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1. Introduction

The starting point of studying the stability of functional equations seems to be the famous talk
of Ulam [1] in 1940, in which he discussed a number of important unsolved problems. Among
those was the question concerning the stability of group homomorphisms.

Let G1 be a group and let G2 be a metric group with a metric d(·, ·). Given ε > 0, does there exist
a δ > 0 such that if a mapping h : G1→G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for
all x, y ∈ G1, then there exists a homomorphism H : G1→G2 with d(h(x),H(x)) < ε for all
x ∈ G1?

The case of approximately additive mappings was solved by Hyers [2] under the as-
sumption that G1 and G2 are Banach spaces. Later, the result of Hyers was significantly gen-
eralized for additive mappings by Aoki [3] and for linear mappings by Rassias [4]. It should
be remarked that we can find in the books [5–7] a lot of references concerning the stability of
functional equations.

Recently, Jung and Sahoo [8] proved the generalized Hyers-Ulam stability of the func-
tional equation f(

√
r2 + 1) = f(r) + arctan (1/r) which is closely related to the square root

spiral, for the case that f(1) = 0 and f(r) is monotone increasing for r > 0 (see [9, 10]).
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By F we denote the set of all functions f : (0,∞)→R. Let Δ be the difference operator
defined by

(Δf)(r) = f(r + 1) − f(r) (r > 0) (1.1)

for any f ∈ F. Throughout this paper, let n be a fixed positive integer, and we define an opera-
tor Δn : F→F by

(
Δnf

)
(r) = Δ

(
Δn−1f

)
(r) (r > 0) (1.2)

for all f ∈ F, where we set Δ0f = f . For instance, we see that
(
Δ2f

)
(r) = f(r + 2) − 2f(r + 1) + f(r),

(
Δ3f

)
(r) = f(r + 3) − 3f(r + 2) + 3f(r + 1) − f(r). (1.3)

In this paper, we will investigate the generalized Hyers-Ulam stability of the Newton
difference (operator) equations

Δnf(r) = A lnRn(r) (1.4)

for all r > 0 and some fixed integer n > 0, where A > 0 is a constant and

R1(r) =
r + 1
r

, Rk(r) =
Rk−1(r + 1)
Rk−1(r)

(1.5)

for k ∈ {2, 3, . . . , n}.
We will say that (1.4) has the generalized Hyers-Ulam stability whenever a (given) func-

tion f : (0,∞)→R satisfies the inequality
∣∣Δnf(r) −A lnRn(r)

∣∣ ≤ ϕn(r) (1.6)

for all r > 0, where ϕn : (0,∞)→[0,∞) is a given nonnegative function, there exists a solution
of (1.4)which is not far from f .

2. Newton n-ary difference equation

The difference equation in (1.4) is called the Newton n-ary difference (operator) equation.
In the following theorem, we give a partial solution to the generalized Hyers-Ulam stability
problem of (1.4).

Theorem 2.1. If a function f : (0,∞)→R satisfies the inequality (1.6) for all r > 0 and some integer
n > 0, where ϕn : (0,∞)→[0,∞) is a function which satisfies

Φn(r) =
∞∑

k=0

ϕn(r + k) <∞ (2.1)

for any r > 0, then there exists a unique function Fn : (0,∞)→R such that ΔFn(r) = A lnRn(r) and
∣∣Fn(r) −Δn−1f(r)

∣∣ ≤ Φn(r) (2.2)

for each r > 0.
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Proof. It follows from (1.6) that
∣
∣Δnf(r) −A lnRn(r)

∣
∣ ≤ ϕn(r),

∣
∣Δnf(r + 1) −A lnRn(r + 1)

∣
∣ ≤ ϕn(r + 1),

...
...

∣∣Δnf(r +m − 1) −A lnRn(r +m − 1)
∣∣ ≤ ϕn(r +m − 1)

(2.3)

for any r > 0 andm ∈ N. In view of triangular inequality, the above inequalities yield
∣∣∣∣∣

m−1∑

k=0

Δnf(r + k) −
m−1∑

k=0

A lnRn(r + k)

∣∣∣∣∣
≤

m−1∑

k=0

ϕn(r + k). (2.4)

Substitute r + � for r in (2.4) and then substitute k for k + � in the resulting inequality to
obtain

∣∣∣∣∣

�+m−1∑

k=�

Δnf(r + k) −
�+m−1∑

k=�

A lnRn(r + k)

∣∣∣∣∣
≤

�+m−1∑

k=�

ϕn(r + k) (2.5)

for all r > 0 and �,m ∈ N.
By some manipulation, we further have

∣∣∣∣∣

�+m−1∑

k=0

Δnf(r + k) −
�+m−1∑

k=0

A lnRn(r + k) + Δn−1f(r)

−
�−1∑

k=0

Δnf(r + k) +
�−1∑

k=0

A lnRn(r + k) −Δn−1f(r)

∣∣
∣∣∣
≤

�+m−1∑

k=�

ϕn(r + k)

(2.6)

for every r > 0 and �,m ∈ N. Thus, considering (2.1), we see that the sequence
{
m−1∑

k=0

[
Δnf(r + k) −A lnRn(r + k)

]
+ Δn−1f(r)

}

n=1,2,3,...

(2.7)

is a Cauchy sequence for any r > 0. Hence, we can define a function Fn : (0,∞)→R by

Fn(r) =
∞∑

k=0

[
Δnf(r + k) −A lnRn(r + k)

]
+ Δn−1f(r). (2.8)

By (2.8), we get

ΔFn(r) = Fn(r + 1) − Fn(r)
=

∞∑

k=1

[
Δnf(r + k) −A lnRn(r + k)

]
+ Δn−1f(r + 1)

−
∞∑

k=0

[
Δnf(r + k) −A lnRn(r + k)

] −Δn−1f(r)

= A lnRn(r)

(2.9)

for all r > 0. In view of (2.1) and (2.8), if we letm go to infinity in (2.4), then we obtain (2.2).
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It only remains to prove the uniqueness of the function Fn. If a function H : (0,∞)→R

satisfies ΔH(r) = A lnRn(r) for each r > 0, then we can easily show that

H(r +m) −H(r) =
m−1∑

k=0

A lnRn(r + k) (2.10)

for all r > 0 andm ∈ N. Now, assume that Gn : (0,∞)→R satisfies ΔGn(r) = A lnRn(r) and the
inequality (2.2) in place of Fn. By (2.1), (2.2), and (2.10), we obtain

∣∣Fn(r) −Gn(r)
∣∣ =

∣∣Fn(r +m) −Gn(r +m)
∣∣ ≤ 2Φn(r +m) −→ 0 as m −→ ∞, (2.11)

for any r > 0, which proves the uniqueness of Fn.

3. Application to logarithmic spirals

For given α > 1 and c > 0, the equation

r = ceθ/
√
α2−1 (3.1)

represents a logarithmic spiral in the polar coordinates (r, θ). We know that this formula is
equivalent to

θ =
√
α2 − 1(ln r − ln c). (3.2)

Let us define f(r) =
√
α2 − 1(ln r − ln c) so that we can write the above expression in a simpler

form, θ = f(r). Then f is a solution of (1.4) for n = 1 and A =
√
α2 − 1, that is, f is a solution of

the equation

Δf(r) =
√
α2 − 1 ln

r + 1
r

, (3.3)

which may be called the equation for logarithmic spirals.
We will now solve (3.3) by using [9, Theorem 1].

Theorem 3.1. If a function f : (0,∞)→R satisfies (3.3), then there exists a periodic function σ : R→R

of period 1 such that

f(r) = σ(r) +
√
α2 − 1 ln r (3.4)

for all r > 0.

Proof. If we set

ψ(r) =
√
α2 − 1 ln

r + 1
r

(3.5)

for all r > 0, then we have

ψ(r + s) − ψ(r) =
√
α2 − 1 ln

r2 + (s + 1)r
r2 + (s + 1)r + s

< 0 (3.6)
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for any r, s > 0, which implies that ψ is monotonically decreasing. Moreover, we also see that

lim
r→∞

ψ(r) =
√
α2 − 1 lim

r→∞
ln
r + 1
r

= 0. (3.7)

According to [9, Theorem 1], the general solution of (3.3) is given by

f(r) = σ(r) +
∞∑

k=0

[ψ(k + 1) − ψ(r + k)] = σ(r) +
√
α2 − 1 ln r, (3.8)

where σ is an arbitrary periodic function of period 1.

If we set n = 1 in Theorem 2.1 and apply Theorem 3.1, thenwe get the following corollary
concerning the generalized Hyers-Ulam stability of (3.3).

Corollary 3.2. If a given function f : (0,∞)→R satisfies the inequality
∣
∣∣∣Δf(r) −

√
α2 − 1 ln

r + 1
r

∣
∣∣∣ ≤ ϕ(r) (3.9)

for all r > 0 and some α > 1, where ϕ : (0,∞)→[0,∞) is a function which satisfies the condition

Φ(r) =
∞∑

k=0

ϕ(r + k) <∞ (3.10)

for any r > 0, then there exists a unique periodic function σ : R→R of period 1 such that

∣∣f(r) − σ(r) −
√
α2 − 1 ln r

∣∣ ≤ Φ(r) (3.11)

for all r > 0.
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