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1. Introduction

Let a, b ∈ N, a + 2 ≤ b, T = {a + 1, . . . , b − 1}, ̂T = {a, a + 1, . . . , b − 1, b}. Let
̂E :=

{

u | u : ̂T −→ R
}

, (1.1)

and for u ∈ ̂E, let

‖u‖
̂E
= max

k∈̂T

∣

∣u(k)
∣

∣. (1.2)

Let

E :=
{

u | u : T −→ R
}

, (1.3)

and for u ∈ E, let

‖u‖E = max
k∈T

∣

∣u(k)
∣

∣. (1.4)

It is clear that the above are norms on ̂E and E, respectively, and that the finite dimensionality
of these spaces makes them Banach spaces.

mailto:mary@nwnu.edu.cn
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In this paper, we discuss the nonlinear second-order discrete problems with minimum
and maximum:

Δ2u(k − 1) = f
(

k, u(k),Δu(k)
)

, k ∈ T, (1.5)

min
{

u(k) : k ∈ ̂T
}

= A, max
{

u(k) : k ∈ ̂T
}

= B, (1.6)

where f : T ×R
2 → R is a continuous function, a, b ∈ N are fixed numbers satisfying b ≥ a + 2

and A,B ∈ R satisfying B > A.
Functional boundary value problem has been studied by several authors [1–7]. But

most of the papers studied the differential equations functional boundary value problem
[1–6]. As we know, the study of difference equations represents a very important field in
mathematical research [8–12], so it is necessary to investigate the corresponding difference
equations with nonlinear boundary conditions.

Our ideas arise from [1, 3]. In 1993, Brykalov [1] discussed the existence of two
different solutions to the nonlinear differential equation with nonlinear boundary conditions

x′′ = h
(

t, x, x′), t ∈ [a, b],

min
{

u(t) : t ∈ [a, b]
}

= A, max
{

u(t) : t ∈ [a, b]
}

= B,
(1.7)

where h is a bounded function, that is, there exists a constant M > 0, such that |h(t, x, x′)| ≤
M. The proofs in [1] are based on the technique of monotone boundary conditions developed
in [2]. From [1, 2], it is clear that the results of [1] are valid for functional differential equations
in general form and for some cases of unbounded right-hand side of the equation (see [1,
Remark 3 and (5)], [2, Remark 2 and (8)]).

In 1998, Staněk [3]worked on the existence of two different solutions to the nonlinear
differential equation with nonlinear boundary conditions

x′′(t) = (Fx)(t), a.e. t ∈ [0, 1],

min
{

u(t) : t ∈ [a, b]
}

= A, max
{

u(t) : t ∈ [a, b]
}

= B,
(1.8)

where F satisfies the condition that there exists a nondecreasing function f : [0,∞) → (0,∞)
satisfying

∫∞
0 (ds/f(s)) ≥ b − a,

∫∞
0 (s/f(s))ds = ∞, such that
∣

∣(Fu)(t)
∣

∣ ≤ f
(∣

∣u′(t)
∣

∣

)

. (1.9)

It is not difficult to see that when we take F(u(t)) = h(t, u, u′), (1.8) is to be (1.7), and F may
not be bounded.

But as far as we know, there have been no discussions about the discrete problems
with minimum and maximum in literature. So, we use the Borsuk theorem [13] to discuss
the existence of two different solutions to the second-order difference equation boundary
value problem (1.5), (1.6) when f satisfies

(H1) f : T × R
2 → R is continuous, and there exist p : T → R, q : T → R, r : T → R, such

that
∣

∣f(k, u, v)
∣

∣ ≤ p(k)|u| + q(k)|v| + r(k), (k, u, v) ∈ T × R
2, (1.10)

where Γ := 1 − (b − a)
∑b−1

i=a+1|p(i)| −
∑b−1

i=a+1|q(i)| > 0.

In our paper, we assume
∑l

s=ku(s) = 0, if l < k.
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2. Preliminaries

Definition 2.1. Let γ : ̂E → R be a functional. γ is increasing if

x, y ∈ ̂E : x(k) < y(k), for k ∈ ̂T =⇒ γ(x) < γ(y). (2.1)

Set

A =
{

γ | γ : ̂E −→ R is continuous and increasing
}

, A0 =
{

γ | γ ∈ A, γ(0) = 0
}

. (2.2)

Remark 2.2. Obviously, min{u(k) : k ∈ ̂T}, max{u(k) : k ∈ ̂T} belong toA0. Now, if we take

C = B −A, ω(u) = min
{

u(k) : k ∈ ̂T
}

, (2.3)

then boundary condition (1.6) is equal to

ω(u) = A, max
{

u(k) : k ∈ ̂T
} −min

{

u(k) : k ∈ ̂T
}

= C. (2.4)

So, in the rest part of this paper, we only deal with BVP (1.5), (2.4).

Lemma 2.3. Suppose c, d ∈ N, c < d, u = (u(c), u(c + 1), . . . , u(d)). If there exist η1, η2 ∈ {c, c +
1, . . . , d − 1, d}, η1 < η2, such that u(η1)u(η2) ≤ 0, then

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{c,...,η2−1}

∣

∣Δu(k)
∣

∣, k ∈ {

c, . . . , η1
}

,

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{η1,...,η2−1}

∣

∣Δu(k)
∣

∣, k ∈ {

η1 + 1, . . . , η2
}

,

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{η1,...,d−1}

∣

∣Δu(k)
∣

∣, k ∈ {

η2 + 1, . . . , d
}

.

(2.5)

Furthermore, one has

max
k∈{c,...,d}

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{c,...,d−1}

∣

∣Δu(k)
∣

∣. (2.6)

Proof. Without loss of generality, we suppose u(η1) ≤ 0 ≤ u(η2).

(i) For k ≤ η1 < η2, we have

u(k) = u
(

η1
) −

η1−1
∑

i=k

Δu(i), u(k) = u
(

η2
) −

η2−1
∑

i=k

Δu(i). (2.7)

Then

−
η2−1
∑

i=k

Δu(i) ≤ u(k) ≤ −
η1−1
∑

i=k

Δu(i). (2.8)

Furthermore,

∣

∣u(k)
∣

∣ ≤ max

{∣

∣

∣

∣

∣

η2−1
∑

i=k

Δu(i)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

η1−1
∑

i=k

Δu(i)

∣

∣

∣

∣

∣

}

, (2.9)

which implies
∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{c,...,η2−1}

∣

∣Δu(k)
∣

∣. (2.10)
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(ii) For η1 < k ≤ η2, we get

u(k) = u
(

η1
)

+
k−1
∑

i=η1

Δu(i), u(k) = u
(

η2
) −

η2−1
∑

i=k

Δu(i). (2.11)

Then

−
η2−1
∑

i=k

Δu(i) ≤ u(k) ≤
k−1
∑

i=η1

Δu(i). (2.12)

Furthermore,

∣

∣u(k)
∣

∣ ≤ max

{∣

∣

∣

∣

∣

η2−1
∑

i=k

Δu(i)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

k−1
∑

i=η1

Δu(i)

∣

∣

∣

∣

∣

}

, (2.13)

which implies

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{η1,...,η2−1}

∣

∣Δu(k)
∣

∣. (2.14)

(iii) For η1 < η2 < k, we have

u(k) = u
(

η1
)

+
k−1
∑

i=η1

Δu(i), u(k) = u
(

η2
)

+
k−1
∑

i=η2

Δu(i). (2.15)

Then

k−1
∑

i=η2

Δu(i) ≤ u(k) ≤
k−1
∑

i=η1

Δu(i). (2.16)

Furthermore,

∣

∣u(k)
∣

∣ ≤ max

{∣

∣

∣

∣

∣

k−1
∑

i=η2

Δu(i)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

k−1
∑

i=η1

Δu(i)

∣

∣

∣

∣

∣

}

, (2.17)

which implies

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{η1,...,d−1}

∣

∣Δu(k)
∣

∣. (2.18)

In particular, it is not hard to obtain

max
k∈{c,...,d}

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{c,...,d−1}

∣

∣Δu(k)
∣

∣. (2.19)

Similarly, we can obtain the following lemma.
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Lemma 2.4. Suppose c, d ∈ N, c < d, u = (u(c), u(c + 1), . . . , u(d)). If there exists η1 ∈ {c, c +
1, . . . , d − 1, d} such that u(η1) = 0, then

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{c,...,η1−1}

∣

∣Δu(k)
∣

∣, k ∈ {

c, . . . , η1
}

,

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{η1,...,d−1}

∣

∣Δu(k)
∣

∣, k ∈ {

η1 + 1, . . . , d
}

.
(2.20)

In particular, one has

max
k∈{c,...,d}

∣

∣u(k)
∣

∣ ≤ (d − c) max
k∈{c,...,d−1}

∣

∣Δu(k)
∣

∣. (2.21)

Lemma 2.5. Suppose γ ∈ A0, c ∈ [0, 1]. If u ∈ ̂E satisfies

γ(u) − cγ(−u) = 0, (2.22)

then there exist ξ0, ξ1 ∈ ̂T, such that u(ξ0) ≤ 0 ≤ u(ξ1).

Proof. We only prove that there exists ξ0 ∈ ̂T, such that u(ξ0) ≤ 0, and the other can be proved
similarly.

Suppose u(k) > 0 for k ∈ ̂T. Then γ(u) > γ(0) = 0, γ(−u) < γ(0) = 0. Furthermore,
γ(u) − cγ(−u) > 0, which contradicts with γ(u) − cγ(−u) = 0.

Define functional φ : (v(a), v(a + 1), . . . , v(b − 1)) → R by

φ(v) = max

{

d−1
∑

k=c

v(k) : c ≤ d, c, d ∈ ̂T \ {b}
}

. (2.23)

Lemma 2.6. Suppose u(k) is a solution of (1.5) and ω(u) = 0. Then

min
{

φ(Δu), φ(−Δu)
} ≤ (b − a)

2Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (2.24)

Proof. Let

C+ =
{

k | Δu(k) > 0, k ∈ ̂T \ {b}}, C− =
{

k | Δu(k) < 0, k ∈ ̂T \ {b}}, (2.25)

and NC+ be the number of elements in C+, NC− the number of elements in C−.
If C+ = ∅, then φ(Δu) = 0; if C− = ∅, then φ(−Δu) = 0. Equation (2.24) is obvious.
Now, suppose C+ /=∅ and C− /=∅. It is easy to see that

min
{

NC+ ,NC−
} ≤ b − a

2
. (2.26)

At first, we prove the inequality

φ(Δu) ≤ NC+

Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (2.27)

Since ω(u) = 0, by Lemma 2.5, there exist ξ1, ξ2 ∈ ̂T, ξ1 ≤ ξ2, such that u(ξ1)u(ξ2) ≤ 0.
Without loss of generality, we suppose u(ξ1) ≤ 0 ≤ u(ξ2).
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For any α ∈ C+, there exits β satisfying one of the following cases:

Case 1. β = min{k ∈ ̂T \ {b} | Δu(k) ≤ 0, k > α},

Case 2. β = max{k ∈ ̂T \ {b} | Δu(k) ≤ 0, k < α}.

We only prove that (2.27) holds when Case 1 occurs, (if Case 2 occurs, it can be
similarly proved).

If Case 1 holds, we divide the proof into two cases.

Case 1.1. If u(α)u(β) ≤ 0, without loss of generality, we suppose u(α) ≤ 0 ≤ u(β), then by
Lemma 2.3, we have

∣

∣u(k)
∣

∣ ≤ (b − a) max
k∈{α,...,β−1}

∣

∣Δu(k)
∣

∣, k ∈ {α + 1, . . . , β}. (2.28)

Combining this with

0 ≥ u(α) = u(β) −
β−1
∑

i=α

Δu(i) ≥ −
β−1
∑

i=α

Δu(i), (2.29)

we have
∣

∣u(k)
∣

∣ ≤ (b − a) max
k∈{α,...,β−1}

∣

∣Δu(k)
∣

∣, k ∈ {α, . . . , β}. (2.30)

At the same time, for k ∈ {α, . . . , β − 1}, we have Δu(k) > 0 and

Δu(k) = Δu(β) −
β
∑

i=k+1

Δ2u(i − 1), Δu(k) = Δu(α) +
k
∑

i=α+1

Δ2u(i − 1). (2.31)

For k = β, we get

0 ≥ Δu(β) = Δu(α) +
β
∑

i=α+1

Δ2u(i − 1) ≥
β
∑

i=α+1

Δ2u(i − 1). (2.32)

So, for k ∈ {α, . . . , β},
∣

∣Δu(k)
∣

∣ ≤ max

{

k
∑

i=α+1

∣

∣Δ2u(i − 1)
∣

∣,
β
∑

i=k+1

∣

∣Δ2u(i − 1)
∣

∣

}

≤
β
∑

i=α+1

∣

∣Δ2u(i − 1)
∣

∣

=
β
∑

i=α+1

∣

∣f
(

i, u(i),Δu(i)
)∣

∣

≤
β
∑

i=α+1

(∣

∣p(i)
∣

∣

∣

∣u(i)
∣

∣ +
∣

∣q(i)
∣

∣

∣

∣Δu(i)
∣

∣ +
∣

∣r(i)
∣

∣

)

≤
b−1
∑

i=a+1

(

∣

∣p(i)
∣

∣(b − a) max
k∈{α,...,β−1}

∣

∣Δu(k)
∣

∣ +
∣

∣q(i)
∣

∣ max
k∈{α,...,β}

∣

∣Δu(k)
∣

∣ +
∣

∣r(i)
∣

∣

)

.

(2.33)

Thus
∣

∣Δu(α)
∣

∣ ≤ max
k∈{α,...,β}

∣

∣Δu(k)
∣

∣ ≤ 1
Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (2.34)
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Case 1.2 (u(α)u(β) ≥ 0). Without loss of generality, we suppose u(α) ≥ 0, u(β) ≥ 0. Then ξ1
will be discussed in different situations.

Case 1.2.1 (ξ1 < α ≤ β). By Lemma 2.3 (we take η1 = ξ1, η2 = α, d = β), it is not difficult to see
that

∣

∣u(k)
∣

∣ ≤ (b − a) max
k∈{ξ1,...,β−1}

∣

∣Δu(k)
∣

∣, k ∈ {

ξ1 + 1, . . . , β
}

. (2.35)

For k = ξ1, we have

0 ≥ u
(

ξ1
)

= u(α) −
α−1
∑

i=ξ1

Δu(i) ≥ −
α−1
∑

i=ξ1

Δu(i). (2.36)

So, we get

∣

∣u(k)
∣

∣ ≤ (b − a) max
k∈{ξ1,...,β−1}

∣

∣Δu(k)
∣

∣, k ∈ {

ξ1, . . . , β
}

. (2.37)

At the same time, for k ∈ {α, . . . , β},

Δu(k) = Δu(β) −
β
∑

i=k+1

Δ2u(i − 1), Δu(k) = Δu(α) +
k
∑

i=α+1

Δ2u(i − 1). (2.38)

Combining this with Δu(β) ≤ 0, Δu(α) > 0, we have

∣

∣Δu(k)
∣

∣ ≤ max

{

β
∑

i=k+1

∣

∣Δ2u(i − 1)
∣

∣,
k
∑

i=α+1

∣

∣Δ2u(i − 1)
∣

∣

}

≤
β
∑

i=α+1

∣

∣Δ2u(i − 1)
∣

∣

≤
β
∑

i=α+1

(∣

∣p(i)
∣

∣

∣

∣u(i)
∣

∣ +
∣

∣q(i)
∣

∣

∣

∣Δu(i)
∣

∣ +
∣

∣r(i)
∣

∣

)

≤
b−1
∑

i=a+1

(

∣

∣p(i)
∣

∣(b − a) max
k∈{ξ1,...,β−1}

∣

∣Δu(k)
∣

∣ +
∣

∣q(i)
∣

∣ max
k∈{α+1,...,β}

∣

∣Δu(k)
∣

∣ +
∣

∣r(i)
∣

∣

)

,

(2.39)

for k ∈ {α, . . . , β}.
Also, for k ∈ {ξ1, . . . , α − 1}, we have Δu(k) > 0 and

Δu(k) = Δu(β) −
β
∑

i=k+1

Δ2u(i − 1), Δu(k) = Δu(α) −
α
∑

i=k+1

Δ2u(i − 1). (2.40)

Similarly, we get

∣

∣Δu(k)
∣

∣ ≤
b−1
∑

i=a+1

(

∣

∣p(i)
∣

∣(b − a) max
k∈{ξ1,...,β−1}

∣

∣Δu(k)
∣

∣ +
∣

∣q(i)
∣

∣ max
k∈{ξ1+1,...,β}

∣

∣Δu(k)
∣

∣ +
∣

∣r(i)
∣

∣

)

. (2.41)
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By (2.39) and (2.41), for k ∈ {ξ1, . . . , β},

∣

∣Δu(k)
∣

∣ ≤
b−1
∑

i=a+1

(

∣

∣p(i)
∣

∣(b − a) max
k∈{ξ1,...,β}

∣

∣Δu(k)
∣

∣ +
∣

∣q(i)
∣

∣ max
k∈{ξ1,...,β}

∣

∣Δu(k)
∣

∣ +
∣

∣r(i)
∣

∣

)

. (2.42)

Then

∣

∣Δu(α)
∣

∣ ≤ max
k∈{ξ1,...,β}

∣

∣Δu(k)
∣

∣ ≤ 1
Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (2.43)

Case 1.2.2 (α ≤ ξ1 < β). By Lemma 2.3 (we take c = α, η1 = ξ1, η2 = β), it is easy to obtain that
∣

∣u(k)
∣

∣ ≤ (b − a) max
k∈{α,...,β−1}

∣

∣Δu(k)
∣

∣, k ∈ {α, . . . , β}. (2.44)

At the same time, for k ∈ {α, . . . , β},

Δu(k) = Δu(β) −
β
∑

i=k+1

Δ2u(i − 1), Δu(k) = Δu(α) +
k
∑

i=α+1

Δ2u(i − 1). (2.45)

Together with Δu(β) ≤ 0, Δu(α) > 0, we have

∣

∣Δu(k)
∣

∣ ≤ max

{

β
∑

i=k+1

∣

∣Δ2u(i − 1)
∣

∣,
k
∑

i=α+1

∣

∣Δ2u(i − 1)
∣

∣

}

≤
β
∑

i=α+1

∣

∣Δ2u(i − 1)
∣

∣

≤
β
∑

i=α+1

(∣

∣p(i)
∣

∣

∣

∣u(i)
∣

∣ +
∣

∣q(i)
∣

∣

∣

∣Δu(i)
∣

∣ +
∣

∣r(i)
∣

∣

)

≤
b−1
∑

i=a+1

(

∣

∣p(i)
∣

∣(b − a) max
k∈{α,...,β−1}

∣

∣Δu(k)
∣

∣ +
∣

∣q(i)
∣

∣ max
k∈{α,...,β}

∣

∣Δu(k)
∣

∣ +
∣

∣r(i)
∣

∣

)

.

(2.46)

Thus

∣

∣Δu(α)
∣

∣ ≤ max
k∈{α,...,β}

∣

∣Δu(k)
∣

∣ ≤ 1
Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (2.47)

Case 1.2.3 (α < β ≤ ξ1). Without loss of generality, we suppose β < ξ1 (when β = ξ1, by
Lemma 2.4, it can be proved similarly). Then from Lemma 2.3 (we take c = α, η1 = β, η2 =
ξ1), it is not difficult to see that

∣

∣u(k)
∣

∣ ≤ (b − a) max
k∈{α,...,ξ1−1}

∣

∣Δu(k)
∣

∣, k ∈ {

α, . . . , ξ1
}

. (2.48)

For k ∈ {α, . . . , β − 1}, we have

Δu(k) = Δu(β) −
β
∑

i=k+1

Δ2u(i − 1). (2.49)
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Together with Δu(β) ≤ 0 and Δu(k) > 0, for k ∈ {α, . . . , β − 1}, we get

∣

∣Δu(k)
∣

∣ ≤
β
∑

i=k+1

∣

∣Δ2u(i − 1)
∣

∣

=
β
∑

i=k+1

∣

∣f
(

i, u(i),Δu(i)
)∣

∣

≤
β
∑

i=k+1

(∣

∣p(i)
∣

∣

∣

∣u(i)
∣

∣ +
∣

∣q(i)
∣

∣

∣

∣Δu(i)
∣

∣ +
∣

∣r(i)
∣

∣

)

≤
β
∑

i=k+1

(

∣

∣p(i)
∣

∣(b − a) max
k∈{α,...,ξ1−1}

∣

∣Δu(k)
∣

∣ +
∣

∣q(i)
∣

∣ max
k∈{α,...,ξ1−1}

∣

∣Δu(k)
∣

∣ +
∣

∣r(i)
∣

∣

)

,

(2.50)

for k ∈ {α, . . . , β − 1}.
Also, for k ∈ {β, . . . , ξ1}, we have

Δu(k) = Δu(α) +
k
∑

i=α+1

Δ2u(i − 1), Δu(k) = Δu(β) +
k
∑

i=β+1

Δ2u(i − 1). (2.51)

This being combined with Δu(β) ≤ 0, Δu(α) > 0, we get

∣

∣Δu(k)
∣

∣ ≤ max

{

k
∑

i=α+1

∣

∣Δ2u(i − 1)
∣

∣,
k
∑

i=β+1

∣

∣Δ2u(i − 1)
∣

∣

}

≤
ξ1
∑

i=α+1

∣

∣Δ2u(i − 1)
∣

∣

≤
ξ1
∑

i=α+1

(

∣

∣p(i)
∣

∣ max
k∈{α,...,ξ1−1}

∣

∣Δu(k)
∣

∣ +
∣

∣q(i)
∣

∣ max
k∈{α,...,ξ1}

∣

∣Δu(k)
∣

∣ +
∣

∣r(i)
∣

∣

)

.

(2.52)

From (2.50) and (2.52),

∣

∣Δu(α)
∣

∣ ≤ max
k∈{α,...,ξ1}

∣

∣Δu(k)
∣

∣ ≤ 1
Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (2.53)

At last, from Case 1 and Case 2, we obtain

Δu(k) ≤ 1
Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣, k ∈ C+. (2.54)

Then by the definition of φ and (2.54),

φ(Δu) ≤
∑

k∈C+

Δu(k) ≤
∑b−1

i=a+1

∣

∣r(i)
∣

∣

Γ

∑

k∈C+

≤ NC+

Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (2.55)
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Similarly, we can prove

φ(−Δu) ≤ NC−

Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (2.56)

From (2.26), (2.55), and (2.56), the assertion is proved.

Remark 2.7. It is easy to see that φ is continuous, and

max
{

u(k) : k ∈ ̂T
} −min

{

u(k) : k ∈ ̂T
}

= max
{

φ(Δu), φ(−Δu)
}

. (2.57)

Lemma 2.8. Let C be a positive constant as in (2.3), ω as in (2.3), φ as in (2.23). Set

Ω =
{

(u, α, β) | (u, α, β) ∈ ̂E × R
2, ‖u‖

̂E
< (C + 1)(b − a),

|α| < (C + 1)(b − a), |β| < C + 1
}

.
(2.58)

Define Γi : Ω → ̂E × R
2 (i = 1, 2):

Γ1(u, α, β) =
(

α + β(k − a), α +ω(u), β + φ(Δu) − C
)

,

Γ2(u, α, β) =
(

α + β(k − a), α +ω(u), β + φ(−Δu) − C
)

.
(2.59)

Then

D(I − Γi,Ω, 0)/= 0, i = 1, 2, (2.60)

where D denotes Brouwer degree, and I the identity operator on ̂E × R
2.

Proof. Obviously,Ω is a bounded open and symmetric with respect to θ ∈ Ω subset of Banach
space ̂E × R

2.
Define H,G : [0, 1] ×Ω → ̂E × R

2

H(λ, u, α, β) =
(

α + β(k − a), α +ω(u) − (1 − λ)ω(−u), β + φ(Δu)

− φ((λ − 1)Δu) − λC
)

,

G(λ, u, α, β) = (u, α, β) −H(λ, u, α, β).

(2.61)

For (u, α, β) ∈ Ω,

G(1, u, α, β) = (u, α, β) − (

α + β(k − a), α +ω(u), β + φ(Δu) − C
)

=
(

I − Γ1
)

(u, α, β).
(2.62)

By Borsuk theorem, to prove D(I − Γ1,Ω, 0)/= 0, we only need to prove that the following
hypothesis holds.

(a) G(0, ·, ·, ·) is an odd operator on Ω, that is,

G(0,−u,−α,−β) = −G(0, u, α, β), (u, α, β) ∈ Ω; (2.63)
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(b) H is a completely continuous operator;

(c) G(λ, u, α, β)/= 0 for (λ, u, α, β) ∈ [0, 1] × ∂Ω.

First, we take (u, α, β) ∈ Ω, then

G(0,−u,−α,−β)
= (−u,−α,−β) − ( − α − β(k − a),−α +ω(−u) −ω(u),−β + φ(−Δu) − φ(Δu)

)

= −((u, α, β) − (α + β(k − a), α +ω(u) −ω(−u), β + φ(Δu) − φ(−Δu)
))

= −G(0, u, α, β).

(2.64)

Thus (a) is asserted.
Second, we prove (b).
Let (λn, un, αn, βn) ⊂ [0, 1] × Ω be a sequence. Then for each n ∈ Z

+ and the fact k ∈
̂T, |λn| ≤ 1, |αn| ≤ (C + 1)(b − a), |βn| ≤ C + 1, ‖u‖

̂E
≤ (C + 1)(b − a). The Bolzano-Weiestrass

theorem and ̂E is finite dimensional show that, going if necessary to subsequences, we can
assume limn→∞λn = λ0, limn→∞αn = α0, limn→∞βn = β0, limn→∞un = u. Then

lim
n→∞

H
(

λn, un, αn, βn
)

= lim
n→∞

(

αn + βn(k − a), λn +ω
(

un

) − (

1 − λn
)

ω
( − un

)

,

βn + φ
(

Δun

) − φ
((

λn − 1
)(

Δun

)) − λnC
)

=
(

α0 + β0(k − a), λ0 +ω(u) − (

1 − λ0
)

ω(−u),
β0 + φ(Δu) − φ

((

λ0 − 1
)

(Δu)
) − λ0C).

(2.65)

Sinceω and φ are continuous,H is a continuous operator. ThenH is a completely continuous
operator.

At last, we prove (c).
Assume, on the contrary, that

H
(

λ0, u0, α0, β0
)

=
(

u0, α0, β0
)

, (2.66)

for some (λ0, u0, α0, β0) ∈ [0, 1] × ∂Ω. Then

α0 + β0(k − a) = u0(k), k ∈ ̂T, (2.67)

ω
(

u0
) − (

1 − λ0
)

ω
( − u0

)

= 0, (2.68)

φ
(

Δu0
) − φ

((

λ0 − 1
)

Δu0
)

= λ0C. (2.69)

By (2.67) and Lemma 2.5 (take u = u0, c = 1 − λ0), there exists ξ ∈ ̂T, such that u0(ξ) ≤ 0. Also
from (2.67), we have u0(ξ) = α0 + β0(ξ − a), then we get

u0(k) = u0(ξ) + β0(k − ξ), (2.70)

u0(k) ≤ β0(k − ξ), k ∈ ̂T. (2.71)
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Case 1. If β0 = 0, then u0(k) ≤ 0. Now, we claim u0(k) ≡ 0, k ∈ ̂T. In fact, u0(k) ≤ 0 and (2.68)
show that there exists k0 ∈ ̂T satisfying u0(k0) = 0. This being combined withΔu0(k) = β0 = 0,

u0(k) ≡ 0, k ∈ ̂T. (2.72)

So, α0 = u0(a) = 0, which contradicts with (u0, α0, β0) ∈ ∂Ω.

Case 2. If β0 > 0, then from (2.67), Δu0(k) > 0, and the definition of φ, we have

φ
(

Δu0
) − φ

((

λ0 − 1
)

Δu0
)

= β0(b − a). (2.73)

Together with (2.69), we get φ(β0) = λ0C, and

β0 =
λ0C

b − a
< C + 1. (2.74)

Furthermore, Δu0(k) > 0 shows that u0(k) is strictly increasing. From (2.68) and
Lemma 2.5, there exist ξ0, ξ1 ∈ ̂T satisfying u0(ξ0) ≤ 0 ≤ u0(ξ1). Thus, u0(a) ≤ 0 ≤ u0(b). It
is not difficult to see that

u0(a) = u0
(

ξ1
) −

ξ1−1
∑

k=a

Δu0(k) ≥ −
ξ1−1
∑

k=a

Δu0(k), (2.75)

that is,

∣

∣u0(a)
∣

∣ ≤
∣

∣

∣

∣

∣

−
ξ1−1
∑

k=a

Δu0(k)

∣

∣

∣

∣

∣

< (C + 1)(b − a). (2.76)

Similarly, |u0(b)| < (C+1)(b−a), then we get ‖u0‖̂E < (C+1)(b−a) and |α0| = |u0(a)| <
(C + 1)(b − a), which contradicts with (u0, α0, β0) ∈ ∂Ω.

Case 3. If β0 < 0, then from (2.67), we get Δu0(k) = β0 < 0 and

φ
(

Δu0
) − φ

((

λ0 − 1
)

Δu0
)

=
(

1 − λ0
)

β0(b − a). (2.77)

By (2.69), we have
(

1 − λ0
)

β0(b − a) = λ0C. (2.78)

If λ0 = 0, then β0(b − a) = 0. Furthermore, β0 = 0, which contradicts with β0 < 0.
If λ0 = 1, then λ0C = 0. Furthermore, C = 0, which contradicts with C > 0.
If λ ∈ (0, 1), then (1 − λ0)β0(b − a) < 0, λ0C > 0, a contradiction.
Then (c) is proved.
From the above discussion, the conditions of Borsuk theorem are satisfied. Then, we

get

D(I − Γ1,Ω, 0)/= 0. (2.79)

Set

H(λ, u, α, β) =
(

α + β(k − a), α +ω(u) − (1 − λ)ω(−u),
β + φ(−Δu) − φ

(

(1 − λ)Δu
) − λC

)

.
(2.80)

Similarly, we can prove

D(I − Γ2,Ω, 0)/= 0. (2.81)
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3. The main results

Theorem 3.1. Suppose (H1) holds. Then (1.5) and (1.6) have at least two different solutions when
A = 0 and

C >
b − a

2Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (3.1)

Proof. Let A = 0, C > ((b − a)/2Γ)
∑b−1

i=a+1|r(i)|. Consider the boundary conditions

ω(u) = 0, φ(Δu) = C, (3.2)

ω(u) = 0, φ(−Δu) = C. (3.3)

Suppose u(k) is a solution of (1.5). Then from Remark 2.7,

max
{

u(k) : k ∈ ̂T
} −min

{

u(k) : k ∈ ̂T
}

= max
{

φ(Δu), φ(−Δu)}. (3.4)

Now, if (1.5) and (3.2) have a solution u1(k), then Lemma 2.6 and (3.2) show that φ(−Δu1) <
C and

max
{

u1(k) : k ∈ ̂T
} −min

{

u1(k) : k ∈ ̂T
}

= C. (3.5)

So, u1(k) is a solution of (1.5) and (2.4), that is, u1(k) is a solution of (1.5) and (1.6).
Similarly, if (1.5), (3.3) have a solution u2(k), then φ(Δu2) < C and

max
{

u2(k) : k ∈ ̂T
} −min

{

u2(k) : k ∈ ̂T
}

= C. (3.6)

So, u2(k) is a solution of (1.5) and (2.4).
Furthermore, since φ(Δu1) = C and φ(Δu2) < C, u1 /=u2.
Next, we need to prove BVPs (1.5), (3.2), and (1.5) and (3.3) have solutions,

respectively.
Set

Ω =
{

(u, α, β)|(u, α, β) ∈ ̂E × R
2, ‖u‖

̂E
< (C + 1)(b − a),

|α| < (C + 1)(b − a), |β| < C + 1
}

.
(3.7)

Define operator S1 : [0, 1] ×Ω → ̂E × R
2,

S1(λ, u, α, β) =

(

α + β(k − a) + λ
k−1
∑

i=a

i
∑

l=a+1

f
(

l, u(l),Δu(l)
)

, α +ω(u), β + φ(Δu) − C

)

. (3.8)

Obviously,

S1(0, u, α, β) = Γ1(u, α, β), (u, α, β) ∈ Ω. (3.9)

Consider the parameter equation

S1(λ, u, α, β) = (u, α, β), λ ∈ [0, 1]. (3.10)

Now, we prove (3.10) has a solution, when λ = 1.
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By Lemma 2.8, D(I − Γ1,Ω, 0)/= 0. Now we prove the following hypothesis.

(a) S1(λ, u, α, β) is a completely continuous operator;

(b)

S1(λ, u, α, β)/= (u, α, β), (λ, u, α, β) ∈ [0, 1] × ∂Ω. (3.11)

Since ̂E is finite dimensional, S1(λ, u, α, β) is a completely continuous operator.
Suppose (b) is not true. Then,

S1
(

λ0, u0, α0, β0
)

=
(

u0, α0, β0
)

, (3.12)

for some (λ0, u0, α0, β0) ∈ [0, 1] × ∂Ω. Then

u0(k) = α0 + β0(k − a) + λ0
k−1
∑

i=a

i
∑

l=a+1

f
(

l, u(l),Δu(l)
)

, (3.13)

ω
(

u0
)

= 0, (3.14)

φ
(

Δu0
)

= C. (3.15)

From (3.13), u0(k) is a solution of second-order difference equation Δ2u(k − 1) =
λ0f(k, u(k),Δu(k)). By Remark 2.7, maxk∈̂T\{b}|Δu0(k)| ≤ C < C + 1. And from (3.14), there
exist ξ0, ξ1 ∈ ̂T, such that u0(ξ0) ≤ 0 ≤ u0(ξ1). Now, we can prove it in two cases.

Case 1. If there exists ξ ∈ ̂T, such that u0(ξ) = 0, then

(i) for all k ∈ {k, . . . , ξ},

∣

∣u0(k)
∣

∣ =

∣

∣

∣

∣

∣

u0(ξ) −
ξ−1
∑

i=k

Δu0(i)

∣

∣

∣

∣

∣

≤
ξ−1
∑

i=k

∣

∣Δu0(i)
∣

∣ < (C + 1)(b − a). (3.16)

(ii) For all k ∈ {ξ + 1, . . . , b},
∣

∣u0(k)
∣

∣ =

∣

∣

∣

∣

∣

u0(ξ) +
k−1
∑

i=ξ

Δu0(i)

∣

∣

∣

∣

∣

≤
k−1
∑

i=ξ

∣

∣Δu0(i)
∣

∣ < (C + 1)(b − a). (3.17)

Case 2. If ∀k ∈ ̂T, u0(k)/= 0. Set

C+ =
{

k | u0(k) > 0, k ∈ ̂T
}

, C− =
{

k | u0(k) < 0, k ∈ ̂T
}

,

k0 = max C+, k1 = min C−.
(3.18)

(i) For k ∈ C+, if k < k1, then

u0(k) = u0
(

k1
) −

k1−1
∑

i=k

Δu0(i) < −
k1−1
∑

i=k

Δu0(i), (3.19)

that is,

∣

∣u0(k)
∣

∣ <
k1−1
∑

i=k

∣

∣Δu0(i)
∣

∣ < (C + 1)(b − a). (3.20)



R. Ma and C. Gao 15

For k > k1,

u0(k) = u0
(

k1
)

+
k−1
∑

i=k1

Δu0(i) <
k−1
∑

i=k1

Δu0(i), (3.21)

then
∣

∣u0(k)
∣

∣ < (C + 1)(b − a). (3.22)

(ii) Similarly, we can prove |u0(k)| < (C + 1)(b − a) for k ∈ C−.

Combining Case 1 with Case 2, we get
∣

∣u0(k)
∣

∣ < (C + 1)(b − a), k ∈ ̂T. (3.23)

Moreover, α0 = u0(a), β0 = Δu0(a), so,
∣

∣α0
∣

∣ ≤ ∥

∥u0
∥

∥

̂E
< (C + 1)(b − a),

∣

∣β0
∣

∣ < C + 1, (3.24)

which contradicts with (u0, α0, β0) ∈ ∂Ω.

Similarly, consider the operator S2 : [0, 1] ×Ω → ̂E × R
2,

S2(λ, u, α, β) =

(

α + β(k − a) +
k−1
∑

i=a

i
∑

l=a+1

f
(

l, u(l),Δu(l)
)

, α +ω(u), β + φ(−Δu) − C

)

, (3.25)

we can obtain a solution of BVP (1.5) and (3.3).

Theorem 3.2. Suppose (H1) holds. Then (1.5) and (1.6) have at least two different solutions when
A,B ∈ R and

C >
b − a

2Γ

b−1
∑

i=a+1

∣

∣r(i)
∣

∣. (3.26)

Proof. Obviously, ω(A) = A. Set

ω̃(u) = ω(u +A) −A. (3.27)

Then ω̃(0) = 0. Define continuous function f1 : T × R
2 → R,

f1
(

k, u(k),Δu(k)
)

= f
(

k, v(k),Δv(k)
)

, v(k) = u(k) +A. (3.28)

Then
∣

∣f1
(

k, u(k),Δu(k)
)∣

∣ =
∣

∣f
(

k, v(k),Δv(k)
)∣

∣

≤ p(k)
∣

∣v(k)
∣

∣ + q(k)
∣

∣Δv(k)
∣

∣ + r(k)

≤ p(k)
∣

∣u(k)
∣

∣ + q(k)
∣

∣Δu(k)
∣

∣ + r(k) + p(k)A.

(3.29)

Set r̃(k) = r(k) + p(k)A. Then f1 satisfies (H1).
By Theorem 3.1,

Δ2u(k − 1) = f1
(

k, u(k),Δu(k)
)

, k ∈ T, (3.30)

ω̃(u) = 0, max
{

u(k) : k ∈ ̂T
} −min

{

u(k) : k ∈ ̂T
}

= B −A := C (3.31)

have at least two difference solutions u1(k), u2(k). Since u(k) is a solution of (3.30), if and
only if u(k) +A is a solution of (1.5), we see that

ui(k) = ũi(k) +A, i = 1, 2 (3.32)

are two different solutions of (1.5) and (2.4), then ui(k) are the two different solutions of (1.5)
and (1.6).
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