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1. Introduction

A dynamical system is called positive if any solution of the system starting from nonnegative
states maintains nonnegative states forever. In many applications where variables represent
nonnegative quantities we often encounter positive dynamical systems as mathematical
models (see [1, 2]), and many researches for positive systems have been done actively; for
recent developments see, for example, [3] and the references therein.

In this paper we treat the Volterra difference equations

x(n + 1) =
n∑

j=0

Q(n − j)x(j), (1.1)

together with

y(n + 1) =
n∑

j=−∞
Q(n − j)y(j) (1.2)
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in a (complex) Banach latticeX, where {Q(n)}n≥0 is a sequence of compact linear operators on
X satisfying the summability condition

∑∞
n=0‖Q(n)‖ < ∞, and we study stability properties

of (1.1) and (1.2) under the restriction that the operators Q(n), n ≥ 0, are positive. In fact, the
restriction on Q(n) yields the positivity for the above equations (whose notion is introduced
in Section 2). Also, without the restriction, in [4] the authors characterized the uniform
asymptotic stability of the zero solution of (1.1), together with (1.2), in connection with the
invertibility of the characteristic operator

zI −
∞∑

n=0

Q(n)z−n (I; the identity operator on X) (1.3)

of (1.1) for any complex numbers z such that |z| ≥ 1. In Section 3, wewill prove that under the
restriction that the operators Q(n), n ≥ 0, are positive, the invertibility of the characteristic
operator reduces to that of the operator zI − ∑∞

n=0Q(n), and consequently the uniform
asymptotic stability of the zero solution for positive equations is equivalent to the condition
which is much easier than the one for the characteristic operator in checking (Theorem 3.6).
Moreover, we will discuss in Section 4 the robust stability of (1.1) and give explicit formulae
of some stability radii.

2. Preliminaries

Let N, Z
+, Z

−, Z, R
+, R, and C be the sets of natural numbers, nonnegative integers,

nonpositive integers, integers, nonnegative real numbers, real numbers and complex
numbers, respectively.

To make the presentation self-contained, we give some basic facts on Banach lattices
which will be used in the sequel (see, e.g., [5]). Let XR /= {0} be a real vector space endowed
with an order relation ≤ . ThenXR is called an ordered vector space. Denote the positive elements
of XR by X+ := {x ∈ XR : 0 ≤ x}. If furthermore the lattice property holds, that is, if x ∨ y :=
sup{x, y} ∈ XR, for x, y ∈ XR, then XR is called a vector lattice. It is important to note that X+

is generating, that is,

XR = X+ −X+. (2.1)

Then, the modulus of x ∈ XR is defined by |x| := x ∨ (−x). If ‖·‖ is a norm on the vector lattice
XR satisfying the lattice norm property, that is, if

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖, x, y ∈ XR, (2.2)

then XR is called a normed vector lattice. If, in addition, (XR, ‖·‖) is a Banach space then XR is
called a (real) Banach lattice.

We now extend the notion of Banach lattices to the complex case. For this extension
all underlying vector lattices XR are assumed to be relatively uniformly complete, that is, if
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for every sequence (λn)n∈N
in R satisfying

∑∞
n=1|λn| < +∞ and for every x ∈ XR and every

sequence (xn)n∈N
in XR it holds that,

0 ≤ xn ≤ λnx =⇒ sup
n∈N

(
n∑

j=1

xj

)
∈ XR. (2.3)

Now, let XR be a relatively uniformly complete vector lattice. The complexification of XR is
defined by X = XR + iXR. The modulus of z = x + iy ∈ X is defined by

|z| = sup
0≤θ≤2π

|(cos θ)x + (sin θ)y| ∈ XR. (2.4)

A complex vector lattice is defined as the complexification of a relatively uniformly complete
vector lattice equipped with the modulus (2.4). If XR is normed, then

‖x‖ := ‖|x|‖, x ∈ X (2.5)

defines a norm on X satisfying the lattice norm property; in fact, the norm restricted to XR is
equivalent to the original norm in XR, and we use the same symbol ‖·‖ to denote the (new)
norm. If XR is a Banach lattice, then X equipped with the modulus (2.4) and the norm (2.5)
is called a complex Banach lattice, and XR is called the real part of X.

For Banach spaces E and F, we denote by L(E, F) the Banach space of all bounded
linear operators from E to F equipped with the operator norm, and use the notation L(E) in
place of L(E, E). Let E and F be Banach lattices with real parts ER and FR, respectively. An
operator T ∈ L(E, F) is called real if T(ER) ⊂ FR. A linear operator T from E to F is called
positive, denoted by T ≥ 0, if T(E+) ⊂ F+ holds. Such an operator is necessarily bounded (see
[5]) and hence real. Denote by LR(E, F) and L+(E, F) the sets of real operators and positive
operators between E and F, respectively:

LR(E, F) :=
{
T ∈ L(E, F) : T

(
ER

) ⊂ FR

}
,

L+(E, F) := {T ∈ L(E, F) : T ≥ 0}. (2.6)

Then we observe that

∣∣Tz
∣∣ ≤ T |z| for T ∈ L+(E, F), z ∈ E. (2.7)

Indeed, it is clear that the inequality holds true for any z ∈ ER, the real part of E. Let z =
x + iy ∈ E with x ∈ ER and y ∈ ER. Since |z| ≥ (cos θ)x + (sin θ)y ≥ −|z| by (2.4), we get

T |z| ≥ (cos θ)Tx + (sin θ)Ty ≥ −T |z|, 0 ≤ θ ≤ 2π, (2.8)
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with Tx ∈ ER and Ty ∈ ER. Then, it follows from the modulus (2.4) that

T |z| ≥ sup
0≤θ≤2π

|(cos θ)Tx + (sin θ)Ty| = |Tx + iTy| = |Tz| (2.9)

as required. We also emphasize the simple fact that

‖T‖ = sup
x∈E+, ‖x‖=1

‖Tx‖ for T ∈ L+(E, F) (2.10)

(see, e.g., [5, page 230]). Moreover, by the symbol S ≤ T we mean T −S ≥ 0 for T, S ∈ L(E, F).
Throughout this paper,X is assumed to be a complex Banach lattice with the real partXR and
the positive convex cone X+.

For any interval J ⊂ R, we use the same notation J meaning the discrete one J ∩ Z,
for example, [0, σ] = {0, 1, . . . , σ} for σ ∈ Z

+. Also, for an X-valued function ξ on a discrete
interval J , its norm is denoted by ‖ξ‖J := sup{‖ξ(j)‖ : j ∈ J}. Let σ ∈ Z

+ and a function φ :
[0, σ] → X be given. We denote by x(n;σ, φ) the solution x(n) of (1.1) satisfying x(n) = φ(n)
on [0, σ]. Similarly, for τ ∈ Z and a function ψ : (−∞, τ] → X, we denote by y(n; τ, ψ) the
solution y(n) of (1.2) satisfying y(n) = ψ(n) on (−∞, τ]. We then recall the representation
formulae of solutions for initial value problems of (1.1) and (1.2) (see [6–8]). Let {R(n)} be
the fundamental solution of (1.1) (or (1.2)), that is, the sequence in L(X) satisfying

R(n + 1) =
n−1∑

k=0

Q(n − k)R(k), R(0) = I (2.11)

for n ∈ Z
+. Then, the solution x(n;σ, φ) is given by

x(n;σ, φ) = R(n − σ)φ(σ) +
n−1∑

k=σ

R(n − k − 1)

(
σ−1∑

j=0

Q(k − j)φ(j)
)
, n ≥ σ (2.12)

for arbitrary initial function φ : [0, σ] → X, and also for arbitrary initial function ψ :
(−∞, τ] → X, the solution y(n; τ, ψ) of (1.2) is given by

y(n; τ, ψ) = R(n − τ)ψ(τ) +
n−1∑

k=τ

R(n − k − 1)

(
τ−1∑

j=−∞
Q(k − j)ψ(j)

)
(2.13)

for n ≥ τ , where we promise
∑m−1

k=m := 0 form ∈ Z.
Here, we give the definition of the positivity of Volterra difference equations.

Definition 2.1. Equation (1.1) is said to be positive if for any σ ∈ Z
+ and φ : [0, σ] → X+, the

solution x(n;σ, φ) ∈ X+ for n ≥ σ. Similarly, (1.2) is said to be positive if for any τ ∈ Z and
ψ : (−∞, τ] → X+, the solution y(n; τ, ψ) ∈ X+ for n ≥ τ .
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Also, we follow the standard definitions for stabilities of the zero solution.

Definition 2.2. The zero solution of (1.1) is said to be

(i) uniformly stable if for any ε > 0 there exists a δ = δ(ε) > 0 such that if σ ∈ Z
+ and φ

is an initial function on [0, σ] with ‖φ‖[0,σ] < δ then ‖x(n;σ, φ)‖ < ε for all n ≥ σ;
(ii) uniformly asymptotically stable if it is uniformly stable, and if there exists a μ > 0 such

that, for any ε > 0 there exists an N = N(ε) ∈ Z
+ with the property that, if σ ∈ Z

+

and φ is an initial function on [0, σ] with ‖φ‖[0,σ] < μ then ‖x(n;σ, φ)‖ < ε for all
n ≥ σ +N.

Definition 2.3. The zero solution of (1.2) is said to be

(i) uniformly stable if for any ε > 0 there exists a δ = δ(ε) > 0 such that if τ ∈ Z and ψ is
an initial function on (−∞, τ]with ‖ψ‖(−∞,τ] < δ then ‖y(n; τ, ψ)‖ < ε for all n ≥ τ ;

(ii) uniformly asymptotically stable if it is uniformly stable, and if there exists a μ > 0 such
that, for any ε > 0 there exists an N = N(ε) ∈ Z

+ with the property that, if τ ∈ Z

and ψ is an initial function on (−∞, τ] with ‖ψ‖(−∞,τ] < μ then ‖y(n; τ, ψ)‖ < ε for
all n ≥ τ +N.

Here and subsequently, Q̃(z) denotes the Z-transform of {Q(n)}; that is, Q̃(z) :=∑∞
n=0Q(n)z−n, which is defined for |z| ≥ 1 under our assumption

∑∞
n=0‖Q(n)‖ < ∞. Then,

zI − Q̃(z) is called the characteristic operator associated with (1.1) (or (1.2)). In [6, 7], under
some restrictive conditions on {Q(n)}, we discussed the uniform asymptotic stability of the
zero solution of (1.2) in connection with the summability of the fundamental solution {R(n)},
as well as the invertibility of the characteristic operator zI − Q̃(z); see also [9–12] for the case
that X is finite dimensional. Moreover, we have shown in [4] the equivalence among these
three properties without such restrictive conditions; more precisely, we have established the
following.

Theorem 2.4 (see [4, Theorem 1]). Let {Q(n)} ∈ l1(Z+;L(X)), and assume that Q(n), n ∈ Z
+,

are all compact. Then the following statements are equivalent.

(i) The zero solution of (1.1) is uniformly asymptotically stable.

(ii) The zero solution of (1.2) is uniformly asymptotically stable.

(iii) {R(n)} ∈ l1(Z+;L(X)).

(iv) For any z such that |z| ≥ 1, the operator zI − Q̃(z) is invertible in L(X).

3. Stability for positive Volterra difference equations

In this section, we will prove that the uniform asymptotic stability of the zero solution
of positive Volterra difference equations (1.1) and (1.2) is, in fact, characterized by the
invertibility of the operator zI − Q̃(1) for |z| ≥ 1. To this end we need some observations
on the spectral radius of the Z-transform of the convolution kernel {Q(n)}.

First of all, we show the relation between the positivity of Volterra difference equations
and that of the sequence of bounded linear operators {Q(n)}.
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Proposition 3.1. Equation (1.1) is positive if and only if all Q(n), n ∈ Z
+, are positive.

Proof. Suppose that all Q(n) are positive. Then from (2.11) each element R(n) (n ∈ Z
+) of the

fundamental solution is also positive; so that by virtue of (2.12), x(n;σ, φ) ∈ X+ for n ≥ σ,
where σ ∈ Z

+ and φ : [0, σ] → X+ are arbitrary. Hence, (1.1) is positive. Conversely, suppose
(1.1) to be positive. Then we have in particular x(1; 0, φ0) = Q(0)φ0 ∈ X+ for φ0 ∈ X+, which
implies that Q(0) ≥ 0. Let σ > 0 and for k ∈ (0, σ], φk : [0, σ] → X+ be any function such that
φk(j) = 0 except j = σ − k. Then it follows from (2.12) that

x(1 + σ;σ, φk) =
σ−1∑

j=0

Q(σ − j)φk(j) = Q(k)φk(σ − k) ∈ X+, (3.1)

which implies that Q(k) ≥ 0 for k ∈ (0, σ]. Thus, Q(n) ≥ 0 for n ∈ Z
+ since σ ∈ Z

+ is
arbitrary.

By using (2.13) one can verify the following proposition quite similarly.

Proposition 3.2. Equation (1.2) is positive if and only if all Q(n), n ∈ Z
+, are positive.

In what follows, we assume that {Q(n)} ∈ l1(Z+,L(X)) and each Q(n) is compact.
For any closed operator T on X we denote by σ(T), Pσ(T), and ρ(T) the spectrum, the point
spectrum, and the resolvent set of T , respectively. Also denote by IntD the interior of the unit
diskD of the complex plane. Then for the uniform asymptotic stability of the zero solution of
(1.1) we have the following criterion.

Theorem 3.3. Suppose that (1.1) is positive. If σ(Q̃(1)) ⊂ IntD, the zero solution of (1.1) is
uniformly asymptotically stable.

Proof. In view of Theorem 2.4 it is sufficient to show that zI − Q̃(z) is invertible for z ∈ C

with |z| ≥ 1. Suppose by contradiction that z0I − Q̃(z0) is not invertible for some z0 with
|z0| ≥ 1. Then z0 ∈ σ(Q̃(z0)) and hence z0 ∈ Pσ(Q̃(z0)) since z0 /= 0 and Q̃(z0) is compact.
Let x0, x0 /= 0 be an eigenvector of the operator Q̃(z0) for the eigenvalue z0. Then, Q̃(z0)x0 =
z0x0. We generally get Q̃(z0)

kx0 = zk0x0 for any k ∈ N. Notice that the spectral radius of
Q̃(1) is less than 1 by the assumption. Therefore, it follows from the well known Gelfand’s
formula (see, e.g., [13, Theorem 10.13]) for the spectral radius of bounded linear operators
that limk→∞‖Q̃(1)k‖1/k < 1, which implies limk→∞‖Q̃(1)k‖ = 0. On the other hand, since
Q(n), n ∈ Z

+, are positive by Proposition 3.1, we get

∣∣Q̃
(
z0
)
x
∣∣ =

∣∣∣∣∣

∞∑

n=0

Q(n)
zn0

x

∣∣∣∣∣ ≤
∞∑

n=0

∣∣∣∣
Q(n)
zn0

x

∣∣∣∣ ≤
∞∑

n=0

Q(n)|x| = Q̃(1)|x| (∀x ∈ X) (3.2)

by (2.7); and generally,

∣∣Q̃
(
z0
)k
x
∣∣ ≤ Q̃(1)

∣∣Q̃
(
z0
)k−1

x
∣∣ ≤ · · · ≤ Q̃(1)k|x| (∀x ∈ X) (3.3)
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for any k ∈ N. Therefore,

∣∣x0
∣∣ ≤ ∣∣zk0x0

∣∣ =
∣∣Q̃

(
z0
)k
x0
∣∣ ≤ Q̃(1)k

∣∣x0
∣∣, (3.4)

and it follows from the lattice norm property that

∥∥x0
∥∥ ≤ ∥∥Q̃(1)k

∣∣x0
∣∣∥∥ −→ 0 (k −→ ∞). (3.5)

This is a contradiction, because we must get x0 = 0 by (3.5).

The converse of Theorem 3.3 also holds. To see this we need another proposition. Let
r(λ) := r(Q̃(λ)) be the spectral radius of Q̃(λ) for λ ≥ 1.

Proposition 3.4. Suppose that Q(n), n ∈ Z
+, are all positive. Then, r(λ) is nonincreasing and

continuous as a function on [1,∞).

Proof. Let λ1 ≥ λ0 ≥ 1. Then,

Q̃
(
λ1
)
=

∞∑

n=0

Q(n)
λn1

≤
∞∑

n=0

Q(n)
λn0

= Q̃
(
λ0
)
. (3.6)

Observe that the resolvent R(λ; Q̃(λi)) of Q̃(λi) (i = 0, 1) is given by R(λ; Q̃(λi)) =∑∞
n=0Q̃(λi)

n/λn+1 whenever λ > max{r(λ0), r(λ1)}. Then, we deduce from (3.6) that

R
(
λ; Q̃

(
λ1
))

=
∞∑

n=0

Q̃
(
λ1
)n

λn+1
≤

∞∑

n=0

Q̃
(
λ0
)n

λn+1
= R

(
λ; Q̃

(
λ0
))
. (3.7)

Note also that under our assumption Q̃(λ) is a positive operator for λ ≥ 1 since X+ is closed
in X. In particular, R(λ; Q̃(λ1)) is also positive and hence for λ > max{r(λ0), r(λ1)},

∣∣R
(
λ; Q̃

(
λ1
))
ξ
∣∣ ≤ R(λ; Q̃(

λ1
))|ξ| ≤ R(λ; Q̃(

λ0
))|ξ|, ξ ∈ X (3.8)

by (2.7). Therefore ‖R(λ; Q̃(λ1))ξ‖ ≤ ‖R(λ; Q̃(λ0))|ξ|‖ ≤ ‖R(λ; Q̃(λ0))‖‖ξ‖ so that

∥∥R
(
λ; Q̃

(
λ1
))∥∥ ≤ ∥∥R

(
λ; Q̃

(
λ0
))∥∥ for λ > max

{
r
(
λ0
)
, r
(
λ1
)}
. (3.9)

Now, let us assume that r(λ0) < r(λ1) holds for some λ0 and λ1 with λ1 > λ0 ≥ 1. Since Q̃(λ1)
is positive, it follows from [5, Chapter 5, Proposition 4.1] that r(λ1) ∈ σ(Q̃(λ1)). Observe that
if λ ∈ ρ(Q̃(λ1)) and |μ−λ| ≤ 1/(2‖R(λ, Q̃(λ1))‖), then μI−Q̃(λ1) = (I−(λ−μ)R(λ, Q̃(λ1)))(λI−
Q̃(λ1)) is invertible in L(X) with R(μ, Q̃(λ1)) = R(λ, Q̃(λ1))

∑∞
n=0{(λ − μ)R(λ, Q̃(λ1))}

n
. Since

r(λ1) ∈ σ(Q̃(λ1)), the above observation leads to the fact that ‖R(λ; Q̃(λ1))‖ → ∞ as λ →
r(λ1) + 0; consequently, we get ‖R(λ; Q̃(λ0))‖ → ∞ as λ → r(λ1) + 0. On the other hand it
follows from dist (λ, σ(Q̃(λ0))) > 0 for λ ≥ r(λ1) thatR(λ; Q̃(λ0)) ∈ L(X) and the function λ →
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R(λ; Q̃(λ0)) ∈ L(X) is continuous on [r(λ1),∞). Hence, we get supr(λ1)≤λ≤r(λ1)+1‖R(λ; Q̃(λ0)‖ <
∞, which is a contradiction. Consequently, r(λ0) ≥ r(λ1) for λ0 ≤ λ1.

We next show the left continuity of r(λ) on (1,∞). If r(λ) is not left continuous at some
λ0 > 1, we have

r
(
λ0
)
< lim

ε→+0
r
(
λ0 − ε

)
=: r−. (3.10)

Since r− ∈ ρ(Q̃(λ0)), we have (r−, λ0) ∈ U := {(r, λ) ∈ C
2 : r ∈ ρ(Q̃(λ)), |λ| > 1}. Notice that

U is an open set. Hence, it follows that if ε > 0 is small enough, (r(λ0 − ε), λ0 − ε) ∈ U that
is, r(λ0 − ε) ∈ ρ(Q̃(λ0 − ε)) for such an ε > 0. On the other hand, by virtue of [5, Chapter
5, Proposition 4.1] again, the positivity of Q̃(λ0 − ε) yields r(λ0 − ε) ∈ σ(Q̃(λ0 − ε)); this is a
contradiction.

r(λ) is right continuous as well in λ ∈ [1,∞). Indeed, if it is not so, there exists a λ1 ≥ 1
such that

r1 := r
(
λ1
)
> lim

ε→+0
r
(
λ1 + ε

)
=: r+. (3.11)

In view of the positivity of Q̃(λ1) we have r1 ∈ σ(Q̃(λ1)). Also, since Q̃(λ1) is compact, r1
is an isolated point of its spectrum σ(Q(λ1)); in particular, there exists an r∗ ∈ (r+, r1) such
that [r∗, r1) ⊂ ρ(Q̃(λ1)). By the continuity of Q̃(z) there corresponds an ε0 > 0 such that
r∗I − Q̃(λ1 + ε) is invertible in L(X) for 0 ≤ ε ≤ ε0. Moreover, by the fact that r∗ > r(λ1 + ε) for
ε > 0, one can see

R
(
r∗; Q̃

(
λ1 + ε

))
=

∞∑

n=0

Q̃
(
λ1 + ε

)n

rn+1∗
, (3.12)

fromwhichR(r∗; Q̃(λ1+ε)) ≥ 0 readily follows because of the positivity of Q̃(λ1+ε). Therefore,
passing to the limit ε → +0, we deduce that R(r∗; Q̃(λ1)) ≥ 0. Let λ be any number such that
r∗ < λ < r1. By the same reasoning, we see that R(λ; Q̃(λ1)) ≥ 0. Since

R
(
λ; Q̃

(
λ1
)) − R(r∗; Q̃

(
λ1
))

=
(
r∗ − λ

)
R
(
λ; Q̃

(
λ1
))
R
(
r∗; Q̃

(
λ1
))
, (3.13)

we get

R
(
r∗; Q̃

(
λ1
))

= R
(
λ; Q̃

(
λ1
))

+
(
λ − r∗

)
R
(
λ; Q̃

(
λ1
))
R
(
r∗; Q̃

(
λ1
))

≥ R(λ; Q̃(
λ1
))
.

(3.14)

Then, for x ∈ X, it follows from (2.7) that

|R(λ; Q̃(λ1))x| ≤ R(λ; Q̃(λ1))|x| ≤ R(r∗; Q̃(λ1))|x|, (3.15)
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hence

∥∥R
(
λ; Q̃

(
λ1
))∥∥ ≤ ∥∥R

(
r∗; Q̃

(
λ1
))∥∥ (3.16)

for any λwith r∗ < λ < r1. This is a contradiction, because ‖R(λ; Q̃(λ1))‖ → ∞ as λ → r1. The
proof is now completed.

Theorem 3.5. Suppose that (1.1) is positive. If the zero solution of (1.1) is uniformly asymptotically
stable, then σ(Q̃(1)) ⊂ IntD.

Proof. Set f(λ) := λ − r(λ). To prove the theorem it is sufficient to show f(1) > 0. Assume that
f(1) ≤ 0. Since by Proposition 3.4 f(λ) is continuous, there exists λ1 ≥ 1 such that f(λ1) = 0,
that is, λ1 = r(Q̃(λ1)). It follows from the positivity of Q̃(λ1), together with its compactness,
that λ1 belongs to Pσ(Q̃(λ1)); hence, there exists an x1 /= 0 such that Q̃(λ1)x1 = λ1x1, or
equivalently

∞∑

k=0

Q(k)

λk1
x1 = λ1x1. (3.17)

Setting y(n) := λn1x1, we have

y(n + 1) = λn+11 x1 =
∞∑

k=0

Q(k)λn−k1 x1 =
∞∑

k=0

Q(k)y(n − k) =
n∑

k=−∞
Q(n − k)y(k), (3.18)

so that y(n) is a solution of (1.2). By virtue of Theorem 2.4 and our assumption, (1.2) is
uniformly asymptotically stable and therefore y(n) → 0 as n → ∞, which is impossible
because ‖y(n)‖ ≥ ‖x1‖ for all n ∈ Z

+. Thus we must have f(1) > 0.

Combining the results above with Theorem 2.4, we have, for positive Volterra
difference equations, the equivalence among the uniform asymptotic stability of the zero
solution of (1.1) and (1.2), the summability of the fundamental solution and the invertibility
of the operator zI − Q̃(1) outside the unit disk.

Theorem 3.6. Let the assumptions in Theorem 2.4 hold. If, in addition,Q(n) are all positive, then the
following statements are equivalent.

(i) The zero solution of (1.1) is uniformly asymptotically stable.

(ii) The zero solution of (1.2) is uniformly asymptotically stable.

(iii) {R(n)} ∈ l1(Z+;L(X)).

(iv) The operator zI − Q̃(1) is invertible in L(X) for |z| ≥ 1.

Before concluding this section, we will give an example to which our Theorem 3.6
is applicable. In [6, 7], following the idea in [14], we have shown that Volterra difference
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equations on a Banach space X are naturally derived from abstract differential equations on
X with piecewise continuous delays of type

u̇(t) = Au(t) +
∞∑

k=0

B(k)u([t − k]), t ≥ 0, (3.19)

where [·] denotes the Gaussian symbol and A is the inifinitesimal generator of a strongly
continuous semigroup T(t), t ≥ 0, of bounded linear operators on X, and B(k), k ∈ Z

+ are
bounded linear operators on X such that

∞∑

k=0

‖B(k)‖ <∞. (3.20)

Recall that a function u : Z
− ∪ [0,∞) → X with supθ∈Z−‖u(θ)‖ <∞ is called a (mild) solution

of (3.19) on [0,∞), if u is continuous on [0,∞), and satisfies the relation

u(t) = T(t − σ)u(σ) +
∫ t

σ

T(t − s)
( ∞∑

k=0

B(k)u([s − k])
)
ds, t ≥ σ ≥ 0. (3.21)

In case of n ≤ t < n + 1 for some n ∈ Z
+, the relation above yields that

u(t) = T(t − n)u(n) +
∫ t

n

T(t − s)
( ∞∑

k=0

B(k)u([s − k])
)
ds

= T(t − n)u(n) +
∞∑

k=0

(∫ t

n

T(t − s)B(k)u(n − k)ds
)
.

(3.22)

Letting t → n + 1, we get the Volterra difference equation

u(n + 1) =
∞∑

k=0

Q(k)u(n − k), n ∈ Z
+, (3.23)

where Q(k), k ∈ Z
+, are bounded linear operators on X defined by

Q(0)x = T(1)x +
∫1

0
T(τ)B(0)x dτ, Q(k)x =

∫1

0
T(τ)B(k)x dτ, k = 1, 2, . . . (3.24)

for x ∈ X. Conversely, if u satisfies (3.23) with supθ∈Z−‖u(θ)‖ < ∞, then the function u
extended to nonintegers t by the relation

u(t) = T(t − n)u(n) +
∞∑

k=0

(∫ t

n

T(t − s)B(k)u(n − k)ds
)
, n < t < n + 1, n ∈ Z

+ (3.25)
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is a (mild) solution of (3.19). Thus, abstract differential equations of type (3.19) lead to
Volterra difference equations on X.

Now suppose that the semigroup T(t) is compact. Then, T(t) is continuous in t > 0
with respect to the operator norm ([15]) and also Q(k), k ∈ Z

+, defined by the relation (3.24)
are compact operators on X (see [6, Proposition 1]). Moreover, it follows from (3.20) that
{Q(k)} ∈ l1(Z+;L(X)). Moreover in the restricted case where B(k), k ∈ Z

+, are given by
B(k) ≡ b(k)I, k ∈ Z

+, for some b(k) ∈ C with
∑∞

k=0|b(k)| < ∞, we know by [7, Proposition 1]
that the spectrum of the characteristic operator zI − Q̃(z) of (3.23) is given by the formula:

σ(zI − Q̃(z)) = {z} ∪
{
z − eν − b̃(z)

∫1

0
eντdτ : ν ∈ σ(A)

}
for |z| ≥ 1. (3.26)

Hence, in the restricted case, Theorem 2.4 implies that the zero solution of (3.23) is uniformly
asymptotically stable if and only if

z/= eν + b̃(z)
∫1

0
eντdτ (3.27)

for all ν ∈ σ(A) and |z| ≥ 1.
We further assume that X is a complex Banach lattice, the compact semigroup T(t) on

X is positive, and that b(k), k ∈ Z
+, are all nonnegative. Then the sequence {Q(k)} defined by

(3.24)meets the assumptions in Theorem 3.6. Noticing that σ(Q̃(1)) = {0}∪{eν+b̃(z)∫10eντdτ :
ν ∈ σ(A)}, we know by Theorem 3.6 in the further restricted case that the zero solution of
(3.23) is uniformly asymptotically stable if and only if

∣∣∣∣∣e
ν + b̃(1)

∫1

0
eντdτ

∣∣∣∣∣ < 1 (3.28)

for all ν ∈ σ(A).

4. Robust stability and some stability radii of positive Volterra difference equations

Let (1.1) be uniformly asymptotically stable, that is, the zero solution of (1.1) is uniformly
asymptotically stable, and consider a perturbed difference equation of the form

x(n + 1) =
n∑

j=0

(Q(n − j) +DΓ(n − j)E)x(j), n ∈ Z
+, (4.1)

where D ∈ L(U,X), E ∈ L(X,V ) are given operators corresponding to the structure of
perturbations and Γ = {Γ(n)} ∈ l1(Z+,L(V,U)) is an unknown (disturbance) parameter.
Here U and V are also assumed to be complex Banach lattices. Our objective in this section
is to determine various stability radii of (1.1) provided that Q(n) are all positive; for this
topic in case that the space X is finite dimensional, see, for example, [16] and the references
therein. By the stability radius of (1.1) we mean the supremum of positive numbers α such
that the uniform asymptotic stability of the perturbed (4.1) persists whenever the size of the
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perturbation Γ = {Γ(n)}, measured by the l1-norm ‖Γ‖l1 , is less than α (for precise definitions
see the paragraph preceding Theorem 4.3).

Here and hereafter we also assume that for any perturbation Γ, Γ(n), n ∈ Z
+, are

all compact, although this assumption is not necessary in the case that at least one of the
operators D and E is compact. In what follows, we define 1/0 = +∞ by convention.

Theorem 4.1. Let Q(n), n ∈ Z
+, be positive. Suppose that (1.1) is uniformly asymptotically stable

and D, E are both positive. Then the perturbed (4.1) is still uniformly asymptotically stable if

‖Γ‖l1 <
1

∥∥E
(
I − Q̃(1)

)−1
D
∥∥
. (4.2)

We need the following lemma to prove the theorem.

Lemma 4.2. Under the same assumptions as in Theorem 4.1 we have

sup
|z|≥1

∥∥E
(
zI − Q̃(z)

)−1
D
∥∥ =

∥∥E
(
I − Q̃(1)

)−1
D
∥∥. (4.3)

Proof. Since (1.1) is uniformly asymptotically stable, r(Q̃(1)), the spectral radius of Q̃(1),
is less than 1 by Theorem 3.5. In particular, it follows that

∑∞
n=0Q̃(1)n is convergent and

coincides with (I − Q̃(1))
−1
. Let z ∈ C, |z| ≥ 1, be given. As in the proof of Theorem 3.3,

one can see |Q̃(z)kx| ≤ Q̃(1)k|x| for k ∈ N and x ∈ X; hence ‖Q̃(z)k‖ ≤ ‖Q̃(1)k‖, so that
r(Q̃(z)) ≤ r(Q̃(1)) < 1. Therefore,

∣∣(zI − Q̃(z)
)−1

x
∣∣ =

∣∣∣∣∣

∞∑

n=0

Q̃(z)n

zn+1
x

∣∣∣∣∣ ≤
∞∑

n=0

∣∣∣∣
Q̃(z)nx
zn+1

∣∣∣∣ ≤
∞∑

n=0

Q̃(1)n|x| = (
I − Q̃(1)

)−1|x|. (4.4)

The positivity of D and E then implies

∣∣E
(
zI − Q̃(z)

)−1
Du

∣∣ ≤ E∣∣(zI − Q̃(z)
)−1

Du
∣∣ ≤ E(I − Q̃(1)

)−1
D|u| (4.5)

for u ∈ U, and we thus obtain

∥∥E
(
zI − Q̃(z)

)−1
D
∥∥ ≤ ∥∥E

(
I − Q̃(1)

)−1
D
∥∥ for |z| ≥ 1, (4.6)

which completes the proof.

Proof of Theorem 4.1. Assume that perturbed (4.1) is not uniformly asymptotically stable for

some Γ ∈ l1(Z+,L(V,U)) satisfying ‖Γ‖l1 < 1/‖E(I − Q̃(1))
−1
D‖, that is,

‖Γ‖l1
∥∥E

(
I − Q̃(1)

)−1
D
∥∥ < 1. (4.7)
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Then, by Theorem 2.4 there exists a z0 ∈ C with |z0| ≥ 1 such that z0I − Q̃(z0) − DΓ̃(z0)E is
not invertible. So z0 ∈ σ(Q̃(z0) +DΓ̃(z0)E) = Pσ(Q̃(z0) +DΓ̃(z0)E) sinceDΓ̃(z0)E is compact.
Hence, there corresponds an x ∈ X with x /= 0 satisfying (z0I − Q̃(z0))x = DΓ̃(z0)Ex. By
virtue of the uniform asymptotic stability of (1.1)we know that z0I − Q̃(z0) is invertible; and
therefore we get

(
z0I − Q̃

(
z0
))−1

DΓ̃
(
z0
)
Ex = x, (4.8)

so that E(z0I − Q̃(z0))
−1
DΓ̃(z0)Ex = Ex and Ex/= 0. In view of Lemma 4.2,

‖Ex‖ ≤ ∥∥E
(
z0I − Q̃

(
z0
))−1

D
∥∥∥∥Γ̃

(
z0
)∥∥‖Ex‖ ≤ ∥∥E

(
I − Q̃(1)

)−1
D
∥∥‖Γ‖l1‖Ex‖, (4.9)

which gives ‖Γ‖l1‖E(I − Q̃(1))
−1
D‖ ≥ 1, a contradiction to (4.7). The proof is completed.

Let K(V,U) ⊂ L(V,U) be the set of all compact operators mapping V into U.
We introduce three classes of perturbations defined as PC = l1(Z+,K(V,U)), PC =
l1(Z+,LR(V,U) ∩K(V,U)) and P+ = l1(Z+,L+(V,U) ∩K(V,U)). Then the complex, real and
positive stability radius of (1.1) under perturbations is defined, respectively, by

rC = inf{‖Γ‖l1 : Γ ∈ PC, (4.1) is not uniformly asymptotically stable},
rR = inf{‖Γ‖l1 : Γ ∈ PR, (4.1) is not uniformly asymptotically stable},
r+ = inf{‖Γ‖l1 : Γ ∈ P+, (4.1) is not uniformly asymptotically stable},

(4.10)

where the convention inf∅ = +∞ is used. By definition, it is easy to see that rC ≤ rR ≤ r+. On
the other hand Theorem 4.1 yields the estimate

rC ≥ 1
∥∥E

(
I − Q̃(1)

)−1
D
∥∥
, (4.11)

provided that the assumptions of the theorem are satisfied. In fact, these three radii coincide,
that is, we have the following.

Theorem 4.3. Let Q(n), n ∈ Z
+, be positive. Suppose that (1.1) is uniformly asymptotically stable

and D, E are both positive. Then

rC = rR = r+ =
1

∥∥E
(
I − Q̃(1)

)−1
D
∥∥
. (4.12)

Proof. By the fact rC ≤ rR ≤ r+, combined with (4.11), it is sufficient to prove that

r+ ≤ 1
∥∥E

(
I − Q̃(1)

)−1
D
∥∥
. (4.13)
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We may consider the case E(I − Q̃(1))
−1
D/= 0 since otherwise the theorem is trivial. Suppose

by contradiction that (4.13) does not hold. Then there is an ε > 0, ε < ‖E(I − Q̃(1))
−1
D‖, such

that

r+ >
1

∥∥E
(
I − Q̃(1)

)−1
D
∥∥ − ε

. (4.14)

By the same reasoning as in the proof of Lemma 4.2, one can see that (I − Q̃(1))
−1

=
∑∞

n=0Q̃(1)n ≥ 0 and hence E(I − Q̃(1))
−1
D ∈ L+(U,V ). Also by (2.10) one may choose u0 ∈ U+

with ‖u0‖ = 1 such that

∥∥E
(
I − Q̃(1)

)−1
Du0

∥∥ ≥ ∥∥E
(
I − Q̃(1)

)−1
D
∥∥ − ε. (4.15)

Now let v0 := E(I − Q̃(1))
−1
Du0. Since v0 ∈ V+, there exists a positive f ∈ V ∗, ‖f‖ = 1,

satisfying f(v0) = ‖v0‖ = ‖E(I − Q̃(1))
−1
Du0‖ (see [17, Proposition 1.5.7]). Consider a map

Φ : V → U defined by

Φ(v) :=
f(v)

∥∥E
(
I − Q̃(1)

)−1
Du0

∥∥
u0, v ∈ V. (4.16)

Then, it is easy to see that Φ ∈ L+(V,U) ∩K(V,U) and ‖Φ‖ = 1/‖E(I − Q̃(1))
−1
Du0‖. Hence,

‖Φ‖ ≤ 1
∥∥E

(
I − Q̃(1)

)−1
D
∥∥ − ε

. (4.17)

By setting x0 := (I − Q̃(1))−1Du0, we have

ΦEx0 = Φv0 =
f(v0)

∥∥E
(
I − Q̃(1)

)−1
Du0

∥∥
u0 =

∥∥v0
∥∥

∥∥E
(
I − Q̃(1)

)−1
Du0

∥∥
u0 = u0. (4.18)

Notice that x0 /= 0 because u0 /= 0, and that x0 = (I − Q̃(1))−1DΦEx0, or equivalently (I − Q̃(1)−
DΦE)x0 = 0. Define a perturbation Γ∗ ∈ l1(Z+,K(V,U)) by

Γ∗(n) := 2−n−1Φ, n ∈ Z
+. (4.19)

Then Γ∗ ∈ P+. Moreover,

(
I − Q̃(1) −DΓ̃∗(1)E

)
x0 =

(
I − Q̃(1) −DΦE

)
x0 = 0, (4.20)
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and in particular 1 ∈ σ(Q̃(1)+DΓ̃∗(1)E), which means, by Theorem 3.6 (or Theorem 2.4), that
the perturbed (4.1) with Γ = Γ∗ is not uniformly asymptotically stable. Therefore,

r+ ≤ ∥∥Γ∗
∥∥
l1 = ‖Φ‖ ≤ 1

∥∥E
(
I − Q̃(1)

)−1
D
∥∥ − ε

, (4.21)

which contradicts (4.14). Consequently we must have (4.13), and this completes the proof.
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