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1. Introduction

Over the past few decades, discrete-time systems with delay have drawn much attention from
the researchers. This is due to their important role in many practical systems. The stability
of time-delay systems is a fundamental problem because of its importance in the analysis of
such systems.The basic method for stability analysis is the direct Lyapunov method, for exam-
ple, see [1–3], and by this method, strong results have been obtained. But finding Lyapunov
functions for nonautonomous delay difference systems is usually a difficult task. In contrast,
many methods different from Lyapunov functions have been successfully applied to establish
stability results for difference equations with delay, for example, see [3–12].

This paper deals with the absolute stability of nonlinear nonautonomous discrete-time
systems with delay, whose linear part has slowly varying coefficients, and the nonlinear part
satisfies a Lipschitz condition.

The aim of this paper is to generalize the approach developed in [7] for linear nonau-
tonomous delay difference systems to the nonlinear case with delaying arguments. Our ap-
proach is based on the “freezing” technique for discrete-time systems. This method has been
used to investigate properties as well as to the construction of solutions for systems of linear
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differential equations. So, it is commonly used in analysing the stability of slowly varying
initial-value problems as well as solving them, for example, see [13, 14]. However, its use to
difference equations is rather new [7]. The stability conditions will be formulated assuming
that we know the Cauchy solution (fundamental solution) of the unperturbed system.

The paper is organized as follows. After some preliminaries in Section 2, the sufficient
conditions for the absolute stability are presented in Section 3. In Section 4, we reduce a delay
difference system to a delay-free linear system of higher dimension, thus obtaining explicit
stability conditions for the solutions.

2. Preliminaries

Let N denote the set of nonnegative integers. Given a positive integer n, denote by Cn andMn

the n-dimensional space of complex column vectors and the set of n×nmatrices with complex
entries, respectively. If ‖·‖ is any norm on Cn, the associated induced norm of a matrixA ∈Mn

is defined by

‖A‖ = sup
x∈Cn

‖Ax‖
‖x‖ . (2.1)

Consider the nonlinear discrete-time system with multiple delays of the form

x(k + 1) =
m∑

l=0

Al(k)x(k − l) + F
(
k, x(k), x(k − 1), . . . , x(k −m)

)
, (2.2)

wherem ≥ 1 is an integer x(k) ∈ Cn and Aj(k) ∈Mn (j = 0, 1, . . . , m).
We will consider (2.2) subject to the initial conditions

x(k) = ϕ(k), for −m ≤ k ≤ 0 , (2.3)

where ϕ is a given vector-valued function, that is, ϕ(k) ∈ Cn.
Throughout the paper, we will assume that the variable matrices Aj(·) (j = 0, 1, . . . , m)

have the properties
∥∥Aj(k) −Aj(s)

∥∥ ≤ qj |k − s|, (
qj = const. ≥ 0; k, s ∈ N

)
, (2.4)

sup
s∈N

m∑

j=0

∥∥Aj(s)
∥∥ <∞. (2.5)

In addition, F : N × Cn(m+1) → Cn is a given function satisfying the growth condition

∥∥F
(
k, z0, z1, . . . , zm

)∥∥ ≤
m∑

j=0

γj
∥∥zj
∥∥, (2.6)

where γj = const. ≥ 0; j ∈ N; zj ∈ Cn, j = 0, 1, . . . , m.

Definition 2.1. The zero solution of (2.2) is absolutely stable in the class of nonlinearities (2.6) if
there is a positive constantM0, independent of F (but dependent on q0, q1, . . . , qm), such that

∥∥x(k)
∥∥ ≤M0 max

−m≤s≤0

∥∥ϕ(s)
∥∥, s ∈ N (2.7)

for any solution x(k) of (2.2) with the initial conditions (2.3).
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It is clear that every solution {x(k)} of the initial-valued problem (2.2)-(2.3) exists, is
unique and can be constructed recursively from (2.2).

Put

L(s)x(k) =
m∑

l=0

Al(s)x(k − l); k, s ∈ N. (2.8)

The stability conditions for (2.2) will be formulated in terms of the Cauchy function G (the
fundamental solution) of

x(k + 1) − L(s)x(k) = 0 (2.9)

defined as follows. For a fixed s ∈ N, let {G(k, s)}∞k=s−m be the solution of (2.9) with initial
conditions

G(k, s) =

{
0 for s −m ≤ k ≤ s − 1,

1 for k = s.
(2.10)

Since the coefficients of (2.9) are constants for fixed s ∈ N, then the Cauchy function of (2.9)
has the form

G(k, s) = v(k − s), for k ≥ s −m , (2.11)

where v is the solution of (2.9) with the initial conditions

v(k) =

{
0, for −m ≤ k ≤ − 1,

1 for k = 0.
(2.12)

In order to state and prove our main results, we need some suitable lemmas and theo-
rems.

Lemma 2.2 (see [7]). The solution {x(k)}∞k=k0−m of

x(k + 1) =
m∑

l=0

Al(k)x(k − l) + f(k), (2.13)

where f : N → Cn is a given function, subject to the initial conditions

x(k) = ϕ(k), for k0 −m ≤ k ≤ k0, (2.14)

has the form

x(k) = y(k) +
k−1∑

j=k0

G(k, j + 1)f(j), for k ≥ k0 (2.15)

where G is the Cauchy function of (2.9) and {y(k)}∞k=k0−m is the solution of the homogeneous equation

x(k + 1) =
m∑

l=0

Al(k)x(k − l) (2.16)

with the same initial conditions:

y(k) = ϕ(k), for k0 −m ≤ k ≤ k0. (2.17)
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Lemma 2.3 (see [7]). The solution {y(k)}∞k=k0−m of (2.16) with initial conditions (2.14) has the form

y(k) = G
(
k, k0

)
ϕ
(
k0
)
+

m∑

i=1

k0+i−1∑

j=k0

Ai(j)G(k, j + 1)ϕ(j − i), k ≥ k0. (2.18)

In [7], was established the following stability result in terms of the Cauchy solution G of
(2.9).

Theorem 2.4 (see [7]). Let the inequality

‖G(k, s)‖ ≤Nηk (k, s ∈ N) (2.19)

holds with constant η ∈ (0, 1), and N independent of s. If in addition, conditions (2.4), (2.5), and
Nq̃ < (1 − η)2 are fulfilled, then (2.16) is stable.

Our purpose is to generalize this result to the nonlinear problem (2.2)-(2.3).

Lemma 2.5 (see [9]). Let {g(k)}∞k=k0 be a sequence of positive numbers such that

k−1∑

j=k0

g(k)
g(j + 1)

≤ Γ for k ≥ k0 (2.20)

where Γ > 0 is a constant. Then there exist constants α > 0 and λ ∈ (0, 1) such that

g(k) ≤ αλk−k0 for k ≥ k0. (2.21)

3. Main results

Now, we establish the main results of the paper, which will be valid for a family {Aj(k)}∞k=0
(j = 0, 1, . . . , m) of slowly varying matrices. Let q̃ =

∑m
i=0qi and γ̃ =

∑m
i=0γi.With the notation

ψ(k) = sup
s∈N

∥∥G(k, s)
∥∥, (3.1)

assume that

ψ̃0 =
∞∑

k=0

ψ(k) <∞, ψ̃1 =
∞∑

k=1

kψ(k) <∞. (3.2)

Consider the equation

x(k + 1) − L(k)x(k) = f(k), (3.3)

where f : N → Cn is a bounded function such that

‖f‖∞ = sup
k∈N

∥∥f(k)
∥∥ <∞. (3.4)
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Theorem 3.1. Under conditions (2.4) and (2.5), let the inequality

q̃ψ̃1 < 1 (3.5)

holds. Then for any solution x(k) of problem (2.13)–(2.3), the estimate

∥∥x(k)
∥∥ ≤ C0‖ϕ‖ + ψ̃0

(
1 − q̃ψ̃1

)−1‖f‖∞, (3.6)

is valid, where C0 = const., and ‖ϕ‖ = max −m≤k≤0‖ϕ(k)‖.

Proof. Fix s ≥ 0 and rewrite (3.3) in the form

x(k + 1) − L(s)x(k) = (L(k) − L(s))x(k) + f(k). (3.7)

Making

H(k, s) = (L(k) − L(s))x(k) + f(k), (3.8)

we get

x(k + 1) − L(s)x(k) = H(k, s). (3.9)

A solution of the latter equation, subject to the initial conditions (2.3), can be represented
as

x(k) = ys(k) +
k−1∑

j=0

G(k − j − 1)H(j, s), k ≥ 0 , (3.10)

where ys(k) is the solution of the homogeneous equation (2.9) with initial conditions (2.3).
Since ys(k) is a solution of (2.9), we can write

ys(k) = G(k, 0)ϕ(0) +
m∑

i=0

Ai(s)
i−1∑

j=0

G(k − j − 1)ϕ(j − i)

= G(k, 0)ϕ(0) +
m∑

i=0

Ai(s)
−1∑

τ=−i
G(k − τ − i − 1)ϕ(τ).

(3.11)

This relation and (2.5) yield

∥∥ys(k)
∥∥ ≤ c1 <∞ (

c1 = const.; k, s ≥ 0
)
, (3.12)

since the Cauchy function is bounded by (3.2). Moreover,

c1 ≤ c2 max
−m≤k≤0

∥∥ϕ(k)
∥∥ (

c2 = const.
)
. (3.13)
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From (3.10), it follows that

∥∥x(k)
∥∥ ≤ ∥∥ys(k)

∥∥ +
k−1∑

j=0

∥∥G(k − j − 1)
∥∥∥∥H(j, s)

∥∥

≤ c1 +
k−1∑

j=0

∥∥G(k − j − 1)
∥∥∥∥H(j, s)

∥∥.
(3.14)

According to (2.4), we have

∥∥H(j, s)
∥∥ ≤

m∑

k=0

∥∥(Ak(j) −Ak(s)x(j − k)
)
+ f(j)

∥∥

≤
m∑

k=0

∥∥Ak(j) −Ak(s)
∥∥∥∥x(j − k)∥∥ + ‖f‖∞

≤
m∑

k=0

qk|j − s|
∥∥x(j − k)∥∥ + ‖f‖∞.

(3.15)

Take k = s. Then, by the estimate

k−1∑

j=0

ψ(k − j − 1)
∥∥f(j)

∥∥ ≤ c(f) ≡ ψ̃0‖f‖∞, (3.16)

it follows that

∥∥x(k)
∥∥ ≤ c1 + c( f) +

k−1∑

j=0

ψ(k − j − 1)

(
m∑

i=0

qi|k − j|∥∥x(j − i)∥∥
)

≤ c1 + c( f) +
m∑

i=0

qi
k−i−1∑

z=−i
ψ(k − z − i)|k − z − i|∥∥x(z)∥∥.

(3.17)

Hence,

∥∥x(k)
∥∥ ≤

m∑

i=0

qi
k−i−1∑

z=0

ψ(k − z − i)|k − z − i|∥∥x(z)∥∥ + c3( f), (3.18)

where

c3( f) = c1 + c( f) + sup
k∈N

m∑

i=0

qi
0∑

z=−i
ψ(k − z − i)|k − z − i|∥∥ϕ(z)∥∥. (3.19)

Making

M
(
k0
)
= max

0≤k≤k0

∥∥x(k)
∥∥, (3.20)

we obtain

M(k0) ≤ c3( f) +M
(
k0
) m∑

i=0

qi
k−i−1∑

z=0

ψ(k − z − i)|k − z − i|

≤ c3(f) +M
(
k0
)
q̃ψ̃1.

(3.21)
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Condition (3.5) implies the inequality

M
(
k0
) ≤ c3( f)

(
1 − q̃ψ̃1

)−1
. (3.22)

Since k0 is arbitrary, we obtain the estimate

sup
k≥0

∥∥x(k)
∥∥ ≤ c3( f)

(
1 − q̃ψ̃1

)−1
. (3.23)

Further,

c3(f) ≤ c4 max
−m≤k≤0

∥∥ϕ(k)
∥∥ + ψ̃0 ‖f‖∞;

(
c4 = const.

)
. (3.24)

This yields the required result.

Corollary 3.2. Under conditions (2.4) and (2.5), let the inequality

∥∥G(k, s)
∥∥ ≤Nηk (k, s ∈ N) (3.25)

hold, with constants η ∈ (0, 1) andN independent of s. If, in addition,

Nq̃ < (1 − η)2. (3.26)

Then, any solution x(k) of (2.13)–(2.3) satisfies the estimate

‖x(k)‖ ≤ b0‖ϕ‖ + N

1 − η
(
1 − N

(1 − η)2
q̃

)−1
‖f‖∞, (3.27)

where ‖ϕ‖ = max −m≤k≤0‖ϕ(k)‖, and b0 = const.

Proof. Under condition (3.25), we obtain

ψ̃0 ≤N
∞∑

k=0

ηk =
N

1 − η ,

ψ̃1 ≤N
∞∑

k=0

kηk =
N

(1 − η)2
.

(3.28)

Now, Corollary 3.2 yields the following result.

Theorem 3.3. Let the conditions (2.4), (2.5), (2.6), (3.25), and, in addition,

N

(
γ̃

1 − η +
q̃

(1 − η)2
)
< 1. (3.29)

hold. Then, the zero solution of (2.2)-(2.3) is absolutely stable in the class of nonlinearities in (2.6).
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Proof. Condition (3.29) implies the inequality (3.26), and in addition

γ̃N

1 − η
(
1 − Nq̃

(1 − η)2
)−1

< 1. (3.30)

By (2.6), we obtain

∥∥F
(
k, x(k), x(k − 1), . . . , x(k −m)

)∥∥ ≤ γ̃‖x‖[−m,∞) ≤ γ̃
(‖x‖[0,∞) + ‖ϕ‖), (3.31)

where x(k) is a solution of (2.2) and [−m,∞) :≡ {−m,−m + 1, . . . , 0, 1, . . . }.
Let

f(k) = F
(
k, x(k), x(k − 1), . . . , x(k −m)

)
, (3.32)

then (2.2) takes the form (3.3). Thus, Corollary 3.2 implies

∥∥x(k)
∥∥ ≤ b0‖ϕ‖ + N

1 − η

(
1 − N

(1 − η)2
q̃

)−1(‖x‖[0,∞) + ‖ϕ‖). (3.33)

Thus, condition (3.29) implies

∥∥x(k)
∥∥ ≤M0‖ϕ‖

[
1 − γ̃N

1 − η
(
1 − Nq̃

(1 − η)2
)−1]−1

, (3.34)

where

M0 = b0 +
γ̃N

1 − η

(
1 − Nq̃

(1 − η)2
)−1

. (3.35)

This fact proves the required result.

Remark 3.4. Theorem 3.3 is exact in the sense that if (2.2) is a homogeneous linear stable equa-
tion with constant matrices Aj(k) ≡ Aj , then q̃ = γ̃ = 0, and condition (3.29) is always fulfilled.

It is somewhat inconvenient that to apply either condition (3.26) or (3.29), one has to
assume explicit knowledge of the constantsN and η. In the next theorem, we will derive suf-
ficient conditions for the exponential growth of the Cauchy function associated to (2.9). Thus,
our conditions may provide a useful tool for applications.

Theorem 3.5 (see [7]). Assume that the Cauchy function G(k, k0) of (2.9) satisfies

k−1∑

j=k0

‖G(k, k0)‖
‖G(j + 1, k0)‖ ≤ Γ for k ≥ k0 , (3.36)

where Γ > 0 is a constant. Then there exist constants β > 0 and 0 < λ < 1 such that

∥∥G
(
k, k0

)∥∥ ≤ βλk−k0 for k ≥ k0. (3.37)
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Now, we will consider the homogeneous equation (2.16), thus establishing the following
consequence of Theorem 3.3.

Corollary 3.6. Let conditions (2.4), (2.5), (3.25), and, in addition,

Nq̃

(1 − η)2
< 1 (3.38)

hold. Then the zero solution of (2.16)–(2.3) is absolutely stable.

Example 3.7. Consider the following delay difference system in the Euclidean space R2:

x(k + 1) = A0(k)x(k) +A1(k)x(k − 1) + F
(
k, x(k), x(k − 1)

)
, k ∈ N, (3.39)

where

A0(k) =

(
a0(k) b0(k)
c0(k) 0

)
, A1(k) =

(
a1(k) b1(k)
c1(k) d1(k)

)
, (3.40)

and x(k) ∈ R2. And ai(k), bi(k), ci(k), di(k), i = 0, 1, are positive bounded sequences with
the following properties: ‖A0(k+1)−A0(k)‖ ≤ q0 and ‖A1(k+1)−A1(k)‖ ≤ q1 and qi; i = 0, 1, are
nonnegative constants for k ∈ N. This yields that ‖A0(k)−A0(s)‖ ≤ q0 and ‖A1(k)−A1(s)‖ ≤ q1,
respectively, for k, s ∈ N. Thus q̃ = q0 + q1.

In addition, the function F : N × R2 × R2 → R2 supplies the solvability and satisfies the
condition

∥∥F(k, u, v)
∥∥ ≤ γ0‖u‖ + γ1‖v‖; u, v ∈ R2, k ∈ N. (3.41)

Hence, γ̃ = γ0 + γ1.
Further, assume that the Cauchy solution G(k, s) of equation

x(k + 1) =

(
a0(s) b0(s)
c0(s) 0

)
x(k) +

(
a1(s) b1(s)
c1(s) d1(s)

)
x(k − 1) (3.42)

for a fixed s ∈ N tends to zero exponentially as k → ∞, that is, there exist constantsN > 0 and
η ∈ (0, 1) such that ‖G(k, s)‖ ≤Nηk; k ∈ N.

IfN(γ̃/(1 − η) + q̃/(1 − η)2) < 1, then by Theorem 3.3, it follows that the zero solution of
(3.39) is absolutely stable.

For instance, if the linear system with constant coefficients associated to the nonlinear
system with variable coefficients (3.39) is

x(k + 1) =

(
−0.1 0.3
−0.5 0.0

)
x(k) +

(
0.7 −0.4
0.5 −0.8

)
x(k − 1), k ∈ N, (3.43)

then it is not hard to check that the Cauchy solution of this system tends to zero exponentially
as k → ∞.Hence, by Theorem 3.3, it follows that the zero solution of (3.39) is absolutely stable
provided that the relation (3.29) is satisfied.
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4. Linear delay systems

Now, we will consider an important particular case of (2.2), namely, the linear delay difference
system

x(k + 1) = A(k)x(k) + B(k)x(k −m); k ∈ N, (4.1)

where x(k) ∈ Cn, A(k), and B(k) are variable n × n-matrices.
In [4], were established very nice solution representation formulae to the system

x(k + 1) = Ax(k) + Bx(k −m) + f(k), (4.2)

assuming that AB = BA and detA/=0. However, the stability problem was not investigated in
this paper.

Kipnis and Komissarova [6] investigated the stability of the system

xn = Axn−1 + Bxn−k, (4.3)

whereA,B arem×m-matrices, xn ∈ Rm. Bymeans of a characteristic equation, they established
many results concerning the stability of the solutions of such equation. However, the case of
variable coefficients is not studied in this article.

In the next corollary, we will apply Theorem 3.3 to this particular case of (2.2), thus
obtaining the following corollary.

Corollary 4.1. Under condition (3.25), one assumes that

(i) the matrices A(k) and B(k) satisfy ‖A(k) −A(s)‖ ≤ q0|k − s| and ‖B(k) − B(s)‖ ≤ q1|k − s|,
respectively, for k, s ∈ N;
(ii) sup k∈N

(‖A(k)‖ + ‖B(k)‖) <∞;
(iii)

N(q0 + q1)

(1 − η)2
< 1. (4.4)

Then, the zero solution of (4.1)-(2.3) is absolutely stable.

Remark 4.2. I want to point out that this approach is just of interest for systems with “slowly
changing” matrices.

The purpose of this section is to apply a newmethod to investigate the stability of system
(4.1), which combined with the “freezing technique,” will allow us to derive explicit estima-
tions to their solutions, namely, introducing new variables; one can reduce system (4.1) to a
delay-free linear difference system of higher dimension. In fact, put

u1 = x(k), u2 = x(k − 1), . . . , um+1 = x(k −m). (4.5)

Then (4.1) takes the form

w(k + 1) = T(k)w(k), k ∈ N, (4.6)
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where

w(k) = col
(
u1(k), u2(k), . . . , um+1(k)

)
,

T(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A(k) 0 · · · 0 B(k)
I 0 · · · 0 0
0 I · · · 0 0
...

... · · · ...
...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(m+1)×(m+1)

,
(4.7)

where I is the unit matrix in Cn.
Let Cn(m+1) be the product of (m + 1) copies of Cn. Then we can consider (4.6) defined in

the space Cn(m+1). In Cn(m+1), define the norm

‖v‖Cn(m+1) =

[
m+1∑

k=1

∥∥vk
∥∥2
Cn

]1/2
for v = col

(
v1, v2, . . . , vm+1

) ∈ Cn(m+1). (4.8)

For an n × n-matrix A, denote

g(A) =
[
N2(A) −

n∑

j=1

∣∣λj(A)
∣∣2
]1/2

, (4.9)

where N(A) is the Frobenius (Hilbert-Schmidt) norm of a matrix A, N2(A) = Trace
(AA∗), and λ1(A), λ2(A), . . . , λn(A) are the eigenvalues of A, including their multiplicities.
Here A∗ is the adjoint matrix. If A is normal, that is, A∗A = AA∗, then g(A) = 0. If A = (aij) is
a triangular matrix such that aij = 0 for 1 ≤ j ≤ i ≤ n, then

g2(A) =
∑

1≤j≤i≤n

∣∣aij
∣∣2. (4.10)

Due to [15, Theorem 2.1], for any n × n-matrix A, the inequality

∥∥Am
∥∥ ≤

m1∑

k=0

m!ρm−k(A)gk(A)

(m − k)!(k!)3/2
, m1 = min {n − 1, m} (4.11)

holds for every nonnegative integerm, where ρ(A) is the spectral radius of A.

Theorem 4.3 (see [7]). Assume that

(i) ‖T(k) − T(j)‖Cn(m+1) ≤ q|k − j|; k, j ∈ N and q = const. > 0;
(ii) β0 = supk,l=0,1,...‖Tk(l)‖Cn(m+1) <∞, μ0 =

∑∞
k=0 k supl=1,2,...‖Tk(l)‖Cn(m+1) < q−1.

Then, any solution {x(k)} of (4.1) is bounded and satisfies the inequality

sup
k=1,2,...

∥∥x(k)
∥∥
Cn ≤ β0

∥∥w(0)
∥∥
Cn(m+1)

(
1 − μ0q

)−1
, (4.12)

where w(0) = (ϕ(0), ϕ(−1), . . . , ϕ(−m)), with ϕ defined in (2.14).
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Since the calculation of quantities β0 and μ0 is not an easy task, by (4.11), some estimations to
these formulae, namely, in terms of the eigenvalues of auxiliary matrices will be driven. In doing so, one
assumes that

ρ0 = sup
l=1,2,...

ρ
(
T(l)
)
< 1, v0 = sup

l=0,1,...
g
(
T(l)
)
<∞, (4.13)

and denote

M =
n(m+1)−1∑

j=0

(
ψj + j

)j
ρ
ψj
0 v

j

0

(j!)3/2
, (4.14)

where ψj = max {0, j(1/(ln (1/ρ0)) − 1)} and θ0 =
∑ n(m+1)−1

k=0 ((k + 1)vk0 )/(
√
k!(1 − ρ0)k+2).

Corollary 4.4. Under condition (i) of Theorem 4.3, let (4.13) and qθ0 < 1 hold. Then, any solution
x(k) of (4.1) is bounded. Moreover,

sup
k=1,2,...

∥∥x(k)
∥∥
Cn(m+1) ≤M

∥∥w(0)
∥∥
Cn(m+1)

(
1 − qθ0

)−1, (4.15)

where w(0) = (ϕ(0), ϕ(−1), . . . , ϕ(−m)).

Proof. By (4.11), we obtain

β0 ≤ sup
k=1,2,...

n(m+1)−1∑

j=0

k!ρk−j0 v
j

0

(k − j)!(j!)3/2
. (4.16)

The relation

k!
(k − j)! ≤ k

j , k ≥ j (4.17)

implies that

sup
k=j,j+1,...

kjρ
k−j
0 ≤ max

x≥0
{
(x + j)jρx0

}
. (4.18)

Simple calculations show that

max
x≥0
{
(x + j)jρx0

}
=
(
ψj + j

)j
ρ
ψj
0 for k = 1, 2, . . . . (4.19)

Thus,

k!ρk−j0

(k − j)! ≤
(
ψj + j

)j
ρ
ψj
0 for k = 1, 2, . . . . (4.20)

Hence, β0 ≤M.
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On the other hand,

μ0 ≤
∞∑

k=0

n(m+1)−1∑

j=0

kk!ρk−j0 v
j

0

(k − j)!(j!)3/2
. (4.21)

But

∞∑

k=1

kk!zk−j

(k − j)! ≤
∞∑

k=1

(k + 1)!zk−j

(k − j)!

=
dj+1

dzj+1

∞∑

k=1

zk+1 =
dj+1

dzj+1
z(1 − z)−1

= (j + 1)!(1 − z)−j−2 for 0 < z < 1; j = 0, 1, . . . , n(m + 1).

(4.22)

Thus, it follows that

μ0 ≤
∞∑

k=0

n(m+1)−1∑

j=0

kk!ρk−j0 v
j

0

(k − j)!(j!)3/2
≤

n(m+1)−1∑
j=0

(j + 1)vj0√
j!
(
1 − ρ0

)j+2 = θ0 . (4.23)

Remark 4.5. This approach is usually not applicable to the time-varying delay case, because
the transformed systems usually have time-varying matrix coefficients, which are difficult to
analyze using available tools. Hence, our results will provide new tools to analyze these kind
of systems.
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