
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2007, Article ID 98427, 10 pages
doi:10.1155/2007/98427

Research Article
On the Integrability of Quasihomogeneous Systems and
Quasidegenerate Infinity Systems

Yanxia Hu

Received 9 February 2007; Accepted 21 May 2007

Recommended by Kilkothur Munirathinam Tamizhmani

The integrability of quasihomogeneous systems is considered, and the properties of the
first integrals and the inverse integrating factors of such systems are shown. By solving
the systems of ordinary differential equations which are established by using the vector
fields of the quasihomogeneous systems, one can obtain an inverse integrating factor of
the systems. Moreover, the integrability of a class of systems (quasidegenerate infinity
systems) which generalize the so-called degenerate infinity vector fields is considered,
and a method how to obtain an inverse integrating factor of the systems from the first
integrals of the corresponding quasihomogeneous systems is shown.
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1. Introduction

We consider quasihomogeneous autonomous systems, which are also called similarity
invariant systems or weighted homogeneous systems, that is, the following nth order au-
tonomous system of differential equations:

dxi
dt
= Xi(x), i= 1,2, . . . ,n, (1.1)

where x = (x1,x2, . . . ,xn)∈D ⊂Rn (or Cn), Xi : D→R (or C), Xi ∈ C∞(D), and t ∈R (or
C). System (1.1) is invariant under the similarity transformation x= (x1,x2, . . . ,xn, t)→
(αp1x1,αp2x2, . . . ,αpnxn,α−lt) for all α∈R \ {0}, where p1, p2, . . . , pn and l are positive inte-
gers. In other words,Xi(x) are pi (i= 1,2, . . . ,n) quasihomogeneous functions of weighted
degrees pi + l, respectively, that is,

Xi
(
αp1x1, . . . ,αpnxn

)= αpi+lXi
(
x1, . . . ,xn

)
(1.2)
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for all α∈ R \ {0}. We also say that system (1.1) is pi (i= 1,2, . . . ,n) quasihomogeneous
of weighted degree l.

Notice that if pi (i= 1,2, . . . ,a) are even and pi (i= a+ 1,a+ 2, . . . ,n) and l are odd, then
the pi (i= 1,2, . . . ,n) quasihomogeneous systems include some class of the reversible sys-
tems which are invariant under the symmetry (x1, . . . ,xn, t)→ (x1, . . . ,xa,−xa+1, . . . ,−xn, t).
Moreover, in the particular case pi (i= 1,2, . . . ,n)= 1, the quasihomogeneous systems re-
duce to classical homogeneous systems.

Motion equations of many important problems of dynamics are of the quasihomo-
geneous form, for example, Euler-Poisson equations, Kirchhoff equations, and so forth.
Recently, several works have studied the integrability of autonomous systems and quasi-
homogeneous polynomial systems; for more details see [1–6]. In [5], several techniques
for searching first integrals of nth autonomous systems by using Lie groups admitted
by the systems are proposed. The integrability of quasihomogeneous planar systems is
studied in [1, 3], and the existence of a link between the Kowalevskaya exponents of
quasihomogeneous systems and the degree of their quasihomogeneous polynomial first
integrals is studied in [2, 4]. There exist some methods for studying the integrability
of autonomous systems by using Lie group admitted by the systems [5, 7, 8] and us-
ing by the invariant manifolds of the systems [6]. As we know, the existence of inverse
integrating factors gives a lot of information on dynamics, integrability of the systems
and so on. In [9], the relationship between the property of a Darboux first integral
and the existence of a polynomial inverse integrating factor of a polynomial differen-
tial systems was studied. However, generally, it is difficult to search for inverse integrat-
ing factors. Searching for first integrals of a system plays a very important role for in-
tegrating the system. In this paper, we study the integrability of nth order qusaihomo-
geneous systems. First, we show the properties of the first integrals and the inverse in-
tegrating factors of such systems. Then, we propose a method to obtain an inverse in-
tegrating factor of the systems by solving the ordinary differential equations systems es-
tablished by using the vector fields of the quasihomogeneous systems. System (1.1) with
n = 2 is called degenerate infinity system if it satisfies X1 = x1A, X2 = x2A for some ho-
mogeneous polynomial A(x1,x2). Degenerate infinity systems have attracted the atten-
tion of many authors, see [10, 11]. In this paper, we also consider the integrability of
a class of systems which generalize the so-called degenerate infinity vector fields, that
is,

dxi
dt
= Xi(x) + pixiA

(
x1,x2, . . . ,xn

)
, i= 1,2, . . . ,n, (1.3)

where Xi(x) (i= 1,2, . . . ,n) are pi (i= 1,2, . . . ,n) quasihomogeneous function of weighted
degrees pi + l of system (1.1), respectively. A(x1,x2, . . . ,xn) is given a pi (i = 1,2, . . . ,n)
quasihomogeneous polynomial of weighted degree α. We call system (1.3) a quasidegen-
erate infinity system. We propose a method to obtain inverse integrating factors of system
(1.3) from the first integrals of the corresponding quasihomogeneous system (1.1) by us-
ing the Darboux’s theory of integrability.
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2. On the integrability of quasihomogeneous systems

Let X be the vector field associated with system (1.1), that is,

X = X1(x)
∂

∂x1
+X2(x)

∂

∂x2
+ ···+Xn(x)

∂

∂xn
. (2.1)

Let G be a one-parameter Lie group with an associated infinitesimal generator V defined
as

V = ξ1(x)
∂

∂x1
+ ξ2(x)

∂

∂x2
+ ···+ ξn(x)

∂

∂xn
, (2.2)

where ξi(x)∈ C1(D), i= 1,2, . . . ,n. A Lie group admitted by (in fact an infinitesimal sym-
metry) system (1.1) is defined to be a group of transformations with infinitesimal genera-
tor V such that under the action of this group, a solution curve of system (1.1) is mapped
into another solution curve of system (1.1).

Proposition 2.1 (see [7]). Let G be the one-parameter Lie group with infinitesimal gener-
ator V , then G is a Lie group admitted by system (1.1) if and only if

[X ,V]= B
(
x1,x2, . . . ,xn

)
X (2.3)

is satisfied for some smooth scalar function B(x1,x2, . . . ,xn), where [X ,V] := XV −VX is
the Lie bracket of the C1-vector fields of X and V.

Definition 2.2. Let � be an open subset of D. A nonzero function μ ∈ C1(�) : �→ R,
satisfying the linear partial differential equation Xμ= div(X)μ, or equivalently,

X1(x)
∂μ

∂x1
+X2(x)

∂μ

∂x2
+ ···+Xn(x)

∂μ

∂xn
=
(
∂X1

∂x1
+ ···+

∂Xn

∂xn

)
μ, (2.4)

is called an inverse integrating factor of system (1.1) on �. It is well known, if n = 2,
system (1.1) has two autonomous differential equations and admits a Lie group G, then
the system (1.1) has the following inverse integrating factor defined on �:

μ
(
x1,x2

)= X1
(
x1,x2

)
ξ2
(
x1,x2

)−X2
(
x1,x2

)
ξ1
(
x1,x2

)
(2.5)

provided that μ(x1,x2) �= 0 (see [8]).

Theorem 2.3. System (1.1) admits the Lie group G with the following infinitesimal genera-
tor V :

V = p1x1
∂

∂x1
+ ···+ pnxn

∂

∂xn
. (2.6)

Proof. One can obtain the result by straightforward computing by using Proposition 2.1.
For example, the system of Euler-Poisson equations is a quasihomogeneous system

with

p1 = p2 = p3 = 1, p4 = p5 = p6 = 2, l = 1, (2.7)
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and it admits Lie group with infinitesimal generator V ,

V = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ 2x4

∂

∂x4
+ 2x5

∂

∂x5
+ 2x6

∂

∂x6
. (2.8)

In [5], some first integrals of the Euler-Poisson equations system are obtained by using
the quasihomogeneous property of the system.

It is well known that, given a polynomial f ∈ R[x1,x2, . . . ,xn], we can split it in the
form f = fm + fm+1 + ···+ fm+r , where fk (k =m,m+ 1, . . . ,m+ r) is a pi (i= 1,2, . . . ,n)
quasihomogeneous polynomial of weighted degree k, that is,

fk
(
αp1x1, . . . ,αpnxn

)= αk fk
(
x1, . . . ,x2

)
(2.9)

for k =m,m+ 1, . . . ,m+ r. We have the following result. �

Theorem 2.4. Let f be a polynomial in the variables x1,x2, . . . ,xn and let

f = fm + fm+1 + ···+ fm+r (2.10)

be its decomposition into pi (i= 1,2, . . . ,n) quasihomogeneous polynomial of weighted degree
m+ i for i = 0,1, . . . ,r, then f is either a polynomial first integral or a polynomial inverse
integrating factor of system (1.1) if and only if each quasihomogeneous polynomial fm+i is
either a first integral or an integrating factor of system (1.1) for i= 0,1, . . . ,r, respectively.

Proof. If f is a polynomial first integral, the result is proved in [4]. Hence we will proof
the case in which f is a polynomial inverse integrating factor of system (1.1).

The sufficiency is obvious. So we will only prove the necessity. From Definition 2.2, we
have

X1(x)
∂ f

∂x1
+X2(x)

∂ f

∂x2
+ ···+Xn(x)

∂ f

∂xn
=
(
∂X1

∂x1
+ ···+

∂Xn

∂xn

)
f , (2.11)

that is,

r∑

i=0

(
X1(x)

∂ fm+i

∂x1
+X2(x)

∂ fm+i

∂x2
+ ···+Xn(x)

∂ fm+i

∂xn

)
=

r∑

i=0

(
∂X1

∂x1
+
∂X2

∂x2
+ ···+

∂Xn

∂xn

)
fm+i.

(2.12)

Since Xj(x) ( j = 1,2, . . . ,n) have weight degrees pj + l ( j = 1,2, . . . ,n), then the divergence
of system (1.1)

divX = ∂X1

∂x1
+
∂X2

∂x2
+ ···+

∂Xn

∂xn
, (2.13)

has weighted degree l. Similarly, ∂ fm+i/∂xj ( j = 1,2, . . . ,n) have weighted degrees m+ i−
pj ( j = 1,2, . . . ,n), respectively. So, from the quasihomogeneous polynomial components
on the left- and right-hand sides of being of weighted degree l+m+ i, we can obtain

X1(x)
∂ fm+i

∂x1
+X2(x)

∂ fm+i

∂x2
+ ···+Xn(x)

∂ fm+i

∂xn
=
(
∂X1

∂x1
+
∂X2

∂x2
+ ···+

∂Xn

∂xn

)
fm+i,

(2.14)
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where i= 0,1, . . . ,r. Consequently, fm+i is an inverse integrating factor of system (1.1) and
hence this completes the proof. �

From Theorem 2.4, in order to study either polynomial first integrals or polynomial
inverse integrating factors of quasihomogeneous polynomial system, we need only to
consider quasihomogeneous polynomial functions.

Theorem 2.5. Any inverse integrating factor of system (1.1) is a quasihomogeneous func-
tion. Moreover, if

Xi−wiX1
pi
p1
�= 0 (i= 2,3, . . . ,n),

divX −X1
m

p1
�= 0,

(2.15)

where Xi = Xi(1,w2,w3, . . . ,wn), then w
m/p1

1 fm is an inverse integrating factor of weighted
degree m of system (1.1), where fm = fm(1,w2,w3, . . . ,wn) satisfies the following equations:

dw2

X2−
(
p2/p1

)
w2X1

= dw3

X3−
(
p3/p1

)
w3X1

= ··· = dwn

Xn−
(
pn/p1

)
wnX1

= fm
divX − (m/p1

)
X1

.

(2.16)

Proof. Let f (x1, . . . ,xn) be an inverse integrating factor of system (1.1), that is,

X1
∂ f

∂x1
+X2

∂ f

∂x2
+ ···+Xn

∂ f

∂xn
=
(
∂X1

∂x1
+
∂X2

∂x2
+ ···+

∂Xn

∂xn

)
f , (2.17)

because X1, . . . ,Xn and divX are quasihomogeneous functions of weighted degrees p1 +
l, . . . , pn + l and l, respectively. It is not difficult to obtain that (2.17) is invariant under a
change of (x1,x2, . . . ,xn)→ (αp1x1,αp2x2, . . . ,αpnxn). Consequently, their solutions are also
invariant, that is,

f
(
αp1x1, . . . ,αpnxn

)= f
(
x1, . . . ,xn

)
(2.18)

or

f
(
αp1x1, . . . ,αpnxn

)= αm f
(
x1, . . . ,xn

)
. (2.19)

So f is a p1, . . . , pn quasihomogeneous function (of weighted degree m).
Letting fm(x1, . . . ,xn) be a quasihomogeneous function of weighted degree m, we have

f (αp1x1, . . . ,αpnxn)= αm f (x1, . . . ,xn). If fm is an inverse integrating factor of system (1.1),
then the following equation holds:

X1
∂ fm
∂x1

+X2
∂ fm
∂x2

+ ···+Xn
∂ fm
∂xn

= (divX) fm. (2.20)
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Now, let

w1 = x1, w2 = x2

x
p2/p1

1

, . . . ,wn = xn

x
pn/p1

1

, (2.21)

then,

Xi
(
x1, . . . ,xn

)= Xi
(
w1,w2w

p2/p1

1 , . . . ,wnw
pn/p1

1

)

=w
(pi+l)/p1

1 Xi
(
1,w2, . . . ,wn

)=w
(pi+l)/p1

1 Xi, i= 1,2, . . . ,n,

divX
(
x1, . . . ,xn

)= divX
(
w1,w2w

p2/p1

1 , . . . ,wnw
pn/p1

1

)

=w
l/p1

1 divX
(
1,w2, . . . ,wn

)=w
l/p1

1 divX.

(2.22)

On the other hand, by the chain rule of the derivative, in the new variables w1,w2, . . . ,wn,
(2.20) becomes

w
(p1+l)/p1

1 X1
∂ fm

(
w1,w2w

p2/p1

1 , . . . ,wnw
pn/p1

1

)

∂x1

+w
(p2+l)/p1

1 X2
∂ fm

(
w1,w2w

p2/p1

1 + ···+wnw
pn/p1

1

)

∂x2

+ ···+w
(pn+l)/p1

1 Xn
∂ fm

(
w1,w2w

p2/p1

1 , . . . ,wnw
pn/p1

1

)

∂xn

= (wl/p1

1 divX
)
fm
(
w1,w2w

p2/p1

1 , . . . ,wnw
pn/p1

1

)
.

(2.23)

Based on the following formulas:

fm
(
w1,w2w

p2/p1

1 , . . . ,wnw
pn/p1

1

)=w
m/p1

1 fm
(
1,w2, . . . ,wn

)=w
m/p1

1 fm, (2.24)

∂ fm
∂x1

= m

p1
w(m/p1)−1 fm− p2

p1

w2

w1
w
m/p1

1
∂ fm
∂w2

−···− pn
p1

wn

w1
w
m/p1

1
∂ fm
∂wn

,

∂ fm
∂xi

=w
−(m−pi)/P1

1
∂ fm
∂wi

, i= 2, . . . ,n,

(2.25)

(2.23) becomes

(
X2− p2

p1
w2X1

)
∂ fm
∂w2

+ ···+
(
Xn− pn

p1
wnX1

)
∂ fm
∂wn

=
(

divX − m

p1
X1

)
fm. (2.26)

Obviously, its characteristic equation is (2.16). So fm satisfies (2.16). According to the
formula (2.24), this completes the proof. �

Example 2.6. We consider the following system:

dx

dt
= axy,

dy

dt
= bx3 + cy2. (2.27)
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This system is a p1 = 2, p2 = 3 quasihomogeneous polynomial system of weighted degree
3, and it is invariant under the similarity transformation

(x, y, t)−→ (α2x,α3y,α−3t
)
. (2.28)

It is easy to get the following formulas:

X1 = X1
(
1,w2

)= aw2,

X2 = X2
(
1,w2

)= b+ cw2
2,

divX = divX
(
1,w2

)= (a+ 2c)w2.

(2.29)

From (2.16), we have

dw2

b+
(
c− (3/2)a

)
w2

2
= d fm
(−ma/2− a− 2c

)
w2 fm

. (2.30)

Its solution is

fm = c
(
b+
(
c− 3

2
a
)
w2

2

)(−ma/2−a−2c)/(2c−3a)

. (2.31)

So

fm

(
1,

y

x3/2

)
= c
(
b+
(
c− 3

2
a
)
y2

x3

)(−ma/2−a−2c)/(2c−3a)

. (2.32)

Based on Theorem 2.5, we can get an inverse integrating factor

xm/2
(
b+
(
c− 3

2
a
)
y2

x3

)(−ma/2−a−2c)/(2c−3a)

(2.33)

of the system. Specially, when m= 2, the inverse integrating factor is

x
(
b+
(
c− 3

2
a
)
y2

x3

)(−2a−2c)/(2c−3a)

. (2.34)

3. On the integrability of quasidegenerate infinity systems

We consider the quasidegenerate infinity system (1.3).

Lemma 3.1. Let X∗ = (X1 + p1x1A(x1,x2, . . . ,xn))(∂/∂x1) + ··· + (Xn + pnxnA(x1,
x2, . . . ,xn))(∂/∂xn) be the vector field associated with system (1.3) and let Ω(x1,x2,
. . . ,xn) be a quasihomogeneous first integral of weighted degree d of system (1.1), then

X∗Ω= dA
(
x1,x2, . . . ,xn

)
Ω. (3.1)
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Proof. The derivative of Ω(x1,x2, . . . ,xn) along the orbits of system (1.3) is

X∗Ω= ∂Ω

∂x1

(
X1 + p1x1A

)
+
∂Ω

∂x2

(
X2 + p2x2A

)
+ ···+

∂Ω

∂xn

(
Xn + pnxnA

)

=
(
∂Ω

∂x1
X1 +

∂Ω

∂x2
X2 + ···+

∂Ω

∂xn
Xn

)
+A

(
p1x1

∂Ω

∂x1
+ ···+ pnxn

∂Ω

∂xn

)

= A
(
p1x1

∂Ω

∂x1
+ ···+ pnxn

∂Ω

∂xn

)
.

(3.2)

Based on the generalized Euler’s theorem for quasihomogeneous function, we have

p1x1
∂Ω

∂x1
+ ···+ pnxn

∂Ω

∂xn
= dΩ. (3.3)

So, (3.2) becomes

X∗Ω= dAΩ. (3.4)

�

Lemma 3.2. Let f (x1, . . . ,xn) be a quasihomogeneous inverse integrating factor of weighted
degree m of system (1.1), then f (x1, . . . ,xn) is a quasihomogeneous invariant manifold of
system (1.3).

Proof. Because f (x1, . . . ,xn) is an inverse integrating factor of system (1.1), we have

X1
∂ f

∂x1
+ ···+Xn

∂ f

∂xn
=
(
∂X1

∂x1
+ ···+

∂Xn

∂xn

)
f . (3.5)

The derivative of f (x1, . . . ,xn) along the orbits of system (1.3) is

X∗ f = ∂ f

∂x1

(
X1 + p1x1A

)
+
∂ f

∂x2

(
X2 + p2x2A

)
+ ···+

∂ f

∂xn

(
Xn + pnxnA

)

=
(
∂ f

∂x1
X1 +

∂ f

∂x2
X2 + ···+

∂ f

∂xn
Xn

)
+A

(
p1x1

∂ f

∂x1
+ ···+ pnxn

∂ f

∂xn

)

= (divX) f +mA f .

(3.6)

The last term of the above expression can be obtained by using the generalized Euler’s
theorem for quasihomogeneous function. So

X∗ f = (divX +mA) f , (3.7)

that is, f (x1,x2, . . . ,xn)= 0 is an invariant manifold of system (1.3). �

Theorem 3.3. Let Ω(x1,x2, . . . ,xn) be a quasihomogeneous first integral of weighted degree
d of system (1.1), then Ω(α−l)/d f is an inverse integrating factor of system (1.3).
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Proof. First, we calculate the divergence of system (1.3):

divX∗ = ∂

∂x1

(
X1 + p1x1A

)
+

∂

∂x2

(
X2 + p2x2A

)
+ ···+

∂

∂xn

(
Xn + pnxnA

)

=
(
∂X1

∂x1
+
∂X2

∂x2
+···+ ∂Xn

∂xn

)
+
(
p1x1

∂A

∂x1
+···+pnxn

∂A

∂xn

)
+A
(
p1 +p2 +···+pn

)

= divX +A
(
p1 + p2 + ···+ pn +α

)
.

(3.8)

On the other hand, from the proves of Lemmas 3.1 and 3.2, we have

X∗Ω= dAΩ,

X∗ f = (divX +mA) f .
(3.9)

Let

K1
(
x1,x2, . . . ,xn

)= dA,

K2
(
x1,x2, . . . ,xn

)= divX +A
(
p1 + p2 + ···+ pn + l

)
.

(3.10)

So, we can find two constants λ1 and λ2 such that

n∑

i=1

λiKi
(
x1,x2, . . . ,xn

)= divX∗, (3.11)

that is, λ1 = (α− l)/d and λ2 = 1. Therefore, applying the Darboux’s theory of integra-
bility (see [12]), we obtain that the function Ω(α−l)/d f is an inverse integrating factor of
system (1.3). �

4. Conclusion

In this paper, we have studied the integrability of quasihomogeneous systems. From the
above investigation, we see that the properties of quasihomogeneous systems may help us
in studying the integrability of the systems. We need only to consider quasihomogeneous
polynomial functions in order to study either polynomial first integrals or polynomial
inverse integrating factors of quasihomogeneous systems. Specially, we have proposed a
method to obtain an inverse integrating factor of the systems on the base of the systems of
ordinary differential equations established by using the quasihomogeneous vector fields.
Moreover, we also have considered quasidegenerate infinity systems, and shown how to
obtain an inverse integrating factor from the first integrals of the corresponding quasiho-
mogeneous systems by using Darboux’s theory of integrability.
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