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1. Introduction

Since the 1990s, synchronization of chaotic systems has been a current and active research area.
Numerous methods have been developed for chaos synchronization (see, e.g., [1–9]). More re-
cently, synchronization of dynamical networks has been reported in the literature (see, e.g.,
[10–14]). The dynamical networks consist of coupled nodes, which are usually chaotic sys-
tems. It has been noticed that when synchronization is applied to the dynamical networks, the
network coupling may cause the failure of a synchronization scheme. The network coupling
functions may be unknown a priori and may be in form of linear or nonlinear functions. In
order to deal with this problem, the robust synchronization for uncertain dynamical networks
has become an important research topic. Although robust adaptive synchronization scheme
can be used to synchronize nodes of the uncertain dynamical networks where the network
coupling is an unknown but bounded nonlinear function (see, e.g., [14]), yet the controller for
adaptive synchronization is usually complex. It has been proved in the study of chaotic syn-
chronization that impulsive synchronization approach is effective and robust in synchroniza-
tion of chaotic systems (see, e.g., [7, 8]), and has a relatively simple structure. Moreover, since
the controller of impulsive synchronization is discontinuous, impulsive synchronization can be
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useful for digital secure communization systems [9]. But up to present, to the best knowledge
of the authors, there are not any results about impulsive synchronization of discrete dynamical
network.

In this paper, we aim to study the robust impulsive synchronization problem for an un-
certain discrete dynamical network. By utilizing the ideas developed in [15, 16] for impulsive
systems [15–23], we will derive several criteria under which robust impulsive synchronization
is achieved for an uncertain discrete dynamical network, with the network coupling functions
being unknown but bounded. It will be shown that impulsive synchronization approach of
a dynamical network has the same good properties as those in impulsive synchronization of
chaotic systems. Moreover, the impulsive controller is also easy to design.

The main contribution of this paper is a proposed new control approach, that is, impul-
sive control, for discrete dynamical network or general discrete system x(k + 1) = f(k, x(k)) +
g(k, x(k)). For the classical feedback control, u(k) is in form of u(k) = K(k, x(k)). In this classi-
cal control scheme, the control signal is input into the system at all the time k ∈ N. However, for
some practical systems, it is not necessary and in some case is also impossible to input control
signal into the system at all the time. In this paper, the classical control u(k) = K(k, x(k)) is
replaced by the proposed impulsive control u(k) =

∑∞
m=1δ(k− tm)Im(k, x(k)). Thus, the control

signal is put into the discrete system just at the impulsive instances {tk, k ∈ N}, not at all the
time series {k, k ∈ N}, where function δ(t) satisfies

δ(t) =

{
1, t = 0,

0, t /= 0.
(1.1)

This kind of control scheme will be useful in control theory and applications. For example, it
can be used for control and synthesis of the sampled-data control system, and so forth.

The organization of this paper is as follows. In Section 2, we introduce the concept of
uniformly positive definite matrix function and some other notations. The robust impulsive
synchronization scheme is also formulated for a dynamical network in Section 2. In Section 3,
robust impulsive synchronization criteria are established. These criteria can be easily used for
the design of a robust feedback controller. For illustration, some representative examples are
given in Section 4. Section 5 concludes the paper.

2. Problem formulation

Let R
n denote the n-dimensional Euclidean space. Let R+ = [0,+∞), N = {1, 2, . . .}, and let ‖·‖

stand for the Euclidean norm in R
n.

Consider a discrete dynamical network consisting of N identical nodes (n-dimensional
discrete systems) with uncertain network coupling:

xi(k + 1) = A(k)xi(k) + ϕ
(
k, xi(k)

)
+ gi
(
x1(k), x2(k), . . . , xN(k)

)
, n ∈ N, i = 1, 2, . . . ,N,

(2.1)

where A(k) ∈ R
n×n, k ∈ N, ϕ : N × R

n → R
n is smooth nonlinear vector-valued function, and

gi : R
m → R

n are smooth but unknown network coupling functions, where m = nN.
Clearly, the isolated node of the network is in form of

y(k + 1) = A(k)y(k) + ϕ
(
k, y(k)

)
, k ∈ N. (2.2)

It is assumed that the solution of (2.2) exists and is unique under any given initial condition
y(0) = y0.
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Figure 1: The impulsive synchronization control for the ith node Si.

Remark 2.1. When the network achieves synchronization, namely, the state x1(k) = x2(k) =
· · · = xN(k) = y(k), as k →∞, the coupling terms should vanish: gi(y, y, . . . , y) = 0.

The robust impulsive synchronization scheme for the discrete network (2.1) is to design
impulsive controllers {Nk, Bik} such that the state of the following system (2.3) synchronizes
with the state of (2.2):

xi(n + 1) = A(n)xi(n) + ϕ
(
n, xi(n)

)
+ gi
(
x1(n), x2(n), . . . , xN(n)

)
, n /= Nk,

�xi(n + 1) = Bik
(
xi(n) − y(n)

)
, n =Nk, k ∈ N, i = 1, 2, . . . ,N,

(2.3)

where Δxi(Nk + 1) = xi(Nk + 1) − xi(Nk). The sequence {Nk} satisfies

(i) 0 =N0 < N1 < N2 < · · · , with limk→∞Nk =∞;

(ii) for all k ∈ N, Nk+1 −Nk ≥ 2.

Figure 1 depicts the entire impulsive synchronization scheme subject to network cou-
pling, where Si stands for ith node, Y is the isolated node (2.2), and gi is the uncertain network
coupling of ith node, i = 1, 2, . . . ,N.

Remark 2.2. It should be noticed that the mathematical modeling of this paper is basically the
discrete impulsive systems, in which the impulses occur in a discrete system at some instances.
But they are different from the discrete systems with inputs u(n), in which the input signals
u(n) are input into system at every instance n = 1, 2, . . . . In this impulsive control discrete
system (2.3), the input signals are input into system only at some instances Nk, k = 1, 2, . . . .

Remark 2.3. The synchronization scheme given by (2.1)–(2.3) is some similar to the one used
in [16, 24] for impulsive synchronization of continuous dynamical networks, but it is different
from that in [16, 24] and it is more significant than that in [16, 24] because of the following
reasons.

(i) In the practical networks, the signals, which are used to transmit, receive, and sam-
ple, are often in form of discrete signals, not continuous forms. Hence, it is more practically
significant to study the synchronization problem of discrete networks than that for continuous
networks.

(ii) The mathematical modeling is also different from that in [16, 24]. Here, we use the
impulsive difference equation (discrete impulsive system) to depict the impulsive synchro-
nization scheme, while in [16, 24], the impulsive differential equation is used. Although sig-
nificant progress has been made in the stability theory of impulsive differential equations, the
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corresponding theory for discrete impulsive systems has not been fully developed; see [25]. It
is a new research topic. Hence, the work in this paper is not a trivial extension of the previous
work in [16, 24].

Defining the synchronization error as ei(n) = xi(n) − y(n), then one has an error dynam-
ical system of the form

ei(n + 1) = A(n)ei(n) + ϕ̃
(
n, xi(n), y(n)

)
+ g̃i
(
x(n), y(n)

)
, n /= Nk,

�ei(n + 1) = Bikei(n), n =Nk, k ∈ N, i = 1, 2, . . . ,N,
(2.4)

where ϕ̃(t, xi, y) = ϕ(t, xi) − ϕ(t, y), g̃i(x, y) = gi(x1, x2, . . . , xN) − gi(y, y, . . . , y), and Bik ∈ R
n×n.

Clearly, the network (2.1) synchronizes robustly with system (2.2) by impulsive con-
trollers {Nk, Bik} if and only if the error system (2.4) is robustly asymptotically stable.

Assumption 2.4. There exist positive constants rij > 0, i, j = 1, 2, . . . ,N, such that

∥
∥gi
(
x1, x2, . . . , xN

)∥
∥ ≤

N∑

j=1

rij
∥
∥ej
∥
∥, i = 1, 2, . . . ,N. (2.5)

Assumption 2.5. Assume that there exists an attractive domain U ⊆ R
n for the isolated node

(2.2) and for any xi, y ∈ U, there exist positive constants Lik > 0 such that for n ∈ (Nk,Nk+1],
∥
∥ϕ
(
n, xi
)
− ϕ(n, y)

∥
∥ ≤ Lik

∥
∥xi − y

∥
∥, i = 1, 2, . . . ,N, k ∈ N. (2.6)

Remark 2.6. (i) Assumption 2.4 is based on gi(y, y, . . . , y) = 0, for i = 1, 2, . . . ,N, and any y ∈
R
n. Also, Assumption 2.5 is based on the fact that the chaotic system is ultimate bounded.

(ii) In recent published paper [25], by using interval matrix decomposition method and
comparing method (for detail, see [25]), the robust stability is investigated for interval linear
discrete impulsive systems and a class of affine discrete impulsive systems. In this paper, by
employing Lyapunov function approach, we focus on the stability of error system (2.4), which
is a large-scale discrete impulsive system. Based on the stability results of (2.4), the impulsive
synchronization can be achieved on the isolated node’s attraction domain. Hence, the stability
issue studied in this paper is different from that in [25].

Definition 2.7. Let X : N→ R
n×n be an n × n matrix function. Then, X(k) is said to be

(i) a positive definite matrix function if for any k ∈ N, X(k) is a positive definite matrix;

(ii) a positive definite matrix function bounded from above if it is a positive definite ma-
trix function and there exists a positive real number M > 0 such that

λmax
(
X(k)

)
≤M, k ∈ N, (2.7)

where λmax(·) is the maximum eigenvalue;

(iii) a uniformly positive definite matrix function if it is a positive definite matrix function
and there exists a positive real number m > 0 such that

λmin
(
X(k)

)
≥ m, k ∈ N, (2.8)

where λmin(·) is the minimum eigenvalue of matrix (·).
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Lemma 2.8 (see [15]). Let X(k) ∈ R
n×n be a positive definite matrix function and Y (k) ∈ R

n×n a
symmetric matrix. Then, for any x ∈ R

n, k ∈ N, the following inequality holds:

xTY (k)x ≤ λmax
(
X(k)−1Y (k)

)
·xTX(k)x. (2.9)

Proof. It follows from the properties of positive definite matrix.

3. Robustly impulsive synchronization

In this section, we will derive the asymptotical stability criteria for the error system (2.4) such
that the state of the discrete dynamical network synchronizes with an arbitrarily assigned state
of an isolated node of the network by the robust impulsive controllers.

Theorem 3.1. Suppose that Assumptions 2.4 and 2.5 hold, and assume that there exist uniformly
positive definite matrix functions which are bounded from above, Pi(n), i = 1, 2, . . . ,N, and constants
ε > 0, γi ≥ 0, αik(n) ≥ 0, where n ∈ (Nk,Nk+1) and βik(Nk) ≥ 0, i, k ∈ N, such that

(i) for all n ∈ (Nk,Nk+1], k ∈ N, the following inequalities hold:

AT(n)Pi(n + 1)A(n)+2Lik
√
λmax
(
P−1
i (n+1)AT(n)Pi(n+1)A(n)

)
·

√
√
√
√λmax

(
Pi(n+1)

)

λmin
(
Pi(n+1)

)Pi(n+1)

+ λmax
(
Pi(n + 1)

)
[
(
1 + νi

)
L2
ik
+
(
1 + ν−1

i

) N∑

j=1

r2
ij

]

I

+
√
λmax
(
P−1
i (n + 1)AT(n)Pi(n + 1)A(n)

) N∑

j=1

(
εrij + ε−1rji

)
I

≤ αik(n)Pi(n);
(3.1)

(ii) for all n =Nk, k ∈ N,

λmax
[
P−1
i (n + 1)

(
I + Bik

)T
Pi(n + 1)(I + Bik

)]
Pi(n + 1) ≤ βik(n)Pi(n); (3.2)

(iii)
∞∑

j=0

ln γj = −∞, (3.3)

where

γj =

⎧
⎪⎨

⎪⎩

√
αk(j), if j ∈

(
Nk,Nk+1

)
,

√

βk(j), if j =Nk, k ∈ N,

(3.4)

and γ0 = 1, αk(n) = max1≤i≤N{αik(n)}, βk(Nk) = max1≤i≤N{βik(Nk)}.
Then, for any initial conditions xi(0) = xi0, y(0) = y0 ∈ U, the uncertain discrete dynami-

cal network (2.1) is robust impulsive synchronization with system (2.2) by the impulsive controllers
{Nk, Bik}.
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Proof. Let V (n) = V (n, e1, e2, . . . , eN) =
∑N

i=1e
T
i Pi(n)ei. Denote Vi(n) = eTi Pi(n)ei, i = 1, 2, . . . ,N.

Since Pi(n), i = 1, 2, . . . ,N, are all uniformly positive definite matrix functions and
bounded from above, there exist positive constants a > 0, b > 0 such that the following in-
equality holds:

a
N∑

i=1

eTi ei ≤N min
1≤i≤N

{
λmin
(
Pi
)} N∑

i=1

eTi ei ≤ V ≤Nmax
1≤i≤N

{
λmax
(
Pi
)} N∑

i=1

eTi ei ≤ b
N∑

i=1

eTi ei. (3.5)

For any n ∈ (Nk,Nk+1), k ∈ N, we get

Vi(n + 1) = ei(n + 1)TPi(n + 1)ei(n + 1)

=
[
A(n)ei(n) + ϕ̃ + g̃i

]T
Pi(n + 1)

[
A(n)ei(n) + ϕ̃ + g̃i

]

= ei(n)
TAT(n)Pi(n + 1)A(n)ei(n) + 2ei(n)

TAT(n)Pi(n + 1)ϕ̃ + ϕ̃TPi(n + 1)ϕ̃

+ 2ei(n)
TAT(n)Pi(n + 1)g̃i + 2ϕ̃TAT(n)Pi(n + 1)g̃i + g̃Ti Pi(n + 1)g̃i.

(3.6)

By Lemma 2.8, the terms in (3.6) can be estimated as

ei(n)
TAT(n)Pi(n + 1)ϕ̃

≤
∥
∥ei(n)

TAT(n)P 1/2
i (n + 1)

∥
∥
∥
∥P 1/2

i (n + 1)ϕ̃
∥
∥

=
√

ei(n)
TAT(n)Pi(n + 1)A(n)ei(n)

√
ϕ̃TPi(n + 1)ϕ̃

≤ Lik
√
λmax
(
P−1
i (n+1)AT(n)Pi(n+1)A(n)

)
· λmax

(
Pi(n+1)

)
·
√

ei(n)
TPi(n+1)ei(n)

√

ei(n)
Tei(n)

≤ Lik
√
λmax
(
P−1
i (n + 1)AT(n)Pi(n + 1)A(n)

)

√
√
√
√λmax

(
Pi(n + 1)

)

λmin
(
Pi(n + 1)

) · ei(n)TPi(n + 1)ei(n),

(3.7)

ei(n)
TAT(n)Pi(n + 1)g̃i

≤
∥
∥ei(n)

TAT(n)Pi(n + 1)
∥
∥
∥
∥g̃i
∥
∥

≤
√
eTi (n)A

T(n)Pi(n + 1)A(n)ei(n) ·
N∑

j=1

rij
∥
∥ej(n)

∥
∥

≤
√
λmax
(
P−1
i (n + 1)AT(n)Pi(n + 1)A(n)

)
·
N∑

j=1

rij
∥
∥ei(n)

∥
∥
∥
∥ej(n)

∥
∥

≤
√
λmax
(
P−1
i (n + 1)AT(n)Pi(n + 1)A(n)

)
·
N∑

j=1

rij

2
(
εeTi (n)ei(n) + ε

−1eTj (n)ej(n)
)
,

(3.8)
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here, Young’s inequality is used, 2ab ≤ εa2 + b2/ε, for any ε > 0,

ϕ̃TPi(n + 1)ϕ̃ ≤ L2
ik
λmax
(
Pi(n + 1)

)
eTi (n)ei(n),

g̃Ti Pi(n + 1)g̃i ≤ λmax
(
Pi(n + 1)

)
g̃Ti g̃i

≤ λmax
(
Pi(n + 1)

)
(

N∑

j=1

rij
∥
∥ej(n)

∥
∥

)2

= λmax
(
Pi(n + 1)

)
|e|TrTi ri|e|

≤ λmax
(
Pi(n + 1)

)
λmax(rTi ri)e

T
i (n)ei(n)

= λmax
(
Pi(n + 1)

) N∑

j=1

r2
ije

T
i (n)ei(n),

(3.9)

where ri = (ri1, ri2, . . . , riN) and |e| = (‖e1‖, ‖e2‖, . . . , ‖eN‖)T , and

ϕ̃TPi(n + 1)g̃i ≤
∥
∥ϕ̃TP 1/2

i (n + 1)
∥
∥
∥
∥P 1/2

i (n + 1)g̃i
∥
∥

≤ νi
2
ϕ̃TPi(n + 1)ϕ̃ +

ν−1
i

2
g̃Ti Pi(n + 1)g̃i.

(3.10)

Substituting (3.9) into (3.10) and substituting (3.7)–(3.10) into (3.6), we obtain that

Vi(n + 1) ≤ ei(n)T
⎧
⎨

⎩
AT(n)Pi(n + 1)A(n) + 2Lik

√
λmax
(
P−1
i (n + 1)AT(n)Pi(n + 1)A(n)

)

·

√
√
√
√λmax

(
Pi(n + 1)

)

λmin
(
Pi(n + 1)

)Pi(n + 1) + ε
√
λmax
(
P−1
i (n + 1)AT(n)Pi(n+1)A(n)

) N∑

j=1

rijI

+λmax
(
Pi(n + 1)

)[(
1 + νi

)
L2
ik
+
(
1 + ν−1

i

)
λmax
(
rTi ri
)]
I

⎫
⎬

⎭
ei(n)

+ ε−1
√
λmax
(
P−1
i (n + 1)AT(n)Pi(n + 1)A(n)

) N∑

j=1

rije
T
j (n)ej(n).

(3.11)

It follows from (3.1) that for all n ∈ (Nk,Nk+1),

V (n + 1) =
N∑

i=1

Vi(n + 1) ≤
N∑

i=1

αik(n)eTi (n)Pi(n)ei(n) ≤ αk(n)
N∑

i=1

eTi (n)Pi(n)ei(n) = αk(n)V (n),

(3.12)

where for a fixed n, αk(n) = max1≤i≤N{αik(n)}.
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When n =Nk, we get

Vi(n + 1) = ei(n + 1)TPi(n + 1)ei(n + 1)

=
[
ei(n) + Bikei(n)

]T
Pi(n + 1)

[
ei(n) + Bikei(n)

]

= ei(n)
T(I + Bik

)T
Pi(n + 1)

(
I + Bik

)
ei(n)

≤ λmax
(
P−1(I + Bik

)T
Pi(n + 1)

(
I + Bik

))
ei(n)

TPi(n + 1)ei(n)

≤ βik(n)ei(n)TPi(n)ei(n),

(3.13)

which implies that for n =Nk,

V (n + 1) =
N∑

i=1

Vi(n + 1) ≤
N∑

i=1

βik(n)ei(n)
TPi(n)ei(n) ≤ βk(n)

N∑

i=1

ei(n)
TPi(n)ei(n), (3.14)

where βk(n) = max1≤i≤N{βik(n)}.
Hence, for all k ∈ N,

V
(
Nk + 1

)
≤ βk
(
Nk

)
V
(
Nk

)
. (3.15)

Since

γj =

⎧
⎪⎨

⎪⎩

√
αk(j), if j ∈

(
Nk,Nk+1

)
,

√

βk(j), if j =Nk, k ∈ N,

(3.16)

and γ0 = 1, then from (3.12)–(3.15), for any n ∈ (Nk,Nk+1], we obtain that

V (n) ≤
(

n−1∏

j=0

γ2
j

)

V (0) = e2
∑n−1

j=0 ln γjV (0). (3.17)

Denote e(n) = (eT1 (n), e
T
2 (n), . . . , e

T
N(n))T . By (3.5), we get

∥
∥e(n)

∥
∥ ≤

√
b

a
e
∑n−1

j=0 ln γj
∥
∥e(0)

∥
∥, n ∈ N. (3.18)

Hence, if
∑∞

j=0 ln γj = −∞, then for any ei(0) ∈ R
n×n, by (3.14), limn→∞ ‖ei(n)‖ = 0. Thus, the

error system (2.4) is asymptotically stable. Therefore, the uncertain dynamical network (2.1) is
robust synchronization with system (2.2) by the impulsive controllers {Nk, Bik}. The proof is
complete.

Corollary 3.2. Suppose that Assumptions 2.4 and 2.5 hold, and assume that there exist positive con-
stants νi > 0, i ∈ N, such that the following condition is satisfied:

∞∑

j=0

ln γj = −∞, (3.19)
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where

γj =

⎧
⎨

⎩

√
αik(j), if j ∈

(
Nk,Nk+1

)
,

∥
∥I + Bj

∥
∥, if j =Nk, k ∈ N,

αik(n) =
(∥
∥A(n)

∥
∥ + Lik

)2 +

(
N∑

j=1

(
rij + rji

)
)
∥
∥A(n)

∥
∥ + νiL2

ik
+
(
1 + ν−1

i

) N∑

j=1

r2
ij .

(3.20)

Then, for any initial conditions xi(0) = xi0, y(0) = y0 ∈ U, the uncertain discrete dynamical network
(2.1) is robust impulsive synchronization with system (2.2) by the impulsive controllers {Nk, Bik}.

Proof. By the similar proof of Theorem 3.1, with Pi(n) = I, ε = 1, i = 1, 2, . . . ,N, we obtain that
the result holds. The details are omitted here.

Remark 3.3. (i) By Corollary 3.2, if there does not exist coupling in the network, that is, rij =
0, i, j,= 1, 2, . . . ,N, then the sufficient condition for the robust synchronization of the network
simplifies to

∞∑

j=0

ln γj = −∞, where γj =

⎧
⎨

⎩

∥
∥A(j)

∥
∥ + Ljk , if j ∈

(
Nk,Nk+1

)
,

∥
∥I + Bj

∥
∥, if j =Nk, k ∈ N.

(3.21)

Hence, Corollary 3.2 is the generalization of the results established in [20].
(ii) If U = R

n, then the error system (2.4) is globally asymptotically stable; that is, the
robust impulsive synchronization can be achieved globally.

In the following, we consider the case in which the parameters rij are not all known, but
there exist positive constants K1i > 0, K2i > 0, K3i > 0, i = 1, 2, . . . ,N, such that

N∑

j=1

rij ≤ K1i,
N∑

j=1

rji ≤ K2i,
N∑

j=1

r2
ij ≤ K3i, i = 1, 2, . . . ,N. (3.22)

Theorem 3.4. Assume that Assumptions 2.4-2.5 and conditions (ii)-(iii) of Theorem 3.1 hold, while
condition (i) of Theorem 3.1 is changed into the following one:

(i) for all n ∈ (Nk,Nk+1], k ∈ N, the following inequalities hold:

AT(n)Pi(n+1)A(n)+2Lik
√
λmax
(
P−1
i (n+1)AT(n)Pi(n+1)A(n)

)
·

√
√
√
√λmax

(
Pi(n+1)

)

λmin
(
Pi(n+1)

)Pi(n+1)

+ λmax
(
Pi(n + 1)

)[(
1 + νi

)
L2
ik
+
(
1 + ν−1

i

)
Ki3
]
I

+
√
λmax
(
P−1
i (n + 1)AT(n)Pi(n + 1)A(n)

)(
εKi1 + ε−1Ki2

)
I

≤ αik(n)Pi(n).
(3.23)

Then, for any initial conditions xi(0) = xi0, y(0) = y0 ∈ U, the uncertain dynamical network (2.1) is
robust impulsive synchronization with system (2.2) by the impulsive controllers {Nk, Bik}.

Proof. By the similar proof of Theorem 3.1, we obtain that the result of this theorem holds. The
details are omitted here.
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4. Examples and simulations

In this section, three representative examples are given for illustration.

Example 4.1. Consider the entire discrete dynamical network in form of (2.1), where xi =
(xi1, xi2, xi3)

T , and the functions f , gi, i = 1, 2, . . . ,N, satisfy

f
(
k, xi
)
=

⎛

⎜
⎝

−3xi1 + xi2 + sin k2

−xi1 + 2xi2 − sinxi2 − cos k
xi3 + sinxi3 + 2 sin(k − 1)

⎞

⎟
⎠ ,

gj(x) =

⎛

⎜
⎝

xj1 − 2xj+1,1 + xj+2,1

0
−xj3 + 2xj+1,3 − xj+2,3

⎞

⎟
⎠ ,

(4.1)

where j = 1, 2, . . . ,N − 2, and gN−1(x1, x2, . . . , xN) = gN(x1, x2, . . . , xN) = 0.

Let f̃(k, xi, y) = f(k, xi) − f(k, y) = A(k)ei + ϕ̃(k, ei), where y = (y1, y2, y3)
T , A(k) =

( −3 1 0
−1 2 0
0 0 1

)
, and ϕ̃(k, ei) =

( 0
− sinxi2+siny2

sinxi3−siny3

)
.

It is easy to show that ‖A(k)‖ = 3.6180, ‖ϕ̃(k, ei)‖ ≤ ‖ei‖, that is, Lik = 1, for any xi, y ∈ R
3,

and

∥
∥g̃i(x, y)

∥
∥ =
∥
∥gi
(
x1, x2, . . . , xN

)
− gi(y, y, . . . , y)

∥
∥ ≤
√

2
∥
∥ei
∥
∥ + 2

√
2
∥
∥ei+1
∥
∥ +
√

2
∥
∥ei+2
∥
∥, (4.2)

where i = 1, 2, . . . ,N − 2, and

∥
∥g̃i(x, y)

∥
∥ =
∥
∥gi
(
x1, x2, . . . , xN

)
− gi(y, y, . . . , y)

∥
∥ = 0, i =N − 1,N. (4.3)

Let N = 10, then we obtain that αik(n) ≤ 169.1249. By Corollary 3.2, we can choose many
impulsive control laws {Nk, BNk

, k ∈ N, } such that the error system is asymptotically stable.

In the following, we take Nk = 3k and BNk
=
( −0.995 0 0

0 −0.995 0
0 0 −0.995

)
, then

γj =

⎧
⎨

⎩

√
αik(j) ≤ 13.0048, if j /= Nk,
∥
∥I + Bj

∥
∥ = 0.005, if j =Nk, k ∈ N.

(4.4)

Let Sn =
∑n

j=1 ln γj , then for k ∈ N,

Sn ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k(2 ln 13.0048 + ln 0.005) = −0.1677k, if n = 3k,

k(2 ln 13.0048 + ln 0.005) + ln 13.0048 = −0.1677k + 2.5653, if n = 3k + 1,

k(2 ln 13.0048 + ln 0.005) + 2 ln 13.0048 = −0.1677k + 5.1306, if n = 3k + 2,

(4.5)

which leads to
∑∞

j=1 ln γj = limn→∞ Sn = −∞. Then, by Corollary 3.2, we obtain that the im-
pulsive controllers {Nk, Bik} designed as above can achieve the robust synchronization for this
uncertain discrete dynamical network.
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Figure 2: Synchronization errors of ek1, k = 1, 2, . . . , 10.
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Figure 3: Synchronization errors of ek2, k = 1, 2, . . . , 10.

The numerical simulation is given in Figures 2–4. Here, the initial data are given as y0 =
(0.1 0.5 0.4)T , x10 = (0.4 0.7 0.6)T , x20 = (0.3 0.5 0.4)T , x30 = (0.2 0.3 0.2)T , x40 = (0.1 0.1 0)T ,
x50 = (0 −0.1 −0.2)T , x60 = (−0.1 −0.3 −0.4)T , x70 = (−0.2 −0.5 −0.6)T , x80 = (−0.3 −0.8 −0.8)T ,
x90 = (−0.4 − 1.1 − 1)T , and x100 = (−0.5 − 1.4 − 1.2)T .

In Figures 2–4, one can see that all the trajectories of the error system for this dynamical
network asymptotically approach the origin with the designed robust impulsive controller,
where ek = (ek1 ek2 ek3)

T , k = 1, 2, . . . , 10.

Example 4.2. Here we consider taking the fold chaotic system as nodes of the discretedynamical
network. A single fold chaotic system is in form of

y(n + 1) = Ay(n) + ϕ
(
y(n)
)
, n ∈ N, (4.6)

where y(n) =
(
y1(n)
y2(n)

)
, A =

(
−0.1 1

0 0

)
, ϕ(y(n)) =

(
0

y1(n)
2−1.7

)
.
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Figure 4: Synchronization errors of ek3, k = 1, 2, . . . , 10.

The entire network is given by

xi(n + 1) = Axi(n) + ϕ
(
xi(n)

)
+ gi
(
x1(n), x2(n), . . . , xN(n)

)
, i = 1, 2, . . . ,N, (4.7)

where xi = (xi1, xi2)
T , and the coupling functions gi, i = 1, 2, . . . ,N, satisfy

gi(x) =

(
−ε1x

2
i1 + ε1x

2
i+1,1

ε2x
2
i2 − ε2x

2
i+1,2

)

, ε1
∣
∣ ≤ 1,

∣
∣ε2
∣
∣ ≤ 1, i = 1, 2, . . . ,N − 1, (4.8)

and gN(x1, x2, . . . , xN) = 0.
Let f̃(k, xi, y) = Aei + ϕ̃(k, ei), where y = (y1, y2)

T , A =
( −0.1 1

0 0

)
and ϕ̃(k, ei) =

(
0

x2
i1−y

2
1

)
.

Let x(0) = (−1.5, 0.9)T , y(0) = (−1.5, 0.5)T . By simulation, we can estimate the attractive
domain U of isolated node: U = {y ∈ R

2 : ‖y‖ ≤ 1.5}. Thus, for any initial conditions xi0, y0 ∈ U,
it is easy to show that ‖A‖ = 1.0050, ‖ϕ̃(k, ei)‖ ≤ 3‖ei‖, that is, Lik = 3, and

∥
∥g̃i(x, y)

∥
∥ =
∥
∥gi
(
x1, x2, . . . , xN

)
− gi(y, y, . . . , y)

∥
∥ ≤ 4

√
1.5
(∥
∥ei
∥
∥ +
∥
∥ei+1
∥
∥
)
, (4.9)

where i = 1, 2, . . . ,N − 1, and

∥
∥g̃N(x, y)

∥
∥ =
∥
∥gN
(
x1, x2, . . . , xN

)
− gN(y, y, . . . , y)

∥
∥ = 0. (4.10)

Let N = 10. By Corollary 3.2, we obtain that αik(n) ≤ 179.8278. We choose impulsive control
law {Nk, BNk

, k ∈ N, } such that the error system is asymptotically stable. In the following, we
take Nk = 3k, BNk

=
( −0.995 0

0 −0.995

)
, then

γj =

⎧
⎨

⎩

√
αik(j) ≤ 13.4100, if j /= Nk,
∥
∥I + Bj

∥
∥ = 0.005, if j =Nk, k ∈ N.

(4.11)
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Figure 5: Synchronization errors of ek1, k = 1, 2, . . . , 10.
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Figure 6: Synchronization errors of ek2, k = 1, 2, . . . , 10.

Let Sn =
∑n

j=1 ln γj , then for k ∈ N,

Sn ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k(2 ln 13.4100 + ln 0.005) = −0.1063k, if n = 3k,

k(2 ln 13.4100 + ln 0.005) + ln 13.4100 = −0.1063k + 2.5960, if n = 3k + 1,

k(2 ln 13.4100 + ln 0.005) + 2 ln 13.4100 = −0.1063k + 5.1920, if n = 3k + 2,

(4.12)

which leads to
∑∞

j=1 ln γj = limn→∞ Sn = −∞. Then, by Corollary 3.2, we obtain that the im-
pulsive controllers {Nk, Bik} designed as above can achieve the robust synchronization for this
uncertain discrete dynamical network.

The numerical simulation is given in Figures 5-6. Here, the initial data are given as y0 =
(−1.5 0.5)T , x10 = (−1.4 0.7)T , x20 = (−1.3 0.5)T , x30 = (0.1 0.2)T , x40 = (−0.1 0.1)T , x50 = (0.6 −
0.1)T , x60 = (1.1 − 0.3)T , x70 = (1.2 − 0.5)T , x80 = (1.3 − 0.8)T , x90 = (1.4 − 1.1)T , and x100 =
(1.5 − 1.4)T . In Figures 5-6, one can see that all the trajectories of the error system for this
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dynamical network asymptotically approach the origin with the designed robust impulsive
controller, where ek = (ek1 ek2)

T , k = 1, 2, . . . , 10.

Example 4.3. Here we consider taking the chaotic Hénon map as nodes of the discrete dynami-
cal network. A single chaotic Hénon map is in form of

y(n + 1) = Ay(n) + ϕ
(
y(n)
)
, n ∈ N, (4.13)

where y(n) =
(
y1(n)
y2(n)

)
, A =

(
0 1

0.3 0

)
, and ϕ(y(n)) =

( 1−1.4y2
1

0

)
.

The entire network is given by

xi(n + 1) = Axi(n) + ϕ
(
xi(n)

)
+ gi
(
x1(n), x2(n), . . . , xN(n)

)
, i = 1, 2, . . . ,N, (4.14)

where xi = (xi1, xi2)
T , and the coupling functions gi, i = 1, 2, . . . ,N, satisfy

gi(x) =

(
−εx2

i1 + ε1x
2
i+1,1

ε2x
2
i2 − ε2x

2
i+1,2

)

,
∣
∣ε1
∣
∣ ≤ 1,

∣
∣ε2
∣
∣ ≤ 1, i = 1, 2, . . . ,N − 1, (4.15)

and gN(x1, x2, . . . , xN) = 0.
Let f̃(k, xi, y) = Aei + ϕ̃(k, ei), where y = (y1, y2)

T , and ϕ̃(k, ei) =
(

1.4(y2
1−x

2
i1)

0

)
.

Let x(0) = (0.3,−0.6)T , y(0) = (0.3,−0.1)T . By simulation, we can estimate the attractive
domain U of isolated node: U = {y ∈ R

2 : ‖y‖ ≤ 3}. Thus, for any initial conditions xi0, y0 ∈ U,
it is easy to show that ‖A‖ = 1.0000, ‖ϕ̃(k, ei)‖ ≤ 8.4‖ei‖, that is, Lik = 4.2, and

∥
∥g̃i(x, y)

∥
∥ =
∥
∥gi
(
x1, x2, . . . , xN

)
− gi(y, y, . . . , y)

∥
∥ ≤ 8

√
2.1
(∥
∥ei
∥
∥ +
∥
∥ei+1
∥
∥
)
, (4.16)

where i = 1, 2, . . . ,N − 1, and

∥
∥g̃N(x, y)

∥
∥ =
∥
∥gN
(
x1, x2, . . . , xN

)
− gN(y, y, . . . , y)

∥
∥ = 0. (4.17)

Let N = 10. By Corollary 3.2, we obtain that αik(n) ≤ 248.6386. We choose impulsive control
law {Nk, BNk

, k ∈ N, } such that the error system is asymptotically stable. In the following, we
take Nk = 3k, BNk

=
(
−0.996 0

0 −0.996

)
, then

γj =

⎧
⎨

⎩

√
αik(j) ≤ 15.7683, if j /= Nk,
∥
∥I + Bj

∥
∥ = 0.004, if j =Nk, k ∈ N.

(4.18)
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Figure 7: Synchronization errors of ek1, k = 1, 2, . . . , 10.
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Figure 8: Synchronization errors of ek2, k = 1, 2, . . . , 10.

Let Sn =
∑n

j=1 ln γj , then for k ∈ N,

Sn ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k(2 ln 15.7683 + ln 0.004) = −0.0055k, if n = 3k,

k(2 ln 15.7683 + ln 0.004) + ln 15.7683 = −0.0055k + 2.7580, if n = 3k + 1,

k(2 ln 15.7683 + ln 0.004) + 2 ln 15.7683 = −0.0055k + 5.5160, if n = 3k + 2,

(4.19)

which leads to
∑∞

j=1 ln γj = limn→∞ Sn = −∞. Then, by Corollary 3.2, we obtain that the impul-
sive controllers {Nk, Bik} designed as above can achieve the robust synchronization for this
uncertain discrete dynamical network.

The numerical simulation is given in Figures 7-8. Here, the initial data are given as y0 =
(0.3 − 0.6)T , and xk0 , k = 1, 2, . . . , 10, are the same as in Example 4.2.
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In Figures 7-8, one can see that all the trajectories of the error system for this dynamical
network asymptotically approach the origin with the designed robust impulsive controller,
where ek = (ek1 ek2)

T , k = 1, 2, . . . , 10.

5. Conclusions

In this paper, a robust impulsive control method for synchronization of an uncertain discrete
dynamical network has been introduced. The controller so designed is robust to uncertain net-
work coupling. From the aspect of controller structure and robustness to uncertain network
coupling, the developed synchronization scheme is more efficient than those reported in the
literature to date. Some simple and effective criteria for achieving robust impulsive synchro-
nization have been derived. Because a chaotic system has complex dynamical behaviors and
possesses some special features which make the chaotic synchronization very useful to secure
communication, it is significative to take discrete chaotic system as nodes in a discrete dynam-
ical network. Three examples demonstrate the effectiveness of the theoretical results obtained
in this paper.
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