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1. Introduction

Being an important tool in the study of differential equations and integral equation, various
generalizations of Gronwall inequality [1, 2] and their applications have attracted great inter-
ests of many mathematicians (see [3–5]). Some recent works can be found, for example, in
[6–9] and some references therein. Along with the development of the theory of integral in-
equalities and the theory of difference equations, more attentions are paid to some discrete
versions of Gronwall-type inequalities (see, e.g., [10–12] for some early works). Found in [13],
the unknown function u in the fundamental form of sum-difference inequality

u(n) ≤ a(n) +
n−1∑

s=0

f(s)u(s) (1.1)

can be estimated by u(n) ≤ a(n)∏n−1
s=0 (1+f(s)). Pang and Agarwal [14] considered the inequal-

ity

u2(n) ≤ P 2u2(0) + 2
n−1∑

s=0

[
αu2(s) +Qg(s)u(s)

]
, (1.2)
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where α, P , andQ are nonnegative constants and u and g are nonnegative functions defined on
{1, 2, . . . , T} and {1, 2, . . . , T − 1}, and they estimated that u(n) ≤ (1 + α)n[Pu(0) +

∑n−1
s=0Qg(s)],

for all 0 ≤ n ≤ T . Another form of sum-difference inequality,

u2(n) ≤ c2 + 2
n−1∑

s=0

[
f1(s)u(s)w

(
u(s)

)
+ f2(s)u(s)

]
, (1.3)

where c is a constant, f1 and f2 are both real-valued nonnegative functions defined on N0 =
{0, 1, 2, . . .}, andw is a continuous nondecreasing function defined on [u0,∞) such thatw(u) >
0 on (u0,∞) and w(u0) = 0, for a real constant u0, was estimated by Pachpatte [15] as u(n) ≤
Ω−1[Ω(c +

∑n−1
s=0f2(s)) +

∑n−1
s=0f1(s)], where Ω(u) :=

∫u
u0
ds/w(s). Recently, discretization (see

[16, 17]) was also made for Ou-Yang’s inequality [18]. In [16], the inequality of two variables,

u2(m,n) ≤ c2 +
m−1∑

s=m0

n−1∑

t=n0

a(s, t)u(s, t) +
m−1∑

s=m0

n−1∑

t=n0

b(s, t)u(s, t)w
(
u(s, t)

)
, (1.4)

was discussed. Later, this result was generalized in [17] to the inequality

up(m,n) ≤ c +
m−1∑

s=m0

n−1∑

t=n0

a(s, t)uq(s, t) +
m−1∑

s=m0

n−1∑

t=n0

b(s, t)uq(s, t)w
(
u(s, t)

)
, (1.5)

where c ≥ 0 and p > q > 0 are all constant, a and b are both nonnegative real-valued functions
defined on a lattice in Z

2
+, and w is a continuous nondecreasing function satisfying w(u) > 0,

for all u > 0.
In this paper, we establish a more general form of sum-difference inequality

ψ
(
u(m,n)

) ≤ a(m,n) +
2∑

i=1

m−1∑

s=m0

n−1∑

t=n0

fi(s, t)ϕi
(
u(s, t)

)
(1.6)

for nonnegative integersm, n. In (1.6), we replace the constant c in (1.5)with a function a(m,n)
and replace the functions up, uq, uqw(u) in (1.5)with the more general form of functions ψ(u),
ϕ1(u), ϕ2(u), respectively. Moreover, we do not require the monotonicity of ϕ1 and ϕ2. We em-
ploy a technique of monotonization and use a property of stronger monotonicity to overcome
the difficulty from nonmonotonicity so as to give an estimate for the unknown function u. Our
result enables us to solve the discrete inequality (1.5) and other inequalities considered in [17].
Furthermore, we apply our result to a boundary value problem of a partial difference equation
for boundedness, uniqueness, and continuous dependence.

2. Main result

Throughout this paper, let R denote the set of all real numbers, R+ = [0,∞), and N0 =
{0, 1, 2, . . .}. Given m0, n0 ∈ N0,M,N ∈ N0 ∪ {∞}, consider two lattices I = [m0,M) ∩ N0 and
J = [n0,N) ∩ N0 of integer points in R. Let Λ = I × J ⊂ N

2
0. For any (s, t) ∈ Λ, let Λ(s,t) denote

the sublattice [m0, s] × [n0, t] ∩Λ of Λ.
For functions w(m), z(m,n), m, n ∈ N0, their first-order differences are defined by

Δw(m) = w(m + 1) − w(m), Δ1w(m,n) = w(m + 1, n) − w(m,n), and Δ2z(m,n) = z(m,n +
1) − z(m,n). Obviously, the linear difference equation Δx(m) = b(m) with the initial condi-
tion x(m0) = 0 has the solution

∑m−1
s=m0

b(s). For convenience, in the sequel we complementarily
define that

∑m0−1
s=m0

b(s) = 0.
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Our basic assumptions for inequality (1.6) are given in the following.

(H1) ψ is a strictly increasing continuous function on R+ satisfying that ψ(u) > 0, for all
u > 0.

(H2) All ϕi (i = 1, 2) are continuous functions on R+ and positive on (0,∞).

(H3) a(m,n) ≥ 0 on Λ.

(H4) All fi (i = 1, 2) are nonnegative functions on Λ.

With given functions ϕ1, ϕ2, and ψ, we define

w1(u) := max
τ∈[0,u]

{
ϕ1(τ)

}
, (2.1)

w2(u) := max
τ∈[0,u]

{
ϕ2(τ)
w1(τ)

}
w1(u), (2.2)

W1
(
u, u1

)
:=

∫u

u1

dx

w1
(
ψ−1(x)

) , (2.3)

W2
(
u, u2

)
:=

∫u

u2

dx

w2
(
ψ−1(x)

) , (2.4)

where ui > 0 (i = 1, 2) are given constants. Sometimes we simply let Wi(u) denote Wi(u, ui)
when there is no confusion. Obviously, W1 and W2 are both strictly increasing in u > 0 and
therefore the inversesW−1

i (i = 1, 2) are well defined, continuous, and increasing.

Theorem 2.1. Suppose that (H1)–(H4) hold and u(m,n) is a nonnegative function on Λ satisfying
(1.6). Then,

u(m,n) ≤ ψ−1
{
W−1

2

[
W2

(
Υ2(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

f2(s, t)

]}
(2.5)

for (m,n) ∈ Λ(m1,n1), a sublattice in Λ, where

Υ2(m,n) :=W−1
1

[
W1

(
Υ1(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

f1(s, t)

]
,

Υ1(m,n) := a
(
m0, n0

)
+

m−1∑

s=m0

∣∣a
(
s + 1, n0

) − a(s, n0
)∣∣ +

n−1∑

t=n0

∣∣a(m, t + 1) − a(m, t)∣∣
(2.6)

and (m1, n1) ∈ Λ is arbitrarily given on the boundary of the lattice

U :=

{
(m,n) ∈ Λ :Wi

(
Υi(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

fi(s, t) ≤
∫∞

ui

dx

wi

(
ψ−1(x)

) , i = 1, 2

}
. (2.7)

Remark 2.2. Different choices of ui in Wi (i = 1, 2) do not affect our results. For positive con-
stants vi /= ui, i = 1, 2, let W̃i(u) =

∫u
vi
dx/wi(ψ−1(x)). Obviously, W̃i(u) = Wi(u) + W̃i(ui)



4 Advances in Difference Equations

and W̃−1
i (v) = W−1

i (v − W̃i(ui)). It follows that W̃−1
i [W̃i(Υi(m,n)) +

∑m−1
s=m0

∑n−1
t=n0fi(s, t)] =

W−1
i [Wi(Υi(m,n)) +

∑m−1
s=m0

∑n−1
t=n0fi(s, t)], that is, we obtain the same expression in (2.5) if we

replaceWi with W̃i. Moreover, by replacingWi with W̃i, the condition in the definition ofU in
our theorem reads

W̃i

(
Υi
(
m1, n1

))
+
m1−1∑

s=m0

n1−1∑

t=n0

fi(s, t) ≤
∫∞

vi

dx

wi

(
ψ−1(x)

) , (2.8)

the left-hand side of which is equal to W̃i(ui) + Wi(Υi(m1, n1)) +
∑m1−1

s=m0

∑n1−1
t=n0 fi(s, t) and the

right-hand side of which equals
∫ui

vi

dx

wi

(
ψ−1(x)

) +
∫∞

ui

dx

wi

(
ψ−1(x)

) = W̃i(ui) +
∫∞

ui

dx

wi

(
ψ−1(x)

) . (2.9)

Comparison between both sides implies that (2.8) is equivalent to the condition given in the
definition ofU in our theorem with (m,n) = (m1, n1).

Remark 2.3. If we choose ψ(u) = up, ϕ1(u) = uq, ϕ2(u) = uqw(u), f1(s, t) = a(s, t), and
f2(s, t) = b(s, t) with p > q > 0 in (1.6) and restrict a(m,n) to be a constant c, then we can
apply Theorem 2.1 to inequality (1.5) as discussed in [17].

3. Proof of theorem

First of all, we monotonize some given functions ϕi in the sums. Obviously, w1(s) and w2(s),
defined by ϕ1 and ϕ2 in (2.1) and (2.2), are nondecreasing and nonnegative functions and
satisfywi(s) ≥ ϕi(s), i = 1, 2. Moreover, we can check that the ratiow2(s)/w1(s) is also nonde-
creasing. Therefore, from (1.6) we get

ψ
(
u(m,n)

) ≤ a(m,n) +
2∑

i=1

m−1∑

s=m0

n−1∑

t=n0

fi(s, t)wi

(
u(s, t)

)
, ∀(m,n) ∈ Λ. (3.1)

We first discuss in the case that a(m,n) > 0, for all (m,n) ∈ Λ. It means that Υ1(m,n) > 0,
for all (m,n) ∈ Λ. In such a circumstance, Υ1 is positive and nondecreasing on Λ and satisfies

Υ1(m,n) = a
(
m0, n0

)
+

m−1∑

s=m0

∣∣a
(
s + 1, n0

) − a(s, n0
)∣∣ +

n−1∑

t=n0

|a(m, t + 1) − a(m, t)| ≥ a(m,n).

(3.2)

Because ψ is strictly increasing, from (3.1)we have

u(m,n) ≤ ψ−1
[
Υ1(m,n) +

2∑

i=1

m−1∑

s=m0

n−1∑

t=n0

fi(s, t)wi

(
u(s, t)

)
]

= ψ−1(Υ1(m,n) + z(m,n)
)
, ∀(m,n) ∈ Λ,

(3.3)

where

z(m,n) =
2∑

i=1

m−1∑

s=m0

n−1∑

t=n0

fi(s, t)wi

(
u(s, t)

)
. (3.4)
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From the properties of fi and wi, we see that z is nonnegative and nondecreasing in each
variable on Λ. Since Υ1 is nondecreasing, for arbitrarily fixed pair of integers (K,L) ∈ Λ(m1,n1),
we observe from (3.3) that

u(m,n) ≤ ψ−1(Υ1(K,L) + z(m,n)
)
, ∀(m,n) ∈ Λ(K,L). (3.5)

Moreover, we note thatwi is nondecreasing and satisfieswi(u) > 0, for u > 0 (i = 1, 2), and that
Υ1(K,L) + z(m,n) > 0. It implies by (3.5) that

Δ1
(
Υ1(K,L) + z(m,n)

)

w1
(
ψ−1(Υ1(K,L) + z(m,n)

)) =

∑n−1
t=n0f1(m, t)w1

(
u(m, t)

)

w1
(
ψ−1(Υ1(K,L) + z(m,n)

)) +

∑n−1
t=n0f2(m, t)w2

(
u(m, t)

)

w1
(
ψ−1(Υ1(K,L) + z(m,n)

))

≤
n−1∑

t=n0

f1(m, t) +
n−1∑

t=n0

f2(m, t)θ
(
ψ−1(Υ1(K,L) + z(m, t)

))
,

(3.6)

where

θ(u) :=
w2(u)
w1(u)

. (3.7)

On the other hand, by the mean-value theorem for integrals, for arbitrarily given (m,n), (m +
1, n) ∈ Λ(K,L) there exists ξ in the open interval (Υ1(K,L) + z(m,n),Υ1(K,L) + z(m + 1, n)) such
that

W1
(
Υ1(K,L) + z(m + 1, n)

) −W1
(
Υ1(K,L) + z(m,n)

)

=
∫z(m+1,n)+Υ1(K,L)

z(m,n)+Υ1(K,L)

du

w1
(
ψ−1(u)

) =
Δ1

(
Υ1(K,L) + z(m,n)

)

w1
(
ψ−1(ξ)

) ≤ Δ1
(
Υ1(K,L) + z(m,n)

)

w1
(
ψ−1(Υ1(K,L) + z(m,n)

))

(3.8)

by the monotonicity of w1 and ψ. It follows from (3.6) and (3.8) that

W1
(
Υ1(K,L) + z(m + 1, n)

) −W1
(
Υ1(K,L) + z(m,n)

)

≤
n−1∑

t=n0

f1(m, t) +
n−1∑

t=n0

f2(m, t)θ
(
ψ−1(Υ1(K,L) + z(m, t)

))
.

(3.9)

Keep n fixed and substitute m with s in (3.9). Then, taking the sum on both sides of (3.9) over
s = m0, m0 + 1, m0 + 2, . . . , m − 1, we get

W1
(
Υ1(K,L) + z(m,n)

)

≤W1
(
Υ1(K,L)

)
+

m−1∑

s=m0

n−1∑

t=n0

f1(s, t) +
m−1∑

s=m0

n−1∑

t=n0

f2(s, t)θ
(
ψ−1(Υ1(K,L) + z(s, t)

))
,

(3.10)
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for all (m,n) ∈ Λ(K,L), where we note from the definition of z(m,n) in (3.3) and the remark
about

∑m0−1
s=m0

in the second paragraph of Section 2 that z(m0, n) = 0. For convenience, let

Ξ(m,n) :=W1
(
Υ1(K,L) + z(m,n)

)
, (3.11)

σ(m,n) :=W1
(
Υ1(K,L)

)
+

m−1∑

s=m0

n−1∑

t=n0

f1(s, t). (3.12)

Then, (3.10) can be rewritten as

Ξ(m,n) ≤ σ(K,L) +
m−1∑

s=m0

n−1∑

t=n0

f2(s, t)θ
(
ψ−1(W−1

1

(
Ξ(s, t)

)))
, (3.13)

for all (m,n) ∈ Λ(K,L), where we note that σ(K,L) ≥ σ(m,n), for all (m,n) ∈ Λ(K,L). Let g(m,n)
denote the function on the right-hand side of (3.13), which is obviously a positive function and
nondecreasing in each variable. Since the composition θ(ψ−1(W−1

1 (u))) is also nondecreasing
in u, by (3.13), that is the fact that Ξ(m,n) ≤ g(m,n), we have

Δ1
(
g(m,n)

)

θ
(
ψ−1(W−1

1

(
g(m,n)

))) =

∑n−1
t=n0f2(m, t)θ

(
ψ−1(W−1

1

(
Ξ(m, t)

)))

θ
(
ψ−1(W−1

1

(
g(m,n)

)))

≤
∑n−1

t=n0f2(m, t)θ
(
ψ−1(W−1

1

(
g(m, t)

)))

θ
(
ψ−1(W−1

1

(
g(m,n)

)))

≤
n−1∑

t=n0

f2(m, t).

(3.14)

In order to estimate the left-hand side of (3.14) further, we consider the following integral:

∫g(m+1,n)

g(m,n)

dx

θ
(
ψ−1(W−1

1 (x)
)) =

∫g(m+1,n)

g(m,n)

w1
(
ψ−1(W−1

1 (x)
))
dx

w2
(
ψ−1(W−1

1 (x)
))

=
∫W−1

1 (g(m+1,n))

W−1
1 (g(m,n))

dx

w2
(
ψ−1(x)

)

=W2
(
W−1

1

(
g(m + 1, n)

)) −W2
(
W−1

1

(
g(m,n)

))
,

(3.15)

where we note the definitions of W1,W2, and θ in (2.3), (2.4), and (3.7). Applying the mean-
value theorem to (3.15), we see that for arbitrarily given (m,n), (m + 1, n) ∈ Λ(K,L), there exists
η in the open interval (g(m,n), g(m + 1, n)) such that

∫g(m+1,n)

g(m,n)

dx

θ
(
ψ−1(W−1

1 (x)
)) =

Δ1
(
g(m,n)

)

θ
(
ψ−1(W−1

1 (η)
)) ≤ Δ1

(
g(m,n)

)

θ
(
ψ−1(W−1

1

(
g(m,n)

))) . (3.16)

Thus, it follows from (3.14), (3.15), and (3.16) that

W2
(
W−1

1

(
g(m + 1, n)

)) −W2
(
W−1

1

(
g(m,n)

)) ≤
n−1∑

t=n0

f2(m, t), (3.17)
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for all (m,n) ∈ Λ(K,L). Furthermore, using the same procedure as done for (3.9), we keep n
fixed and setting m = s in (3.17). Then, summing up both sides of (3.17) over s = m0, m0 +
1, m0 + 2, . . . , m − 1, we get

W2
(
W−1

1

(
g(m,n)

)) ≤W2
(
W−1

1

(
σ(K,L)

))
+

m−1∑

s=m0

n−1∑

t=n0

f2(s, t), (3.18)

for all (m,n) ∈ Λ(K,L), where we note the fact that g(m0, n) = σ(K,L) and the definition of σ in
(3.12). By the monotonicity of W1 and ψ, the fact that Ξ(m,n) ≤ g(m,n), given in (3.13), and
inequality (3.18), we obtain from (3.5) that

u(m,n) ≤ ψ−1(Υ1(K,L) + z(m,n)
)

= ψ−1(W−1
1

(
Ξ(m,n)

) ≤ ψ−1(W−1
1

(
g(m,n)

))

≤ ψ−1
{
W−1

2

[
W2

(
W−1

1

(
σ(K,L)

))
+

m−1∑

s=m0

n−1∑

t=n0

f2(s, t)

]}
,

(3.19)

for all (m,n) ∈ Λ(K,L), where we note the definitions of Ξ in (3.11) and g just after (3.13). This
result also implies the particular case that

u(K,L) ≤ ψ−1
{
W−1

2

[
W2

(
W−1

1

(
W1

(
Υ1(K,L)

)
+

K−1∑

s=m0

L−1∑

t=n0

f1(s, t)

))
+

K−1∑

s=m0

L−1∑

t=n0

f2(s, t)

]}
.

(3.20)

For the arbitrary choice of (K,L) ∈ Λ(m1,n1), it also implies that (2.5) holds for all (m,n) ∈
Λ(m1,n1).

The remainder case is that a(m,n) = 0, for some (m,n) ∈ Λ. Let

Υ1,ε(m,n) = Υ1(m,n) + ε, (3.21)

where ε > 0 is an arbitrary small number. Obviously, Υ1,ε(m,n) > 0, for all (m,n) ∈ Λ. Using
the same arguments as above, where Υ1(m,n) is replaced with Υ1,ε(m,n), we get

u(m,n) ≤ ψ−1
{
W−1

2

[
W2

(
W−1

1

(
W1

(
Υ1,ε(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

f1(s, t)

))
+

m−1∑

s=m0

n−1∑

t=n0

f2(s, t)

]}
,

(3.22)

for all (m,n) ∈ Λ(m1,n1). Letting ε → 0+, we obtain (2.5) because of continuity of Υi,ε in ε and
continuity ofWi andW−1

i , for i = 1, 2. This completes the proof.
Remark that m1 and n1 lie on the boundary of the lattice U. In particular, (2.5) is true

for all (m,n) ∈ Λ when all wi s (i = 1, 2) satisfy
∫∞
ui
dx/wi(ψ−1(x)) = ∞, so we may take

m1 =M,n1 =N.
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4. Applications to a difference equation

In this section, we apply our result to the following boundary value problem (simply called
BVP) for the partial difference equation:

Δ1Δ2ψ
(
z(m,n)

)
= F

(
m,n, z(m,n)

)
, (m,n) ∈ Λ,

z
(
m,n0

)
= f(m), z

(
m0, n

)
= g(n), (m,n) ∈ Λ,

(4.1)

where Λ := I × J is defined as in the beginning of Section 2, ψ ∈ C0(R,R) is a strictly increasing
odd function satisfying ψ(u) > 0, for u > 0, F : Λ × R → R satisfies

∣∣F(m,n, u)
∣∣ ≤ h1(m,n)ϕ1

(|u|) + h2(m,n)ϕ2
(|u|) (4.2)

for given functions h1, h2 : Λ → R+ and ϕi ∈ C0(R+,R+) (i = 1, 2) satisfying ϕi(u) > 0, for
u > 0, and functions f : I → R and g : J → R satisfy f(m0) = g(n0) = 0. Obviously, (4.1) is a
generalization of the BVP problem considered in [17, Section 3]. So the results of [17] cannot
be applied immediately. In what follows we first apply our main result to discuss boundedness
of solutions of (4.1).

Corollary 4.1. All solutions z(m,n) of BVP (4.1) have the estimate

∣∣z(m,n)
∣∣ ≤ ψ−1

{
W−1

2

[
W2

(
Υ2(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

h2(s, t)

]}
, (4.3)

for all (m,n) ∈ Λ(m1,n1), wherem1, n1 are given as in Theorem 2.1 and

W2(u) =
∫u

1
dx/

{
max
τ∈[0,x]

{
ϕ2

(
ψ−1(τ)

)

maxτ1∈[0,τ]
{
ϕ1

(
ψ−1(τ1)

)}
}
max
τ∈[0,x]

{
ϕ1

(
ψ−1(τ)

)}
}
,

W1(u) =
∫u

1
dx/max

τ∈[0,x]
{
ϕ1

(
ψ−1(τ)

)}
,

Υ2(m,n) =W−1
1

[
W1

(
Υ1(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

h1(t, s)

]
,

Υ1(m,n) ≤
m−1∑

s=m0

∣∣ψ
(
f(s + 1)

) − ψ(f(s))∣∣ +
n−1∑

t=n0

∣∣ψ
(
g(t + 1)

) − ψ(g(t))∣∣.

(4.4)

Proof. Clearly, the difference equation of BVP (4.1) is equivalent to

ψ
(
z(m,n)

)
= ψ

(
f(m)

)
+ ψ

(
g(n)

)
+

m−1∑

s=m0

n−1∑

t=n0

F
(
s, t, z(s, t)

)
. (4.5)

It follows that

∣∣ψ
(
z(m,n)

)∣∣ ≤ ∣∣ψ
(
f(m)

)
+ ψ

(
g(n)

)∣∣ +
m−1∑

s=m0

n−1∑

t=n0

h1(s, t)ϕ1
(∣∣z(s, t)

∣∣) +
m−1∑

s=m0

n−1∑

t=n0

h2(s, t)ϕ2
(∣∣z(s, t)

∣∣)

(4.6)

by (4.2). Let a(m,n) = |ψ(f(m))+ψ(g(n))|. Since |ψ(z(m,n))| = ψ(|z(m,n)|), (4.6) is of the form
(1.6). Applying Theorem 2.1 to inequality (4.6), we obtain the estimate of z(m,n) as given in
this corollary.
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Corollary 4.1 gives a condition of boundedness for solutions. Concretely, if

Υ1(m,n) <∞,
m−1∑

s=m0

n−1∑

t=n0

h1(s, t) <∞,
m−1∑

s=m0

n−1∑

t=n0

h2(s, t) <∞, (4.7)

for all (m,n) ∈ Λ(m1,n1), then every solution z(m,n) of BVP (4.1) is bounded on Λ(m1,n1).
Next, we discuss the uniqueness of solutions for BVP (4.1).

Corollary 4.2. Suppose additionally that
∣∣F

(
m,n, u1

) − F(m,n, u2
)∣∣ ≤ h1(m,n)ϕ1

(∣∣ψ
(
u1
) − ψ(u2

)∣∣) + h2(m,n)ϕ2
(∣∣ψ

(
u1
) − ψ(u2

)∣∣),
(4.8)

for u1, u2 ∈ R and (m,n) ∈ Λ := I × J , where I = [m0,M) ∩ N0, J = [n0,N) ∩ N0 as assumed in the
beginning of Section 2 with natural numbersM andN, h1, h2 are both nonnegative functions defined
on the lattice Λ, ϕ1, ϕ2 ∈ C0(R+,R+) are both nondecreasing with the nondecreasing ratio ϕ2/ϕ1 such
that ϕi(0) = 0, ϕi(u) > 0, for all u > 0 and

∫1
0 ds/ϕi(s) = +∞, for i = 1, 2, and ψ ∈ C0(R,R) is

a strictly increasing odd function satisfying ψ(u) > 0, for u > 0. Then, BVP (4.1) has at most one
solution on Λ.

Proof. Assume that both z(m,n) and z̃(m,n) are solutions of BVP (4.1). From the equivalent
form (4.5) of (4.1), we have

∣∣ψ
(
z(m,n)

) − ψ(z̃(m,n))∣∣ ≤
m−1∑

s=m0

n−1∑

t=n0

h1(s, t)ϕ1
(∣∣ψ

(
z(s, t)

) − ψ(z̃(s, t))∣∣)

+
m−1∑

s=m0

n−1∑

t=n0

h2(s, t)ϕ2
(∣∣ψ

(
z(s, t)

) − ψ(z̃(s, t))∣∣),
(4.9)

for all (m,n) ∈ Λ, which is an inequality of the form (1.6), where a(m,n) ≡ 0. Apply-
ing Theorem 2.1 with the choice that u1 = u2 = 1, we obtain an estimate of the difference
|ψ(z(m,n)) − ψ(z̃(m,n))| in the form (2.5), where Υ1(m,n) ≡ 0, because a(m,n) ≡ 0. Further-
more, by the definition ofWi we see that

lim
u→0

Wi(u) = −∞, lim
u→−∞

W−1
i (u) = 0, i = 1, 2. (4.10)

It follows that

W1
(
Υ1(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

h1(s, t) = −∞ (4.11)

sincem <M,n < N. Thus, by (4.10)

Υ2(m,n) =W−1
1

[
W1

(
Υ1(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

h1(s, t)

]
= 0. (4.12)

Similarly, we getW2(Υ2(m,n)) +
∑m−1

s=m0

∑n−1
t=n0h2(s, t) = −∞ and therefore

W−1
2

[
W2

(
Υ2(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

h2(s, t)

]
= 0. (4.13)
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Thus, we conclude from (2.5) that |ψ(z(m,n))−ψ(z̃(m,n))| ≤ 0, implying that z(m,n) = z̃(m,n),
for all (m,n) ∈ Λ since ψ is strictly increasing. It proves the uniqueness.

Remark 4.3. If h1 ≡ 0 or h2 ≡ 0 in (4.8), the conclusion of Corollary 4.2 also can be obtained.

Finally, we discuss the continuous dependence of solutions of BVP (4.1) on the given
functions F, f , and g. Consider a variation of BVP (4.1)

Δ1Δ2ψ
(
z(m,n)

)
= F̃

(
m,n, z(m,n)

)
, (m,n) ∈ Λ,

z
(
m,n0

)
= f̃(m), z

(
m0, n

)
= g̃(n), (m,n) ∈ Λ,

(4.14)

where ψ ∈ C0(R,R) is a strictly increasing odd function satisfying ψ(u) > 0 for u > 0, F̃ ∈
C0(Λ × R,R), and f̃ : I → R, g̃ : J → R are functions satisfying f̃(m0) = g̃(n0) = 0.

Corollary 4.4. Let F be a function as assumed in the beginning of Section 4 and satisfy (4.2) and (4.8)
on the same lattice Λ as assumed in Corollary 4.2. Suppose that the three differences

max
m∈I

∣∣f̃ − f∣∣, max
n∈J

∣∣g̃ − g∣∣, max
(s,t,u)∈Λ×R

∣∣F̃(s, t, u) − F(s, t, u)∣∣ (4.15)

are all sufficiently small. Then, solution z̃(m,n) of BVP (4.14) is sufficiently close to the solution
z(m,n) of BVP (4.1).

Proof. By Corollary 4.2, the solution z(m,n) is unique. By the continuity and the strict mono-
tonicity of ψ, we suppose that

max
m∈I

∣∣ψ
(
f̃(m)

) − ψ(f(m)
)∣∣ < ε, max

n∈J

∣∣ψ
(
g̃(n)

) − ψ(g(n))∣∣ < ε,

max
(s,t,u)∈I×J×R

∣∣F̃(s, t, u) − F(s, t, u)∣∣ < ε,
(4.16)

where ε > 0 is a small number. By the equivalent difference equation (4.5) and inequality (4.8),
we get

∣∣ψ
(
z̃(m,n)

) − ψ(z(m,n))|

≤ ∣∣ψ
(
f̃(m)

) − ψ(f(m)
)
+ ψ

(
g̃(n)

) − ψ(g(n))∣∣ +
m−1∑

s=m0

n−1∑

t=n0

∣∣F̃
(
s, t, z̃(s, t)

) − F(s, t, z(s, t))∣∣

≤ 2ε +
m−1∑

s=m0

n−1∑

t=n0

∣∣F̃
(
s, t, z̃(s, t)

) − F(s, t, z̃(s, t))∣∣ +
m−1∑

s=m0

n−1∑

t=n0

∣∣F
(
s, t, z̃(s, t)

) − F(s, t, z(s, t))∣∣

≤ {
2 +

(
m1 −m0

)(
n1 − n0

)}
ε +

m−1∑

s=m0

n−1∑

t=n0

h1(s, t)ϕ1(
∣∣ψ

(
z̃(s, t)

) − ψ(z(s, t))∣∣)

+
m−1∑

s=m0

n−1∑

t=n0

h2(s, t)ϕ2(
∣∣ψ

(
z̃(s, t)

) − ψ(z(s, t))∣∣),

(4.17)
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that is, an inequality of the form (1.6). Applying Theorem 2.1 to (4.17), we obtain

∣∣ψ
(
z̃(m,n)

) − ψ(z(m,n))∣∣ ≤W−1
2

[
W2

(
Υ2(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

h2(s, t)

]
, (4.18)

for all (m,n) ∈ Λ(m1,n1), wherem1, n1 are given as in Theorem 2.1,

Υ2(m,n) =W−1
1

[
W1

(
Υ1(m,n)

)
+

m−1∑

s=m0

n−1∑

t=n0

h1(t, s)

]
,

Υ1(m,n) =
{
2 +

(
m1 −m0

)(
n1 − n0

)}
ε.

(4.19)

By (4.10) we see that Υi(m,n) → 0 (i = 1, 2) as ε → 0. It follows from (4.18) that
limε→0|ψ(z̃(m,n) − ψ(z(m,n))| = 0, and hence z(m,n) depends continuously on F, f, and g
since ψ is strictly increasing.

Our requirement on the small difference, F̃ − F in Corollary 4.4, is stronger than the
condition (iii) in [17, Theorem 3.3], but ours may be easier to check because one has to verify
the inequality in his condition (iii) for each solution z̃(m,n) of BVP (4.14).
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