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1. Introduction definitions and notations

In [1], Jang et al. gave new formulae on Genocchi numbers. They defined poly-Genocchi
numbers to give the relation between Genocchi numbers, Euler numbers, and poly-Genocchi
numbers. In [2], Kim et al. constructed new generating functions of the q-analogue Eulerian
numbers and q-analogue Genocchi numbers. They gave relations between Bernoulli numbers,
Euler numbers, and Genocchi numbers. They also defined Genocchi zeta functions which
interpolate these numbers at negative integers. Kim [3] gave new concept of the q-extension
of Genocchi numbers and gave some relations between q-Genocchi polynomials and q-Euler
numbers. In this paper, by using generating function of this numbers, we study q-Genocchi
zeta and l-functions. In [4], Kim constructed q-Genocchi numbers and polynomials. By using
these numbers and polynomials, he proved the q-analogue of alternating sums of powers of

mailto:ysimsek@akdeniz.edu.tr


2 Advances in Difference Equations

consecutive integers due to Euler:

k−1∑

j=0

[
j : q2

]
(−1)j−1[j]n−1q(k−j)(n+1)/2 = Gn,k,q −Gn,k,q(k)

(1 + q)n
(1.1)

(cf. [4]), where if q ∈ C, |q| < 1,

[x] = [x : q] =
1 − qx

1 − q
,

[
j : q2

]
=
1 − q2j

1 − q2
, (1.2)

and the numbers Gn,k,q are called q-Genocchi numbers which are defined by

(1 + q)t
∞∑

j=0

qk−j
[
j : q2

]
(−1)j−1 exp (

t[j, q2]q(k−j)/2
)
=

∞∑

j=0

Gn,k,q
tn

n!
. (1.3)

Note that limq→1[x] = x, (cf. [3, 5–9]). The Euler numbers En are usually defined by means of
the following generating function (cf. [10–16]):

2
et + 1

=
∞∑

n=0

En
tn

n!
, |t| < π. (1.4)

The Genocchi numbers Gn are usually defined by means of the following generating function
(cf. [12, 13]):

2t
et + 1

=
∞∑

n=0

Gn
tn

n!
, |t| < π. (1.5)

These numbers are classical and important in number theory. In [12], Kim defined generating
functions of the q-Genocchi numbers and q-Euler numbers as follows:

(1 + q)et/(1−q)
∞∑

n=0

(−1)n
(
1 + qn+1

)
(1 − q)n

tn

n!
=

∞∑

m=0

Em,q
tm

m!
, (1.6)

where Em,q denotes q-Euler numbers,

Gq(t) = (1 + q)t
∞∑

m=0

(−1)nqne[n]t =
∞∑

m=0

Gm,q
tm

m!
, (1.7)

where Gm,q denotes q-Genocchi numbers. Genocchi zeta function is defined as follows (cf. [13,
page 108]): for s ∈ C,

ζG(s) = 2
∞∑

n=1

(−1)n
ns

. (1.8)
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Kim [17] defined the ferminoic and deformic expression of p-adic q-Volkenborn integral
at q = −1 and q = 1. He constructed integral equation of the fermionic expression of p-adic
q-Volkenborn integral at q = −1. By using this integral equation, he defined new generating
functions of λ-Euler numbers and polynomials. By using derivative operator to this functions,
he constructed new λ-zeta, λ-l-functions and p-adic λ-l-functions, which are interpolated λ-
Euler numbers and polynomials. He also gave some applications which are the formulae
of the trigonometric functions by applying ferminoic and deformic expression of p-adic q-
Volkenborn integral at q = −1 and q = 1. Kim and Rim [18] defined two-variable L-function.
They gave main properties of this function. In [6], Kim constructed the two-variable p-adic
q-L-function which interpolates the generalized q-Bernoulli polynomials attached to Dirichlet
character. In [19], Simsek et al. constructed the two-variable Dirichlet q-L-function and the two-
variable multiple Dirichlet-type Changhee q-L-function. In [8, 20], Simsek defined generating
functions, which are interpolates twisted Bernoulli numbers and polynomials, twisted Euler
numbers and polynomials. He[21] also gave new generating functions which produce q-
Genocchi zeta functions and q-l-series with attached to Dirichlet character. Therefore, by using
these generating functions, he constructed new q-analogue of Hardy-Berndt sums. He gave
relations between these sums, q-Genocchi zeta functions and q-l-series as well,

ζG(s)Γ(s) =
∫∞

0

2xs−1

e−x + 1
dx (1.9)

(cf. [21]), where Γ(s) is Euler’s gamma function and ζG(1 − n) = −Gn/n, n > 1 (cf. [1], [13,
page 108, equation (2.43)]). The first author defined q-analogue of the Genocchi zeta functions
as follows [21].

Definition 1.1. Let s ∈ C and Re(s) > 1. q-analogue of the Genocchi type zeta function is
expressed by the formula

IG,q(s) = (1 + q)
∞∑

n=1

(−1)nq−n
(
q−n[n]

)s . (1.10)

Remark 1.2. If q→1, then (1.10) reduces to ordinary Genocchi zeta functions (see [13, page 108]).
Cenkci et al. [22], defined different type of q-Genocchi zeta functions, which are defined as
follows:

ζ
(G)
q (s) = q(1 + q)

∞∑

n=1

(−1)n+1qn
[n]s

. (1.11)

Simsek [21] defined q-analogue of the Hurwitz-type Genocchi zeta function by applying
the Mellin transformations as follows:

Iq(s, x) =
1

Γ(s)

∫∞

0
ts−1

( ∞∑

n=0

(−1)nq−ne−(q−n[n]+x)t
)
dt. (1.12)
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Definition 1.3 (see [21]). Let s ∈ C, Re(s) > 1, and 0 < x ≤ 1. q-analogue of the Hurwitz-type
Genocchi zeta function is expressed by the formula

IG,q(s, x) := [2]Iq(s, x). (1.13)

Observe that when x = 1, the IG,q(s, x) is reduced to IG,q(s) and if q→1, then
IG,q(s, x)→IG(s, x). A function IG(s, x) is called an ordinary Hurwitz-type Genocchi zeta
function if IG(s, x) is expressed by the formula

I(s, x) := 2
∞∑

n=0

(−1)n
(n + x)s

, (1.14)

where s ∈ C, Re(s) > 1, and 0 < x ≤ 1, cf. [13].
In [21], Simsek defined q-analogue (Genocchi-type) one- and two-variable l-functions as

follows, respectively; let χ be a Dirichlet character; let s ∈ C and Re(s) > 1;

lG,q(s, χ) =
(1 + q)
Γ(s)

∫∞

0
ts−1

( ∞∑

n=1

(−1)nχ(n)q−ne−q−n[n]t
)
dt, (1.15)

lG,q(s, x, χ) =
(1 + q)
Γ(s)

∫∞

0
ts−1

( ∞∑

n=0

(−1)nχ(n)q−ne−(q−n[n]+x)t
)
dt. (1.16)

A function lG(s, χ) is called an ordinary Genocchi-type l-function if lG(s, χ) is expressed by the
formula

l(s, x) := 2
∞∑

n=0

(−1)nχ(n)
(n + x)s

, (1.17)

where s ∈ C,Re(s) > 1 and 0 < x ≤ 1, cf. [13].
Observe that when χ ≡ 1, (1.15) reduces to (1.10):

lq(s, 1) = Iq(s). (1.18)

We summarize our work as follows. In Section 2, we study generating functions of
the q-Genocchi numbers and polynomials. By using infinite and finite series, we give some
definitions of the q-Genocchi numbers and polynomials. We find new relations between
generalized q-Genocchi numbers with attached to χ, q-Genocchi numbers and Barnes’ type
Changhee q-Bernoulli numbers. In Section 3, by applyingMellin transformation and derivative
operator to the generating functions of the q-Genocchi numbers, we construct q-Genocchi
zeta and l-functions, which are interpolated q-Genocchi numbers and polynomials at negative
integers. We also give some new relations related to these numbers and polynomials.

2. q-Genocchi number and polynomials

In this section, we give some new relations and identities related to q-Genocchi numbers and
polynomials. Firstly we give some generating functions of the q-Genocchi numbers, which
were defined by Kim [3, 10, 11]:

Fq(t) = et/(1−q)
∞∑

j=0

(1 + q)
[2 : qj+1]

(
1

q − 1

)j tj

j!
= (1 + q)

∞∑

l=0

(−q)le[l]t, (2.1)
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and let

F∗
q(t) = t(1 + q)

∞∑

l=0

(−q)le[l]t =
∞∑

n=0

Gn,q
tn

n!
(2.2)

(cf.[3, 10, 11, 23]), where Gn,q denotes q-Genocchi numbers.
We note that q-Genocchi numbers, Gn,q, were defined by Kim [3, 10, 11].
By using the above generating functions, q-Genocchi polynomials, Gn,q(x), are defined

by means of the following generating function:

F∗
q(t, x) = F∗

q(t)e
tx =

∞∑

n=0

Gn,q(x)
tn

n!
. (2.3)

Our generating function of Gn,q(x) is similar to that of [3, 12, 21, 23]. By using Cauchy product
in (2.3), we easily obtain

∞∑

n=0

Gn,q(x)
tn

n!
=

∞∑

n=0

Gn,q
tn

n!

∞∑

n=0

tnxn

n!
=

∞∑

n=0

n∑

k=0

Gk,q
xn−k

k!(n − k)!
tn. (2.4)

Then by comparing coefficients of tn on both sides of the above equation, for n ≥ 2, we
obtain the following result.

Theorem 2.1. Let n be an integer with n ≥ 2. Then one has

Gn,q(x) =
∞∑

k=0

(
n
k

)
xn−kGk,q. (2.5)

By using the same method in [3, 12, 21] in (2.3), we have

∞∑

n=0

Gn,q(x)
tn

n!
= (1 + q)t

∞∑

n=0

(−1)nqne[n]t+xt = (1 + q)t
∞∑

n=0

(−1)nqn
∞∑

k=0

([n] + x)ktk

k!
, (2.6)

and after some elementary calculations, we have

∞∑

k=0

Gk,q(x)
tk

k!
=

∞∑

k=0

(
(1 + q)

∞∑

n=0

(−1)nqn([n] + x)k−1k

)
tk

k!
. (2.7)

By comparing coefficients of tk/k! on both sides of the above equation, we arrive at the
following corollary.

Corollary 2.2. Let k ∈ N. Then one has

Gk,q(x) = k(q + 1)
∞∑

n=0

k−1∑

j=0

j∑

d=0

(
k − 1
j

)(
j
d

)
(−1)n+dqd(n+1)xk−j−1

(1 − q)j
. (2.8)
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We give some of q-Genocchi polynomials as follows: Go,q(x) = 0, G1,q(x) = 1, G2,q(x) = 2x − 2q/(1 +
q2), . . . .

From the generating function F∗
q(t), we have the following.

Corollary 2.3. Let k ∈ N. Then one has

Gk,q = k(1 + q)
∞∑

n=0

(−1)nqn[n]k−1 = k(1 − q2)

(1 − q)k

k−1∑

j=0

( k−1
j

)
(−1)j

1 + qj+1
. (2.9)

Proof of the Corollary 2.3 was given by Kim [3, 12]. We give some of q-Genocchi numbers
as follows: Go,q = 0, G1,q = 1, G2,q = −2q/(1 + q2), . . . .

Observe that if q→1, then G2,1 = −1.
By using derivative operator to (2.6), we have

d

dx

∞∑

n=0

Gn,q(x)
tn

n!
=

d

dx

(
(1 + q)t

∞∑

n=0

(−1)nqne([n]+x)t
)

=
∞∑

n=0

Gn,q(x)
tn+1

n!
. (2.10)

After some elementary calculations, we arrive at the following corollary.

Corollary 2.4. Let n be a positive integer. Then one has

d

dx
Gn,q(x) = nGn−1,q(x). (2.11)

Corollary 2.5. Let n be a positive integer. Then one has

Gq,n(x + y) =
n∑

k=0

(
n
k

)
Gk,q(x)yn−k. (2.12)

Proof. Proof of this corollary is easily obtained from (2.4).

Generalized q-Genocchi numbers are defined by means of the following generating
function (this generating function is similar to that of [3, 12, 21–24]):

Fq,χ(t) = (1 + q)t
∞∑

n=0

χ(n)qn(−1)ne[n]t =
∞∑

n=0

Gn,χ,q
tn

n!
, (2.13)

where χ denotes the Dirichlet character with conductor d ∈ Z
+, the set of positive integers.

Observe that when χ ≡ 1, (2.13) reduces to (2.3).
By (2.13), we have

∞∑

m=0

Gm,χ,q
tm

m!
= (1 + q)

∞∑

n=0

∞∑

m=0

χ(n)qn(−1)n[n]mtm+1

m!
. (2.14)
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After some elementary calculations and by comparing coefficients tm on both sides of the above
equation, we get

Gm,χ,q = (1 + q)m
∞∑

n=0

(−1)nqnχ(n)[n]m−1. (2.15)

By setting n = a+dj, where (j = 0, 1, 2, . . . ,∞;a = 1, 2, . . . , d), and χ(a+ jd) = χ(a), in the above
equation, we obtain

Gm,χ,q = (1 + q)m
∞∑

j=0

d∑

a=1

(−1)a+jdqa+jdχ(a + jd)[a + jd]m−1

= (1 + q)m
d∑

a=1

m−1∑

i=0

(−1)a
(
m − 1

i

)
qa(m−i)χ(a)[a]i[d]m−i−1

∞∑

j=0

(−1)djqdj[j, qd]m−i−1
.

(2.16)

In [15], Srivastava et al. defined the following generalized Barnes-type Changhee q-
Bernoulli numbers.

Let χ be the Dirichlet character with conductor d. Then the generalized Barnes-type
Changhee q-Bernoulli numbers with attached to χ are defined as follows:

Fq,χ(t | w1) = −w1t
∞∑

n=0

χ(n)qw1ne[w1n]t =
∞∑

n=0

βn,χ,q(w1)tn

n!
, |t| < 2π (2.17)

(cf. [15]). Substituting χ ≡ 1 and w1 = 1 into the above equation, we have

Fq,1(t | 1) = −t
∞∑

n=0

qne[n]t =
∞∑

n=0

βn,qt
n

n!
. (2.18)

By using derivative operator to the above, we obtain

dm

dtm
Fq,1(t | 1)|t=0 = βm,q = −m

∞∑

n=0

qn[n]m−1. (2.19)

By substituting (2.9) and (2.19) into (2.16), after some calculations, we arrive at the
following theorem.

Theorem 2.6. Let χ be the Dirichlet character with conductor d. If d is odd, then one has

Gm,χ(q) =
d∑

a=1

m−1∑

i=0

(
m − 1

i

)
(−1)aqa(m−i)χ(a)[a]i[d]m−i−1Gm−i(qd), (2.20)

if d is even, then one has

Gm,χ(q) =
d∑

a=1

m−1∑

i=0

(
m − 1

i

)
(−1)a+1 m

m − i
qa(m−i)χ(a)[a]i[d]m−i−1βm−i,qd , (2.21)

where βm−i,qd is defined in (2.19).
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Remark 2.7. In Theorem 2.6, we give new relations between generalized q-Genocchi numbers,
Gm,χ(q) with attached to χ, q-Genocchi numbers, Gm(q), and Barnes-type Changhee q-
Bernoulli numbers. For detailed information about generalized Barnes-type Changhee q-
Bernoulli numbers with attached to χ see [15].

Generalized Genocchi polynomials are defined by means of the following generating
function:

Fq,χ(t, x) = Fq,χ(t)etx =
∞∑

n=0

Gn,χ,q(x)
tn

n!
. (2.22)

Theorem 2.8. Let χ be the Dirichlet character with conductor d. Then one has

Gn,χ,q(x) =
∞∑

n=0

(
n
k

)
Gn,χ,qx

n−k. (2.23)

Remark 2.9. Generating functions of Gn,q(x) and Gn,χ,q(x) are different from those of [3, 12, 22,
23]. Kim defined generating function of Gn,q(x), as follows [12]:

Fq(t, x) = (1 + q)t
∞∑

m=0

qm(−1)me[m+x]t =
∞∑

m=0

Gn,q(x)
tm

m!
. (2.24)

In [21], Simsek defined generating function of Gn,q(x) by

Fq(t, x) =
∞∑

n=0

(−1)nq−n exp(−(q−n[n] + x)t). (2.25)

3. q-Genocchi zeta and l-functions

In recent years, many mathematicians and physicians have investigated zeta functions,
multiple zeta functions, l-series, q-Genocchi zeta, and l-functions, and q-Bernoulli, Euler, and
Genocchi numbers and polynomials mainly because of their interest and importance. These
functions and numbers are not only used in complex analysis, but also used in p-adic analysis
and other areas. In particular, multiple zeta functions occur within the context of Knot theory,
quantum field theory, applied analysis and number theory, (cf. [15]). In this section, we
define q-Genocchi zeta and l-functions, which are interpolated q-Genocchi polynomials and
generalized q-Genocchi numbers at negative integers. By applying the Mellin transformation
to (2.3), we obtain

1
Γ(s)

∫∞

0
ts−2F∗

q(−t, x)dt =
−(1 + q)
Γ(s)

∫∞

0
ts−1

∞∑

n=0

(−1)nqne−([n]+x)tdt = (1 + q)
∞∑

n=0

(−1)n+1qn
([n] + x)s

, (3.1)

where Re s > 1, 0 < x ≤ 1, and |q| < 1.
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Thus, Hurwitz-type q-Genocchi zeta function is defined by the following definition.

Definition 3.1. Let s ∈ C with Res > 1 and let q ∈ C with |q| < 1. Then one defines

ζG,q(s, x) = (1 + q)
∞∑

n=0

(−1)n+1qn
([n] + x)s

. (3.2)

Observe that when x = 1 in (3.2), thenwe obtain Riemann-type q-Genocchi zeta function:

ζG,q(s) = (1 + q)
∞∑

n=1

(−1)n+1qn
[n]s

. (3.3)

Hurwitz-type q-Genocchi zeta function interpolates q-Genocchi polynomials at negative
integers. For s = 1 − k, k ∈ Z

+, and by applying Cauchy residue theorem to (3.1), we can
obtain the following theorem.

Theorem 3.2. For s = 1 − k, k > 0, then one has

ζG,q(1 − k, x) = −Gk,q(x)
k

. (3.4)

Remark 3.3. The second proof of Theorem 3.2 can be obtained by using (dk/dtk)|t=0 derivative
operator to (2.3) as follows:

dk

dtk
F∗
q(t, x)

∣∣∣∣
t=0

= (1 + q)
dk

dtk

(
t

∞∑

n=0

(−1)nqne([n]+x)t
)∣∣∣∣

t=0
,

−Gk,q(x)
k

= (1 + q)
∞∑

n=0

(−1)n+1qn([n] + x)k−1.

(3.5)

Thus we obtained the desired result.

By applying Mellin transformation to (2.13), we obtain

lq,G(s, χ) =
1

Γ(s)

∫∞

0
ts−2Fq,x(−t)dt = (1 + q)

∞∑

n=1

(−1)n+1χ(n)qn
[n]s

. (3.6)

Thus we can define Dirichlet-type q-Genocchi l-function as follows.

Definition 3.4. Let χ be the Dirichlet character with conductor d. Let s ∈ C with Re s > 1. One
defines

lq,G(s, χ) = (1 + q)
∞∑

n=1

(−1)n+1χ(n)qn
[n]s

. (3.7)

Relation between lq,G(s, χ) and ζq,G(s, x) is given by the following theorem.
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Theorem 3.5. Let χ be the Dirichlet character with conductor d. Then one has

lq,G(s, χ) =
(1 + q)

(1 + qd)[d]s
d−1∑

a=0

χ(a)qa(1−s)(−1)aζqd,G
(
s,

q−a[a]
[d]

)
. (3.8)

Proof. By setting n = a + dk, where (k = 0, 1, 2, . . . ,∞;a = 1, 2, 3, . . . , d) in (3.7), we obtain,

lq,G(s, χ) = (1 + q)
d∑

a=0

∞∑

k=1

χ(a + kd)qa+kd(−1)a+kd+1
[a + kd]s

= (1 + q)
d∑

a=0

∞∑

k=0

χ(a + kd)qa+kd(−1)a+kd+1
([a] + qa[d][k : qd])s

=
(1 + q)
(1 + qd)

d−1∑

a=0

χ(a)qa(1−s)(−1)a
[d]s

∞∑

k=0

(1 + qd)qkd(−1)kd+1
([k : qd] + q−a[a]/[d])s

(3.9)

After some elementary calculations, we arrive at the desired result of the theorem.

The function lq,G(s, χ) interpolates generalized q-Genocchi numbers, which are given by
the following theorem.

Theorem 3.6. Let n ∈ Z
+. Let χ be the Dirichlet character with conductor d. Then one has

lq,G(1 − n, χ) = −Gn,χ(q)
n

. (3.10)

Proof. Proof of this theorem is similar to that of Theorem 3.2. So we omit the proof.

We give some applications. Setting s = 1 − n, n ∈ Z
+ and using Theorem 3.2 in

Theorem 3.5, we get

lq,G(1 − n, χ) =
(1 + q)[d]n−1

n(1 + qd)

d∑

a=1

(−1)a+1χ(a)qaGn,qd

(
q−a[a]
[d]

)
. (3.11)

By comparing both sides of the above equation and Theorem 3.6, we obtain distributions
relation of the generalized Genocchi numbers as follows.

Corollary 3.7. Let χ be the Dirichlet character with conductor d. Then one has

Gn,χ(q) =
(1 + q)[d]n−1

(1 + qd)

d∑

a=1

(−1)a+1χ(a)qaGn,qd

(
q−a[a]
[d]

)
, (3.12)

where n ≥ 0, and Gn,qd(q−a[a]/[d]) is the q-Genocchi polynomial.
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By substituting (2.5) into (3.12), we have the following corollary.

Corollary 3.8. Let χ be the Dirichlet character with conductor d. Then one has

Gn,χ(q) =
(1 + q)[d]n−1

(1 + qd)

d∑

a=1

(−1)aχ(a)qa
n∑

k=0

(
n
k

)(
q−a[a]
[d]

)n−k
Gk,qd

=
(1 + q)

(1 + qd)[d]

d∑

a=1

(−1)aχ(a)qa[a]n
n∑

k=0

(
n
k

)(
qa[d]
[a]

)k

Gk,qd .

(3.13)

If we substitute (2.7) into (3.12), we get a new relation for the distribution relation of
q-Genocchi numbers:

Gn,χ(q) =
n(1 + q)[d]n−1

(1 + qd)

d∑

a=1

(−1)a+1χ(a)qa
∞∑

j=0

(−1)jqj
(
[j] +

q−a[a]
[d]

)n−1

=
n(1 + q)[d]n−1

(1 + qd)

∞∑

j=0

d∑

a=1

(−1)a+j+1χ(a)qa+j
n−1∑

m=0

(
n − 1
m

)(
q−a[a]
[d]

)m

[j]n−1−m

=
n(1 + q)[d]n−1

(1 + qd)

∞∑

j=0

d∑

a=1

n−1∑

m=0

(−1)a+j+1
(
n − 1
m

)
χ(a)qa+j

(
q−a[a]
[d]

)m

[j]n−m−1.

(3.14)

Thus we arrive at the following corollary.

Corollary 3.9. Let χ be the Dirichlet character with conductor d. Then one has

Gn,χ(q) =
n(1 + q)[d]n−1

(1 + qd)

∞∑

j=0

d∑

a=1

n−1∑

m=0

(−1)a+j+1
(
n − 1
m

)
χ(a)qa+j

(
q−a[a]
[d]

)m

[j]n−m−1. (3.15)
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