that u(0) = u(N +1) = 0. Equipped
with the usual inner product and the usual norm

(u, v) =
N∑

t=1

(u(t), v(t)), ‖u‖ =

(
N∑

t=1

u2(t)

)1/2

, (3.1)

E is anN-dimensional Hilbert space. Define the functional J on E as

J(u) =
1
2

N+1∑

t=1

[
(Δu(t − 1))2 − 2H1(u(t))

]

=
1
2
uTAu −

N∑

t=1

H1(u(t)) = K(u) −
N∑

t=1

H1(u(t)),

(3.2)

where u = {u(1), u(2), . . . , u(N)}, K(u) = (1/2)uTAu and

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

N×N

. (3.3)

Clearly,H1 is a locally Lipschitz function and J(u) is a locally Lipschitz functional on E. By a
simple computation, we obtain

∂

∂u(t)
K(u) = 2u(t) − u(t + 1) − u(t − 1) = −Δ2u(t − 1). (3.4)

By [19, Theorem 2.2], the critical point of the functional J(u) is a solution of the inclusion

−Δ2u(t − 1) ∈ [h1(u(t)), h1(u(t))
]
, t ∈ Z(1,N), (3.5)

where h1(s) = min[h1(s + 0), h1(s − 0)], h1(s) = max[h1(s + 0), h1(s − 0)].
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Remark 3.1. We can show that h1(s) = h1(s) = λf(s) +μg(s) for s > 0, h1(s) = h1(s) = 0 for s <

0. For fixed μ and sufficiently small λ, λf(0)+μg(0) < 0. Then h1(0) = λf(0)+μg(0), h1(0) = 0.

Remark 3.2. If u > 0, then the above inclusion becomes

−Δ2u(t − 1) = λf(u(t)) + μg(u(t)), t ∈ Z(1,N). (3.6)

It is clear that A is a positive definite matrix. Let ηmax > 0, ηmin > 0 be the largest and
smallest eigenvalue of A, respectively. Denote by u− = max{−u, 0}. Let P1 = {t ∈ Z(1,N) |
u(t) ≤ 0}, P2 = {t ∈ Z(1,N) | u(t) > 0}. Notice that u−(t) = 0 for t ∈ P2 and f1(u(t)) = 0 for
t ∈ P1. Then

N∑

t=1

f1(u(t))u−(t) =
∑

t∈P1
f1(u(t))u−(t) +

∑

t∈P2
f1(u(t))u−(t) = 0. (3.7)

Similarly, g1(u(t)) = 0 for t ∈ P1. Hence

N∑

t=1

g1(u(t))u−(t) =
∑

t∈P1
g1(u(t))u−(t) +

∑

t∈P2
g1(u(t))u−(t) = 0. (3.8)

Lemma 3.3. If u is a solution of (1.3), then u ≥ 0. Moreover, either u > 0 in Z(1,N), or u = 0
everywhere.

Proof. It is not difficult to see that (Δu−(t)+Δu(t))Δu−(t) ≤ 0 for t ∈ Z(0,N). In fact, no matter
that Δu(t) ≥ 0 or Δu(t) < 0, the former inequality holds. Hence Δu−(t)·Δu(t) ≤ −(Δu−(t))2.

If u is a solution of (1.3), then we have

0 =
N∑

t=1

[
Δ2u(t − 1) + λf1(u(t)) + μg1(u(t))

]
u−(t)

= −
N+1∑

t=1

Δu(t − 1)Δu−(t − 1) +
N∑

t=1

[λf1(u(t)) + μg1(u(t))]u−(t)

≥
N+1∑

t=1

(Δu−(t − 1))2 = (u−)TAu− ≥ ηmin‖u−‖2.

(3.9)

So u− = 0. Hence u ≥ 0. If u(t) = 0, then

u(t + 1) + u(t − 1) = Δ2u(t − 1) = −λf1(u(t)) − μg1(u(t)) = −λf1(0) − μg1(0) = 0. (3.10)

Therefore u(t + 1) = u(t − 1) = 0. It follows that u = 0 everywhere.

Lemma 3.4. If (1.6) and (1.7) hold, then h1(s)s ≥ β0H1(s) for large s > 0, where β0 ∈ (2, β).
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Proof. Notice that h1(s)s ≥ β0H1(s) is equivalent to h(s)s ≥ β0H(s) if s > 0. To prove that
h(s)s ≥ β0H(s) for large s > 0, it suffices to show that

lims→+∞
h(s)s
β0H(s)

> 1. (3.11)

By (1.6), for large s > 0, we have

β0F(s)
f(s)s

≤ β0
β
. (3.12)

Hence, if s > 0 is large, then

h(s)s
β0H(s)

=
λf(s)s + μg(s)s
β0(λF(s) + μG(s))

=
1 + μg(s)/λf(s)

β0F(s)/f(s)s + β0μG(s)/λf(s)s
≥ 1 + μg(s)/λf(s)
β0/β + β0μG(s)/λf(s)s

.

(3.13)

Taking inferior limit on both sides of the above inequality, we have

lims→+∞
h(s)s
β0H(s)

≥ lims→+∞
1 + μg(s)/λf(s)

β0/β + β0μG(s)/λf(s)s
≥ lims→+∞(1 + μg(s)/λf(s))

lims→+∞(β0/β + β0μG(s)/λf(s)s)
.

(3.14)

Since f is superlinear and g is sublinear, lims→+∞(μg(s)/λf(s)) = 0. Then lims→+∞(1 +
μg(s)/λf(s)) = limu→+∞(1 + μg(s)/λf(s)) = 1. Moreover, since G is subquadratic and
f is superlinear, limu→+∞(G(s)/f(s)s) = lims→+∞((G(s)/s2)/(f(s)s/s2)) = 0. Therefore,
lims→+∞(β0/β+β0μG(s)/λf(s)s) = lims→+∞(β0/β+β0μG(s)/λf(s)s) = β0/β. From the above
results, we can conclude that lims→+∞(h(s)s/β0H(s)) ≥ β/β0 > 1.

Lemma 3.5. If (1.6) and (1.7) hold, then J satisfies (PS) condition.

Proof. Notice that E∗ = E. Let L(u) =
∑N

t=1H1(u(t)). From [19, Theorem 2.2], for any given
w ∈ ∂L(u) ⊂ E∗, we have w(t) ∈ [h1(u(t)), h1(u(t))]. Then

w(t) = λf1(u(t)) + μg1(u(t)) if u(t)/= 0, w(t) ∈ [λf(0) + μg(0), 0] if u(t) = 0. (3.15)

Therefore

〈w,u〉 =
N∑

t=1

h1(u(t))u(t), ∀w ∈ ∂L(u). (3.16)
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By Lemma 3.4, there is a constant M > 0 such that L(u) ≤ (1/β0)〈w,u〉 + M for u ∈ RN .
Suppose that {un} is a sequence such that J(un) is bounded and ζ(un)→ 0 as n→∞. Then by
Properties (3) and (7) in Definition 2.2, there are C > 0 andwn ∈ ∂L(un) such that |J(un)| ≤ C
and

∣
∣
〈
∂K
(
un
) −wn, un

〉∣
∣ ≤ ∥∥un

∥
∥ for sufficiently large n. (3.17)

It implies that

uTnAun −
〈
wn, un

〉 ≥ −∥∥un
∥
∥. (3.18)

Hence

C ≥ 1
2
uTnAun − L

(
un
)

≥ 1
2
uTnAun −

1
β0

〈
wn, un

〉 −M

=
(
1
2
− 1
β0

)

uTnAun +
1
β0

[
uTnAun −

〈
wn, un

〉] −M

≥
(
1
2
− 1
β0

)

ηmin
∥
∥un
∥
∥2 − 1

β0

∥
∥un
∥
∥ −M.

(3.19)

This implies that {un} is bounded. Since E is finite dimensional, {un} has a convergent
subsequence in E.

Lemma 3.6. For fixed μ > 0, there exist ρ > 0 and λ > 0 such that if λ ∈ (0, λ), then J(u) ≥
(ηminM

2
1/16)λ

−2/(α−1) for ‖u‖ = ρ.

Proof. By (1.5) and (1.7), there are C4, C5 > 0 such that

F1(s) ≤ C1|s|α+1
α + 1

+ C4 , ∀s ∈ R, (3.20)

G1(s) ≤
ηmin

4μ
|s|2 + C5 , ∀s ∈ R. (3.21)

The equivalence of norm on E implies that there existsC6 > 0 such that ‖u‖α+1 ≤ C6‖u‖, where

‖u‖α+1 = (
∑N

t=1|u(t)|α+1)
1/(α+1)

. LetM1 = (ηmin(α + 1)/8C1C
α+1
6 )1/(α−1) and ρ =M1λ

−1/(α−1). Let
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‖u‖ = ρ. It follows from (3.20) and (3.21) that there is λ > 0 such that if λ ∈ (0, λ), then

J(u) =
1
2
uTAu −

N∑

t=1

H1(u(t))

≥ 1
2
ηmin‖u‖2 − λC1

α + 1

N∑

t=1

|u(t)|α+1 − λC4N − ηmin

4μ
·μ

N∑

t=1

|u(t)|2 − μC5N

≥ 1
4
ηmin‖u‖2 −

λC1C
α+1
6

α + 1
‖u‖α+1 − λC4N − μC5N

= λ−2/(α−1)
(
ηminM

2
1

8
− λ(α+1)/(α−1)C4N − λ2/(α−1)μC5N

)

≥ ηminM
2
1

16
λ−2/(α−1).

(3.22)

Lemma 3.7. There is an e ∈ E such that ‖e‖ > ρ and J(e) < 0.

Proof. It follows from Remark 1.2 that F(s) ≥ C2s
β − C3 for s > 0. By the equivalence of the

norms on E, there exists C7 > 0 such that ‖u‖β ≥ C7‖u‖, where ‖u‖β = (
∑N

t=1|u(t)|β)
1/β

. Let v1
be the eigenfunction to the principal eigenvalue η1 of

−Δ2u(t − 1) = ηu(t), t ∈ Z(1,N),

u(0) = 0, u(N + 1) = 0
(3.23)

with v1 > 0 and ‖v1‖ = 1. Let

Gm = min{G(u) | u ∈ [0,+∞)}. (3.24)

Clearly Gm < 0. Since β > 2, for k > 0,

J(kv1) =
1
2
k2vT1Av1 − λ

N∑

t=1

F
(
kv1(t)

) − μ
N∑

t=1

G
(
kv1(t)

)

≤ ηmax

2
k2 − λC2

(
C7k
)β + λC3N − μGmN

−→ −∞ as k −→ +∞.

(3.25)

Hence there is a k1 > ρ such that J(k1v1) < 0. Let e = k1v1. Then ‖e‖ > ρ and J(e) < 0. The
second condition of Mountain Pass theorem is verified.

Proof of Theorem 1.1. Clearly, J(0) = 0. Lemma 3.5 implies that J satisfies (PS) condition. It
follows from Lemmas 3.6, 3.7, and 2.5 that J has a nontrivial critical point û such that
J(û) ≥ (ηminM

2
1/16)λ

−2/(α−1). By Lemma 3.3 and Remark 3.2, û is a positive solution of (1.1).
The proof is complete.
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Proof of Theorem 1.4. We will apply the subsuper solutions method to prove the multiplicity
results.

Firstly, we will prove that there exists μ∗ > 0 such that if μ > μ∗, then the following
boundary value problem

−Δ2u(t − 1) = μg(u(t)), t ∈ Z(1,N),

u(0) = 0, u(N + 1) = 0
(3.26)

has a positive solution u. In fact, since g(u) is increasing on [0,+∞) and eventually strictly
positive, g(u) ≥ −C8 for u ≥ 0 and some C8 > 0. Let r1 be the eigenfunction to the principal
eigenvalue μ1 of

−Δ2u(t − 1) = μu(t), t ∈ Z(1,N),

u(0) = 0, u(N + 1) = 0
(3.27)

with r1 > 0 and ‖r1‖ = 1.
Notice that μ1 = 2 − 2 cos(π/(N + 1)) and r1(t) = sin(πt/(N + 1)) (see [20]). Let

C9 > 0 be a constant such that C9 ≤ 2 sin2(π/(N + 1)) cos(2π/(N + 1)). For t ∈ Q1 = {t ∈
Z(1,N) | t = 1 or t = N},N ≥ 4, we have (Δr1(t))

2 + (Δr1(t − 1))2 − 2μ1r
2
1(t) = 2 sin2(π/(N +

1)) cos(2π/(N + 1)) ≥ C9 > 0.
We will verify that ψ = (μC8/C9)r21 is a subsolution of (3.26) for μ large. Notice that

−Δ2r21(t − 1) = 2r21(t) − r21(t + 1) − r21(t − 1)

= 2r21(t) − (r1(t) + Δr1(t))
2 − (r1(t) −Δr1(t − 1))2

= 2μ1r
2
1(t) −

(
Δr1(t)

)2 − (Δr1(t − 1)
)2
.

(3.28)

On the other hand, for t ∈ Q1, we have (Δr1(t))
2 +(Δr1(t − 1))2 −2μ1r

2
1(t) ≥ C9, which implies

that

C8

C9

[
2μ1r

2
1(t) −

(
Δr1(t)

)2 − (Δr1(t − 1)
)2] − g(ψ(t)) ≤ 0. (3.29)

Then for t ∈ Q1, −Δ2ψ(t− 1) ≤ μg(ψ(t)). Next, for t ∈ Z(1,N) \Q1, we have r1(t) ≥ r for some
r > 0 and (C8/C9)r21(t) ≥ C10 for some C10 = (C8/C9)r

2 > 0. Hence ψ(t) = (μC8/C9)r21(t) ≥
μC10. Since g is increasing and eventually strictly positive, there is a μ∗ > 0 such that if μ > μ∗

and t ∈ Z(1,N) \Q1,

g(ψ(t)) ≥ C8

C9
· 2μ1 ≥ C8

C9

[
2μ1r

2
1(t) −

(
Δr1(t)

)2 − (Δr1(t − 1)
)2]

. (3.30)
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Hence for t ∈ Z(1,N) \Q1, −Δ2ψ(t − 1) ≤ μg(ψ(t)). Notice that r1(0) = 0, r1(N + 1) = 0. Then
ψ(0) = 0, ψ(N + 1) = 0. So we have

−Δ2ψ(t − 1) ≤ μg(ψ(t)), t ∈ Z(1,N),

ψ(0) ≤ 0, ψ(N + 1) ≤ 0,
(3.31)

that is, ψ is a subsolution of (3.26).
Now we look for the supersolution of (3.26). Let z be a solution of

−Δ2u(t − 1) = 1, t ∈ Z(1,N),

u(0) = 0, u(N + 1) = 0.
(3.32)

Then z(s) =
∑N

t=1G(s, t) = (1/(N+1)){∑s−1
t=1 [(N+1)−s]t+∑N

t=ss[(N+1)−t]} = s[(N+1)−s]/2,
where

G(s, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t[(N + 1) − s]
N + 1

, 0 ≤ t ≤ s − 1,

s[(N + 1) − t]
N + 1

, s ≤ t ≤N + 1.

(3.33)

Clearly, z(s) > 0 for s ∈ Z(1,N), z(0) = 0, z(N + 1) = 0. Define φ = μσz, where σ > 0 is large
enough so φ > ψ in Z(1,N) and

g(μσz)
σ

< 1. (3.34)

This is possible since g is a sublinear function. So

−Δ2φ(t − 1) ≥ μg(φ(t)), t ∈ Z(1,N),

φ(0) ≥ 0, φ(N + 1) ≥ 0,
(3.35)

which shows that φ is a supersolution of (3.26). Therefore, by Lemma 2.8, there is a solution
u of (3.26) such that ψ ≤ u ≤ φ.

Secondly, we will prove that u is a subsolution of (1.1). Since λ > 0 and f > 0, it follows
that

−Δ2u(t − 1) ≤ λf(u(t)) + μg(u(t)), t ∈ Z(1,N),

u(0) ≤ 0, u(N + 1) ≤ 0,
(3.36)

which implies that u is a subsolution of (1.1).
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Lastly, we will look for the supersolution of (1.1) and prove the existence of positive
solution of (1.1). Let z be as in (3.32). Notice that g is sublinear. Define u = ξz, where ξ > 0 is
independent of λ and large enough so that u ≥ u in Z(1,N) and

μ
g(ξz(t))

ξ
<

1
2
. (3.37)

Let λ > 0 be so small that

λ
f(ξz(t))

ξ
<

1
2
. (3.38)

Then

−Δ2u(t − 1) = ξ ≥ λf(u(t)) + μg(u(t)), t ∈ Z(1,N),

u(0) ≥ 0, u(N + 1) ≥ 0.
(3.39)

Hence u is a supersolution of (1.1). Thus, by Remark 2.9, problem (1.1) has a solution ũ such
that u ≤ ũ ≤ u for μ > μ∗ and λ small, which is positive for t ∈ Z(1,N).

Now we are going to find the second positive solution of problem (1.1). Notice that
u and u are independent of λ. Since f is positive on [0,+∞), by the definition of f1 we have
∑N

t=1F1(u(t)) ≥ 0. Then for u ∈ [u, u ],

J(u) =
1
2
uTAu − λ

N∑

t=1

F1(u(t)) − μ
N∑

t=1

G1(u(t))

≤ 1
2
uTAu − μ

N∑

t=1

G1(u(t)) ≤ J0,
(3.40)

where J0 = maxu∈[u,u ]((1/2)uTAu − μ∑N
t=1G1(u(t))). On the other hand, by Lemma 3.6, we

can take appropriate λ such that if λ ∈ (0, λ), then J(u) ≥ (ηminM
2
1/16)λ

−2/(α−1) > J0 + 1 for
‖u‖ = ρ. Hence by Theorem 1.1, J(û) > J0. So û/∈[u, u ] and û /= ũ, which shows that û and ũ
are two different positive solutions of (1.1). The proof is complete.

Proof of Theorem 1.5. Just to be on the contradiction side, let u be a positive solution of (1.1).
Since f is superlinear and increasing, f(0) > 0, there are C11, C12 > 0 such that for s ≥ 0,
f(s) ≥ C11s+C12. Hence for λ > 0 and s ≥ 0, λf(s)+μg(s) ≥ λ(C11s+C12)+μGm, where Gm is
the same as that of the proof of Lemma 3.7. If λ is large enough, then λC12+μGm ≥ (1/2)λC12.
Therefore λf(s) + μg(s) ≥ λC11s + (1/2)λC12 for large λ > 0 and s ≥ 0. Multiplying both sides
of

−Δ2y1(t − 1) = λ1y1(t) (3.41)
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by u(t) and summing it from 1 toN, we get

N∑

t=1

( −Δ2y1(t − 1)
)
u(t) =

N∑

t=1

λ1y1(t)u(t). (3.42)

Multiplying both sides of (1.1) by y1(t) and summing it from 1 toN, we have

N∑

t=1

( −Δ2u(t − 1)
)
y1(t) =

N∑

t=1

(λf(u(t)) + μg(u(t)))y1(t). (3.43)

It is easy to see that

N∑

t=1

( −Δ2u(t − 1)
)
y1(t) =

N∑

t=1

( −Δ2y1(t − 1)
)
u(t). (3.44)

Hence

N∑

t=1

λ1y1(t)u(t) =
N∑

t=1

(λf(u(t)) + μg(u(t)))y1(t),

N∑

t=1

λ1u(t)y1(t) ≥
N∑

t=1

(

λC11u(t) +
1
2
λC12

)

y1(t),

N∑

t=1

(
λ1 − λC12

)
u(t)y1(t) ≥

N∑

t=1

1
2
λC12y1(t).

(3.45)

For λ > λ1/C12, we obtain a contradiction. So for a given μ > 0, (1.1) has no positive solution
if λ is large. The proof is complete.

Example 3.8. We give an example to illustrate the result of Theorem 1.1. Let f(u) = u3 + 1 and
g(u) = (u − 1)2/3 − 2. Clearly, f and g satisfy the conditions of Theorem 1.1. Then problem
(1.1) has at least a positive solution.
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