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1. Introduction

Let R, Z, N be all real numbers, integers, and positive integers, respectively. Denote Z(a) =
{a, a + 1, . . . } and Z(a, b) = {a, a + 1, . . . , b} with a < b for any a, b ∈ Z.

In this paper, we consider the following discrete Dirichlet boundary value problems:

Δ
[
φp(Δx(k − 1))] + λf(k, x(k)) = 0, k ∈ Z(1, T),

x(0) = 0 = x(T + 1),
(1.1)

where T is a positive integer, p > 1 is a constant,Δ is the forward difference operator defined by
Δx(k) = x(k+1)−x(k), φp(s) is a p-Laplacian operator, that is, φp(s) = |s|p−2s, f(k, ·) ∈ C(R,R)
for any k ∈ Z(1, T).

There seems to be increasing interest in the existence of solutions to boundary value
problems for finite difference equations with p-Laplacian operator, because of their applica-
tions in many fields. Results on this topic are usually achieved by using various fixed point
theorems in cone; see [1–4] and references therein for details. It is well known that criti-
cal point theory is an important tool to deal with the problems for differential equations.
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In the last years, a few authors have gradually paid more attentions to applying critical point
theory to deal with problems for nonlinear second discrete systems; we refer to [5–9]. But all
these systems do not concern with the p-Laplacian. For the reader’s convenience, we recall the
definition of the weak closure.

Suppose that E ⊂ X. We denote E
w
as the weak closure of E, that is, x ∈ E

w
if there exists

a sequence {xn} ⊂ E such that Λxn→Λx for every Λ ∈ X∗.
Very recently, based on a new variational principle of Ricceri [10], the following three

critical points was established by Bonanno [11].

Theorem 1.1 (see [11, Theorem 2.1]). Let X be a separable and reflexive real Banach space.
Φ : X→R a nonnegative continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X∗. J : X→R

a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that
there exists x0 ∈ X such that Φ(x0) = J(x0) = 0 and that

(i) lim ‖x→+∞‖(Φ(x) − λJ(x)) = +∞ for all λ ∈ [0,+∞[;
Further, assume that there are r > 0, x1 ∈ X such that
(ii) r < Φ(x1);
(iii) sup

x∈Φ−1(]−∞,r[)
wJ(x) < (r/(r + Φ(x1)))J(x1).

Then, for each

λ ∈ Λ1 =

]
Φ(x1)

J(x1) − sup
x∈Φ−1(]−∞,r[)

wJ(x)
,

r

sup
x∈Φ−1(]−∞,r[)

wJ(x)

[

, (1.2)

the equation

Φ′(x) − λJ ′(x) = 0 (1.3)

has at least three solutions in X and, moreover, for each h > 1, there exists an open interval

Λ2 ⊆
[

0,
hr

r(J(x1)/Φ(x1)) − sup
x∈Φ−1(]−∞,r[)

wJ(x)

]

(1.4)

and a positive real number σ such that, for each λ ∈ Λ2, (1.3) has at least three solutions in X whose
norms are less than σ.

Here, our principle aim is by employing Theorem 1.1 to establish the existence of at least
three solutions for the p-Laplacian discrete boundary value problem (1.1).

The paper is organized as follows. The next section is devoted to give some basic defi-
nitions. In Section 3, under suitable hypotheses, we prove that the problem (1.1) possesses at
least three solutions when λ lies in exactly determined two open intervals, respectively; more-
over, all these solutions are uniformly bounded with respect to λ belonging to one of the two
open intervals. At last, a consequence is presented.

2. Preliminaries

The classH of the functions x : Z(0, T + 1)→R such that x(0) = x(T + 1) = 0 is a T -dimensional
Hilbert space with inner product

(x, z) =
T∑

k=1

x(k)z(k), ∀x, z ∈ H. (2.1)
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We denote the induced norm by

‖x‖ =

(
T∑

k=1

x2(k)

)1/2

, x ∈ H. (2.2)

Furthermore, for any constant p > 1, we define other norms

‖x‖p =

(
T∑

k=1

|x(k)|p
)1/p

, ∀x ∈ H,

‖x‖p =

(
T+1∑

k=1

|Δx(k − 1)|p
)1/p

, ∀x ∈ H.

(2.3)

SinceH is a finite dimensional space, there exist constants c2p≥c1p > 0 such that

c1p‖x‖p ≤ ‖x‖P ≤ c2p‖x‖p. (2.4)

The following two functionals will be used later:

Φ(x) =
1
p

T+1∑

k=1

|Δx(k − 1)|p, J(x) =
T∑

k=1

F(k, x(k)), (2.5)

where x ∈ H, F(k, ξ) :=
∫ ξ
0 f(k, s)ds for any ξ ∈ R. Obviously, Φ, J ∈ C1(H,R), that is, Φ and

J are continuously Fréchet differentiable inH. Using the summation by parts formula and the
fact that x(0) = x(T + 1) = 0 for any x ∈ H, we get

Φ′(x)(z) = lim
t→0

Φ(x + tz) −Φ(x)
t

=
T+1∑

k=1

|Δx(k − 1)|p−2Δx(k − 1)Δz(k − 1)

=
T+1∑

k=1

φp(Δx(k − 1))Δz(k − 1)

=
T∑

k=1

φp(Δx(k − 1))Δz(k − 1) − φp(Δx(T))z(T)

= φp(Δx(k − 1))z(k − 1)|T+11 −
T∑

k=1

Δφp(Δx(k − 1))z(k) − φp(Δx(T))z(T)

= −
T∑

k=1

Δφp(Δx(k − 1))z(k)

(2.6)

for any x, z ∈ H. Noticing the fact that x(0) = x(T + 1) = 0 for any x ∈ H again, we obtain

J ′(x)(z) = lim
t→0

J(x + tz) − J(x)
t

=
T∑

k=1

f(k, x(k))z(k) (2.7)

for any x, z ∈ H.
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Remark 2.1. Obviously, for any x, z ∈ H,

(Φ − λJ)′(x)(z) = −
T∑

k=1

[
Δφp(Δx(k − 1)) + λf(k, x(k))

]
z(k) = 0 (2.8)

is equivalent to

Δφp(Δx(k − 1)) + λf(k, x(k)) = 0 (2.9)

for any k ∈ Z(1, T) with x(0) = x(T + 1) = 0. That is, a critical point of the functional Φ − λJ
corresponds to a solution of the problem (1.1). Thus, we reduce the existence of a solution for
the problem (1.1) to the existence of a critical point of Φ − λJ onH.

The following estimate will play a key role in the proof of our main results.

Lemma 2.2. For any x ∈ H and p > 1, the relation

max
k∈Z(1,T)

{|x(k)|} ≤ (T + 1)(p−1)/p

2
‖x‖P (2.10)

holds.

Proof. Let τ ∈ Z(1, T) such that

|x(τ)| = max
k∈Z(1,T)

{|x(k)|}. (2.11)

Since x(0) = x(T + 1) = 0 for any x ∈ H, by Cauchy-Schwarz inequality, we get

|x(τ)| =
∣∣∣∣∣

τ∑

k=1

Δx(k − 1)

∣∣∣∣∣
≤

τ∑

k=1

|Δx(k − 1)| ≤ τ1/q
(

τ∑

k=1

|Δx(k − 1)|p
)1/p

, (2.12)

|x(τ)| =
∣∣∣∣∣

T+1∑

k=τ+1

Δx(k − 1)

∣∣∣∣∣
≤

T+1∑

k=τ+1

|Δx(k − 1)|

≤ (T − τ + 1)1/q
(

T+1∑

k=τ+1

|Δx(k − 1)|p
)1/p

,

(2.13)

for any x ∈ H, where q is the conjugative number of p, that is, 1/p + 1/q = 1.
If

τ∑

k=1

|Δx(k − 1)|p ≤ (T + 1)p−1

2pτp−1
‖x‖pP , (2.14)

jointly with the estimate (2.12), we get the required relation (2.10).
If, on the contrary,

τ∑

k=1

|Δx(k − 1)|p > (T + 1)p−1

2pτp−1
‖x‖pP , (2.15)
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thus,

T+1∑

k=τ+1

|Δx(k − 1)|p = ‖x‖pP −
τ∑

k=1

|Δx(k − 1)|p <

(
1 − (T + 1)p−1

2pτp−1

)
‖x‖pP . (2.16)

Combining the above inequality with the estimate (2.13), we have

|x(τ)| < (T − τ + 1)1/q
(
1 − (T + 1)p−1

2pτp−1

)1/p

‖x‖P . (2.17)

Now, we claim that the inequality

(T − τ + 1)1/q
(
1 − (T + 1)p−1

2pτp−1

)1/p

≤ (T + 1)(p−1)/p

2
(2.18)

holds, which leads to the required inequality (2.10). In fact, we define a continuous function
υ :]0, T + 1[→R by

υ(s) =
1

(T − s + 1)p−1
+

1
sp−1

. (2.19)

This function υ can attain its minimum 2p/(T + 1)p−1 at s = (T + 1)/2. Since τ ∈ Z(1, T), we
have υ(τ)≥2p/(T + 1)p−1, namely,

2p

(T + 1)p−1
≤ 1

(T − τ + 1)p−1
+

1
τp−1

. (2.20)

This implies the assertion (2.18). Lemma 2.2 is proved.

3. Main results

First, we present our main results as follows.

Theorem 3.1. Let f(k, ·) ∈ C(R,R) for any k ∈ Z(1, T). Put F(k, ξ) =
∫ ξ
0 f(k, s)ds for any ξ ∈ R

and assume that there exist four positive constants c, d, μ, α with c < (T + 1)/2(p−1)/pd and α < p
such that

(A1) max (k,ξ)∈Z(1,T)×[−c,c]F(k, ξ) < ((2c)p/T[(2c)p + 2(T + 1)p−1dp])
∑ T

k=1F(k, d);

(A2) F(k, ξ)≤μ(1 + |ξ|α).

Furthermore, put

ϕ1 =
p(T + 1)p−1T max (k,ξ)∈Z(1,T)×[−c,c]F(k, ξ)

(2c)p
,

ϕ2 =
p
[∑ T

k=1F(k, d) − T max (k,ξ)∈Z(1,T)×[−c,c]F(k, ξ)
]

2dp
,

(3.1)
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and for each h > 1,

a =
h(2cd)p

2p−1pcp
∑ T

k=1F(k, d) − T(T + 1)p−1pdp max (k,ξ)∈Z(1,T)×[−c,c]F(k, ξ)
. (3.2)

Then, for each

λ ∈ Λ1 =
]
1
ϕ2

,
1
ϕ1

[
, (3.3)

the problem (1.1) admits at least three solutions inH and, moreover, for each h > 1, there exist an open
interval Λ2 ⊆ [0, a] and a positive real number σ such that, for each λ ∈ Λ2, the problem (1.1) admits
at least three solutions inH whose norms inH are less than σ .

Remark 3.2. By the condition (A1), we have

T[(2c)p + 2(T + 1)p−1dp] max
(k,ξ)∈Z(1,T)×[−c, c]

F(k, ξ) < (2c)p
T∑

k=1

F(k, d). (3.4)

That is,

2dp(T + 1)p−1T max
(k,ξ)∈Z(1,T)×[−c,c]

F(k, ξ) < (2c)p
[

T∑

k=1

F(k, d) − T max
(k,ξ)∈Z(1,T)×[−c,c]

F(k, ξ)

]

. (3.5)

Thus, we get

p(T + 1)p−1T max (k, ξ)∈Z(1, T)×[−c, c]F(k, ξ)
(2c)p

<
p
[∑ T

k=1F(k, d) − T max (k, ξ)∈Z(1, T)×[−c, c]F(k, ξ)
]

2dp (3.6)

Namely, we obtain the fact that ϕ1 < ϕ2.

Proof of Theorem 3.1. Let X be the Hilbert space H. Thanks to Remark 2.1, we can apply
Theorem 1.1 to the two functionals Φ and J . We know from the definitions in (2.5) that Φ
is a nonnegative continuously Gâteaux differentiable and sequentially weakly lower semicon-
tinuous functional whose Gâteaux derivative admits a continuous inverse on X∗, and J is a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Now,
put x0(k) = 0 for any k ∈ Z(0, T + 1), it is easy to see that x0 ∈ H and Φ(x0) = J(x0) = 0.

Next, in view of the assumption (A2) and the relation (2.4), we know that for any x ∈ H
and λ≥0,

Φ(x) − λJ(x) =
1
p

T+1∑

k=1

|Δx(k − 1)|p − λ
T∑

k=1

F(k, x(k))

≥ 1
p
‖x‖pP − λμ

T∑

k=1

(1 + |x(k)|α)

≥
T∑

k=1

[
c
p

1p

p
|x(k)|p − λμ |x(k)|α − λμ

]

.

(3.7)
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Taking into account the fact that α < p, we obtain, for all λ ∈ [0,+∞[,

lim
‖x‖→+∞

(Φ(x) − λJ(x)) = +∞. (3.8)

The condition (i) of Theorem 1.1 is satisfied.
Now, we let

x1(k) =

⎧
⎪⎪⎨

⎪⎪⎩

0, k = 0,

d, k ∈ Z(1, T),

0, k = T + 1.

r =
(2c)p

p(T + 1)p−1
.

(3.9)

It is clear that x1 ∈ H,

Φ(x1) =
1
p

T+1∑

k=1

|Δx(k − 1)|p = 2dp

p
,

J(x1) =
T∑

k=1

F(k, x1(k)) =
T∑

k=1

F(k, d).

(3.10)

In view of c < ((T + 1)/2)(p−1)/pd, we get

Φ(x1) =
2dp

p
>

(2c)p

p(T + 1)p−1
= r. (3.11)

So, the assumption (ii) of Theorem 1.1 is obtained. Next, we verify that the assumption
(iii) of Theorem 1.1 holds. From Lemma 2.2, the estimate Φ(x)≤ r implies that

|x(k)|p ≤ (T + 1)p−1

2p
‖x‖pP =

p(T + 1)p−1

2p
Φ(x)≤ pr(T + 1)p−1

2p
(3.12)

for any k ∈ Z(1, T). From the definition of r, it follows that

Φ−1(] −∞, r]) ⊆ {x ∈ H : |x(k)| ≤ c, ∀k ∈ Z(1, T)}. (3.13)

Thus, for any x ∈ H, we have

sup
x∈Φ−1(]−∞,r[)

w

J(x) = sup
x∈Φ−1(]−∞,r])

J(x)≤ T max
(k,ξ)∈Z(1,T)×[−c,c]

F(k, ξ). (3.14)

On the other hand, we get

r

r + Φ(x1)
J(x1) =

(2c)p

(2c)p + 2(T + 1)p−1dp

T∑

k=1

F(k, d). (3.15)
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Therefore, it follows from the assumption (A1) that

sup
x∈Φ−1(]−∞,r[)

w

J(x)≤ r

r + Φ(x1)
J(x1), (3.16)

that is, the condition (iii) of Theorem 1.1 is satisfied.
Note that

Φ(x1)
J(x1) − sup

x∈Φ−1(]−∞,r[)
wJ(x)

≤ 2dp

p
[∑ T

k=1F(k, d) − T max(k,ξ)∈Z(1,T)×[−c,c]F(k, ξ)
] =

1
ϕ2

,

r

sup
x∈Φ−1(]−∞,r[)

wJ(x)
≥ (2c)p

p(T + 1)p−1T max(k,ξ)∈Z(1,T)×[−c,c]F(k, ξ)
=

1
ϕ1

.

(3.17)

By a simple computation, it follows from the condition (A1) that ϕ2 > ϕ1. Applying
Theorem 1.1, for each λ ∈ Λ1 =]1/ϕ2, 1/ϕ1[, the problem (1.1) admits at least three solutions in
H.

For each h > 1, we easily see that

hr

r(J(x1)/Φ(x1)) − sup
x∈Φ−1(]−∞,r[)

wJ(x)

≤ h(2cd)p

2p−1pcp
∑ T

k=1F(k, d) − T(T + 1)p−1pdp max (k,ξ)∈Z(1,T)×[−c,c]F(k, ξ)
= a.

(3.18)

Taking the condition (A1) into account, it forces that a > 0. Then from Theorem 1.1, for each
h > 1, there exist an open interval Λ2 ⊆ [0, a] and a positive real number σ, such that, for
λ ∈ Λ2, the problem (1.1) admits at least three solutions in H whose norms in H are less than
σ. The proof of Theorem 3.1is complete.

As a special case of the problem (1.1), we consider the following systems:

Δ
[
φp(Δx(k − 1))

]
+ λw(k)g(x(k)) = 0, k ∈ Z(1, T),

x(0) = 0 = x(T + 1),
(3.19)

where w : Z(1, T)→R and g ∈ C(R,R) are nonnegative. Define

W(k) =
k∑

t=1

w(t), G(ξ) =
∫ ξ

0
g(s)ds. (3.20)

Then Theorem 3.1 takes the following simple form.
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Corollary 3.3. Let w : Z(1, T)→R and g ∈ C(R,R) be two nonnegative functions. Assume that there
exist four positive constants c, d, η, α with c < (T + 1)/2)(p−1)/pd and α < p such that

(A′
1) max k∈Z(1, T)w(k) < ((2c)pW(T)/T[(2c)p + 2(T + 1)p−1dp])G(d)/G(c);

(A′
2) G(ξ)≤η(1 + |ξ|α) for any ξ ∈ R.

Furthermore, put

ϕ1 =
p(T + 1)p−1TG(c) max k∈Z(1,T)w(k)

(2c)p
,

ϕ2 =
p[W(T)G(d) − TG(c) max k∈Z(1,T)w(k)]

2dp
,

(3.21)

and for each h > 1,

a =
(2cd)ph

2p−1pcpW(T)G(d) − pdpT(T + 1)p−1G(c) max k∈Z(1,Tw(k)
. (3.22)

Then, for each

λ ∈ Λ1 =
]
1
ϕ2

,
1
ϕ1

[
, (3.23)

the problem (3.19) admits at least three solutions in H and, moreover, for each h > 1, there exist an
open interval Λ2 ⊆ [0, a] and a positive real number σ such that, for each λ ∈ Λ2, the problem (3.19)
admits at least three solutions in H whose norms inH are less than σ.

Proof. Note that from fact f(k, s) = w(k)g(s) for any k ∈ Z(1, T) × R, we have

max
(k,ξ)∈Z(1,T)×[−c, c]

F(k, ξ) = G(c) max
k∈Z(1,T)

w(k). (3.24)

On the other hand, we take μ = η max k∈Z(1,T)w(k). Obviously, all assumptions of Theorem 3.1
are satisfied.

To the end of this paper, we give an example to illustrate our main results.

Example 3.4. We consider (1.1)with f(k, s) = kg(s), T = 15, p = 3, where

g(s) =

{
es, s≤ 4d,

s + e4d − 4d, s > 4d.
(3.25)

We have thatW(k) = (1/2)k(k + 1) and

G(ξ) =

⎧
⎨

⎩

eξ − 1, ξ ≤ 4d,
1
2
ξ2 + (e4d − 4d)ξ + (1 − 4d)e4d + 8d2 − 1, ξ > 4d.

(3.26)

It can be easily shown that, when c = 1, d = 15, η = e60, and α = 2, all conditions of
Corollary 3.3 are satisfied.
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