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1. Introduction

In this paper, we will deal with the second-order formally symmetric difference expres-
sion M acting on complex valued sequences x = {xn}∞−1 defined by

Mxn :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
wn

[−Δ
(
pn−1Δxn−1

)
+ qnxn

]
, n≥ 0,

− p−1

w−1
Δxn, n=−1,

(1.1)

with complex coefficients p = {pn}∞−1, q = {qn}∞−1 and weight w = {wn}∞−1. In differential
operators case, when the coefficients p and q are real-valued, the terms limit-point (LP),
strong limit-point (SLP), Dirichlet (D), conditional Dirichlet (CD), and weak Dirichlet
(WD) at the regular endpoint are often used to describe certain properties associated
with the differential expression under consideration, see [1–10]. Here, we introduce the
discrete analogue of these properties and some relations between them. In studying in-
equalities involving expression (1.1), such as HELP (after Hardy, Everitt, Littlewood and
Polya) and Kolmogorov-type inequalities, these properties and the relationships between
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them are crucial. The work we present here is the discrete analogue of the work by Race
[9] for differential expressions.

2. Preliminaries

We use the following notation throughout:R and C denote the real and complex number
fields, andN is the set of nonnegative integers. z denotes the complex conjugate of z ∈ C.
�(·) and�(·) represent the imaginary and real part of a complex number. �1 is the space
of all absolutely summable complex sequences. �2 and �2

w are the Hilbert spaces

�2 =
{

x = {xn
}∞
−1 :

∞∑

n=−1

∣
∣xn

∣
∣2
<∞

}

,

�2
w =

{

x = {xn
}∞
−1 :

∞∑

n=−1

∣
∣xn

∣
∣2
wn <∞

} (2.1)

with wn > 0 for all n and the inner products

(x, y)=
∞∑

n=−1

xnyn, (x, y)=
∞∑

n=−1

xnynwn, (2.2)

respectively. If {xn}∞−1 �∈ �1 but
∑∞

n=−1 xn <∞, then we say that the sum
∑∞

n=−1 xn is con-
ditionally convergent. We associate a maximal operator, T(M), in �2

w with the linear dif-
ference expression

Mxn :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
wn

[−Δ
(
pn−1Δxn−1

)
+ qnxn

]
, n≥ 0,

− p−1

w−1
Δxn, n=−1,

(2.3)

where Δxn = xn+1− xn, the forward difference, and the coefficients {pn}∞−1 and {qn}∞−1 are
complex valued with

pn �= 0, q−1 = 0, wn > 0, ∀n=−1,0,1, . . . . (2.4)

Note that defining M by (2.3) makes the difference equation

Mxn = λxn, n= 0,1,2, . . . (λ∈ C), (2.5)

a three-term recurrence relation. The operator T(M) is defined on DT(M) into �2
w as

[
T(M)x

]

n = T(M)xn :=Mxn, n=−1,0,1, . . . , (2.6)

DT(M) :=
{

x = {xn
}∞
−1 ∈ �2

w :
∞∑

n=−1

∣
∣T(M)xn

∣
∣2
wn <∞

}

. (2.7)

The summation-by-parts formula

m∑

n=k
xnΔyn = xm+1ym+1− xk yk −

m∑

n=k
yn+1Δxn, k ≤m, k,m∈N, (2.8)
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gives rise to the equalities

m∑

n=0

xnMynwn =
m∑

n=0

qnynxn +
m∑

n=0

(
pnΔyn

)
Δxn− pmΔymxm+1 + p−1Δy−1x0 (2.9)

and, for all x, y ∈DT(M),

∞∑

n=0

(
pnΔynΔxn + qnynxn

)=
∞∑

n=0

(
xnT(M)yn

)
wn + lim

m→∞ pmΔymxm+1− p−1Δy−1x0.

(2.10)

The left-hand side of (2.10) is called the Dirichlet sum, and (2.10) is called the Dirichlet
formula. The following also holds for all x, y ∈DT(M):

∞∑

n=0

(
xnT(M)yn−ynT(M)xn

)
wn= lim

m→∞ pm
(
Δxmym+1−Δymxm+1

)−p−1
(
Δx−1y0−Δy−1x0

)
.

(2.11)

Following (2.10) we have, for x ∈DT(M),

∞∑

n=0

(
pn
∣
∣Δxn

∣
∣2

+ qn
∣
∣xn

∣
∣2)=

∞∑

n=0

(
xnT(M)xn

)
wn + lim

m→∞ pmΔxmxm+1− p−1Δx−1x0.

(2.12)

An immediate consequence of (2.11) together with (2.7) is that

lim
m→∞ pm

(
Δxmym+1−Δymxm+1

)
exists and is finite∀x, y ∈DT(M). (2.13)

Moreover, the expression in (2.13) is a constant for all m∈N when x, y are the solutions
of (2.5), which is easy to prove. We also have the following variation of parameters formula:
let φ = {φn}∞−1 and ψ = {ψn}∞−1 be linearly independent solutions of (2.5) and suppose
that [φ,ψ]n := pn[(Δφn)ψn+1− (Δψn)φn+1]= 1 for all n. Then, Φ= {Φn}∞−1 defined by

Φn =
n∑

m=0

(−ψmφn +φmψn
)
wm fm (n∈N),

Φ−1 = 0

(2.14)

satisfies

MΦn = λΦn + fn, n∈N, λ∈ C, (2.15a)

Φ−1 =Φ0 = 0. (2.15b)

Any solution of (2.15a) is of the form

Ψ=Φ+Aφ+Bψ (2.16)

for some constants A,B ∈ C.
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Definition 2.1. If there is precisely one �2
w solution (up to constant multiples) of (2.5)

for �(λ) �= 0, then the expression M is said to be in the limit-point (LP) case; otherwise
all solutions of (2.5) are in �2

w for all λ ∈ C and M is said to be in the limit-circle (LC)
case, see Atkinson [11] and Hinton and Lewis [6]. Note that in the limit-circle (LC) case,
the defect numbers are equal and the limit-point case does not hold. An alternative but
equivalent characterization of M being LP is that

lim
m→∞ pm

(
Δxmym+1−Δymxm+1

)= 0 (2.17)

or

lim
m→∞ pm

(
ymxm+1− ym+1xm

)= 0 (∗1)

for all x, y ∈DT(M), see Hinton and Lewis [6, page 425]. It may also be observed that this
condition is equivalent to saying that

lim
m→∞ pm

(
Δxmxm+1−Δxmxm+1

)= 0 (2.18)

or

lim
m→∞ pm

(
xmxm+1− xm+1xm

)= 0 (∗2)

for all x ∈ DT(M). To see that, take x = y in (∗1) to get the implication in one direction.
For the implication on the other side, take x to be the linear combination of z and y, that
is, x = z + αy in (∗2), and then choose the complex number α as α = 1 and α = i to get
(∗1).

Definition 2.2. M is said to be strong limit-point (SLP) on DT(M) if

lim
m→∞ pmΔymxm+1 = 0 ∀x, y ∈DT(M). (2.19)

Definition 2.3. M is said to be
(i) Dirichlet (D) on DT(M) if

{∣
∣pn

∣
∣1/2

Δxn
}∞
−1,

{∣
∣qn

∣
∣1/2

xn
}∞
−1 ∈ �2 ∀x ∈DT(M); (2.20)

(ii) conditional Dirichlet (CD) on DT(M) if

{∣
∣pn

∣
∣1/2

Δxn
}∞
−1 ∈ �2,

∞∑

n=0

qn
∣
∣xn

∣
∣2

is convergent∀x ∈DT(M), (2.21)

(iii) weak Dirichlet (WD) on DT(M) if

∞∑

n=0

(
pnΔxnΔyn + qnxnyn

)
is convergent∀x, y ∈DT(M). (2.22)
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Observe that (2.19) is equivalent to

lim
m→∞ pmΔxmxm+1 = 0 or lim

m→∞ pmΔxmxm+1 = 0 ∀x ∈DT(M). (2.23)

Also, by Dirichlet formula (2.10), it is seen that the WD property, (2.22), is equivalent to

lim
m→∞ pmΔymxm+1 exists and is finite ∀x, y ∈DT(M), (2.24)

and this is equivalent to

lim
m→∞ pmΔxmxm+1 exists and is finite ∀x ∈DT(M). (2.25)

Note also that in (iii), for all x, y ∈DT(M),

{∣
∣pn

∣
∣1/2

Δxn
}∞
−1 ∈ �2 ⇐⇒ {

pn
(
Δxn

)2}∞
−1 ∈ �1 ⇐⇒ {

pnΔxnΔyn
}∞
−1 ∈ �1. (2.26)

Following the above definitions and subsequent comments, we have the following.

Corollary 2.4. The following implications hold for all x, y ∈DT(M):
(a) D⇒ CD⇒WD;
(b) SLP⇒WD;
(c) SLP⇒ LP.

3. Statement of results

In this section, we would like to obtain some implications additional to Corollary 2.4 by
imposing conditions on p, q, and w which are as weak as possible. The motivation of the
problem and parts (a) and (b) of the following theorem was previously presented at the
17th National Symposium of Mathematics, Bolu, Turkey [12]. It is presented here for the
sake of completeness.

Theorem 3.1. Let p and q be complex-valued.
(a) If 1/p �∈ l1, then CD⇒ SLP on DT(M).
(b) If 1/p ∈ l1 but

∑∞
n=0 qn is not convergent, then CD⇒ SLP on DT(M).

(c) If w, 1/p, q ∈ l1, then M is both D and LC.

Proof. (a) We assume that 1/p �∈ �1 and M is CD on DT(M). Let x, y ∈ DT(M) then, by
(2.10),

α := lim
m→∞ pmΔymxm+1 <∞. (3.1)

We need to prove that α= 0 under the conditions in the hypothesis. Suppose the contrary
that α �= 0, then for some m0 ∈N,

∣
∣pmΔymxm+1

∣
∣≥ |α|

2
∀m≥m0, (3.2)

which implies that

∣
∣pmΔymΔxm

∣
∣≥ |α|

2

∣
∣
∣
∣
Δxm
xm+1

∣
∣
∣
∣ ∀m≥m0, ∀x, y ∈DT(M). (3.3)



6 Advances in Difference Equations

However, M is CD and this implies that, summing over m, the left-hand side of (3.3)
belongs to �1. Thus,

∞∑

n=−1

∣
∣
∣
∣
Δxn
xn+1

∣
∣
∣
∣ <∞, (3.4)

and hence in particular |Δxn/xn+1| → 0 as n→∞. So, as n→∞,

∣
∣
∣
∣ log

xn+1

xn

∣
∣
∣
∣=

∣
∣
∣
∣− log

(

1− Δxn
xn+1

)∣
∣
∣
∣∼

∣
∣
∣
∣
Δxn
xn+1

∣
∣
∣
∣ (3.5)

since

lim
t→0

log(1− t)
t

=−1. (3.6)

Hence,

∞∑

n=−1

∣
∣
∣
∣ log

xn+1

xn

∣
∣
∣
∣ <∞=⇒

∞∑

n=−1

log
xn+1

xn
is convergent,

lim
N→∞

N∑

n=m0

log
xn+1

xn
exists for m0 ∈N.

(3.7)

This implies that

lim
N→∞

N∑

n=m0

Δ
(

logxn
)= lim

N→∞
(

logxN+1− logxm0

)
exists. (3.8)

So,

β := lim
N→∞

xN �= 0. (3.9)

Thus, since α := limm→∞ pmΔymxm+1 <∞,

lim
m→∞ pmΔym = αβ

−1, (3.10)

and, for some m0 ∈N,

∣
∣pm

(
Δym

)2∣∣≥ 1
4

∣
∣αβ−1

∣
∣2∣∣p−1

m

∣
∣ ∀m≥m0. (3.11)

However, summing over m, the left-hand side of (3.11) belongs to �1 by the hypothesis
that M is CD. Hence, so does the right-hand side of (3.11) which is a contradiction to
saying that 1/p �∈ �1. Hence α= 0, proving M is SLP.

(b) Assume that p−1 ∈ �1 but
∑∞

n=0 qn is not convergent and M is CD. Let x ∈ DT(M)

and, as in (a) above, suppose that

α= lim
m→∞ pmxm+1Δxm �= 0. (3.12)
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Then, limm→∞ xm = β �= 0 exists and it follows that

lim
m→∞ pmΔxm = αβ

−1 �= 0=⇒ lim
m→∞Δxm = lim

m→∞αβ
−1p−1

m . (3.13)

So, since p−1 ∈ �1, we have

∞∑

m=−1

∣
∣Δxm

∣
∣ <∞, that is,

{
Δxn

}∞
−1 ∈ �1 (x ∈DT(M)

)
. (3.14)

Now, since x ∈DT(M), using Cauchy-Schwarz inequality in �2, we have

∞∑

n=−1

∣
∣xnw

1/2
n

[−Δ
(
pn−1Δxn−1

)
+ qnxn

]
w−1/2
n

∣
∣

≤
( ∞∑

n=−1

∣
∣xnw

1/2
n

∣
∣2
)1/2( ∞∑

n=−1

∣
∣
[−Δ

(
pn−1Δxn−1

)
+ qnxn

]
w−1/2
n

∣
∣2
)1/2 (3.15)

which gives

∞∑

n=−1

∣
∣xn

[−Δ
(
pn−1Δxn−1

)
+ qnxn

]∣
∣ <∞. (3.16)

Also, since limm→∞ xm = β �= 0, we have that

∞∑

n=−1

∣
∣
[−Δ

(
pn−1Δxn−1

)
+ qnxn

]∣
∣ <∞. (3.17)

Now,

∞∑

n=0

[−Δ
(
pn−1Δxn−1

)
+ qnxn

]=− lim
m→∞ pmΔxm + p−1Δx−1 +

∞∑

n=0

qnxn (3.18)

implies that

∞∑

n=0

qnxn = lim
m→∞ pmΔxm− p−1Δx−1 +

∞∑

n=0

[−Δ
(
pn−1Δxn−1

)
+ qnxn

]
, (3.19)

which proves the convergence of the sum
∑∞

n=0 qnxn. Since β = limm→∞ xm �= 0, then xm �=
0 for all large m ∈ N. On the other hand, using summation-by-parts formula and sup-
posing k ∈N is such that xn �= 0 for all n≥ k, we have

m∑

n=k
qn =

m∑

n=k

1
xn

(
qnxn

)= 1
xm+1

m∑

s=k−1

qsxs− 1
xk

k−1∑

s=k−1

qsxs−
m∑

n=k

( n∑

s=k−1

qsxs

)

Δ
(

1
xn

)

=
∑m

n=k−1 qnxn
xm+1

− qk−1xk−1

xk
+

m∑

n=k

( n∑

s=k−1

qsxs

)(
Δxn
xn+1xn

)

.

(3.20)
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As m→∞, we see that the right-hand side of (3.20) tends to a finite limit since
∑∞

n=0 qnxn
is convergent and limn→∞ xn = β �= 0, which contradicts the hypothesis that

∑∞
n=0 qn is

divergent. This proves α= 0 which guarantees that M is SLP.
(c) If 1/p, w, q ∈ �1, then M is LC and D. For the proof, we need the matrix represen-

tation of (2.5); for n≥ 0, we have the recurrence relation

pn
(
xn+1− xn

)= (− λwn + qn
)
xn + pn−1

(
xn− xn−1

)
, (3.21)

which is equivalent to (2.5). So, taking

Xn =
(
xn

yn

)

, An =

⎛

⎜
⎜
⎜
⎜
⎝

0
1

pn−1

(− λwn + qn
) −λwn + qn

pn−1

⎞

⎟
⎟
⎟
⎟
⎠

, (3.22)

we get

Xn =
(
I +An

)
Xn−1, n= 0,1,2, . . . , (3.23)

where I is the identity matrix and

xn = xn−1 +
yn−1

pn−1

yn =
(

xn−1 +
yn−1

pn−1

)
(− λwn + qn

)
+ yn−1.

(3.24)

We are going to give the proof for the LC and D cases separately.

(i) The LC case. We prove that, for some λ, say λ = 0, for all solutions of (3.21),
∑∞

n=−1 |xn|2wn <∞ holds. Moreover, since
∑∞

n=−1wn <∞, it is sufficient to prove that
all solutions of (3.21), with λ = 0, are bounded. For this purpose, we make use of the
following theorem due to Atkinson [11, page 447].

Theorem 3.2 (Atkinson). Let the sequence of k-by-k matrices,

An, n= 0,1,2,3, . . . ; An =
(
anrs

)
, r,s= 1,2,3, . . . ,k, (3.25)

satisfy

∞∑

n=0

∣
∣An

∣
∣ <∞,

∣
∣An

∣
∣ :=

k∑

r=1

k∑

s=1

∣
∣anrs

∣
∣. (3.26)

Then, the solutions of the recurrence relation

Xn−Xn−1 =An−1Xn−1, n= 0,1,2, . . . , (3.27)

where Xn is a k-vector, converge as n→∞. If in addition the matrices I +An are all nonsin-
gular, then limn→∞Xn �= 0, unless all the Xn are zero vectors.
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So, applying this theorem to our case, {Xn}∞0 is convergent, that is, the entries of Xn,

{
Xn1

}∞
0 =

{
xn
}∞

0 ,
{
Xn2

}∞
0 =

{
yn
}∞

0 =
{
pnΔxn

}∞
0 , (3.28)

are convergent, so they are bounded and hence (i) of condition (c) is proved.

(ii) The D case. We will state the proof for λ = 0 only, but the proof also applies to all
λ∈ C. Let x ∈DT(M) and define f = { fn}∞−1 by

fn =Mxn. (3.29)

Then
∑∞

n=−1 | fn|2wn <∞. Also, by the variation of parameters formula, if ϕ= {ϕn}∞−1 and
ψ = {ψn}∞−1 are linearly independent solutions of (2.5) with

[ϕ,ψ]n := pn−1
(
ϕnΔψn−1−ψnΔϕn−1

)= 1 ∀n∈N, (3.30)

then any solution of

Mxn = λxn + fn (3.31)

is of the form

xn =Φn +Aϕn +Bψn (3.32)

in which A and B are constants, and

Φn =
n∑

m=0

(
ψmϕn−ϕmψn

)
wm fm, n∈N, Φ−1 = 0. (3.33)

Since {ϕ}∞−1 and {ψ}∞−1 are bounded by case (i) of condition (c), using also Cauchy-
Schwarz inequality in �2, it follows that

∣
∣Φn

∣
∣≤ C

n∑

m=0

wm

∣
∣ fm

∣
∣, (3.34)

where C is a positive constant. Hence, Φ is bounded. This implies that {xn}∞−1 is bounded
from the fact that {Aϕn +Bψn}∞−1 and {Φn}∞−1 are bounded in (3.32). So, since q ∈ �1 and
following the above result,

∞∑

n=0

∣
∣qn

∣
∣
∣
∣xn

∣
∣2
<∞. (3.35)

We also need to prove that
∑∞

n=0 |pn||Δxn|2 <∞. For, from (3.32),

pnΔxn = pnΔΦn + pnΔ
(
Aϕn +Bψn

)
,

pnΔΦn =
n∑

m=0

[
ψm
(
pnΔϕn

)−ϕm
(
pnΔψn

)]
wm fm;

(3.36)
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and since {pnΔϕn}∞−1, {pnΔψn}∞−1, {ϕn}∞−1, and {ψn}∞−1 are bounded by the theorem of
Atkinson, {pnΔΦn}∞−1 is also bounded, and so is {pnΔxn}∞−1. By the hypothesis that p−1 ∈
�1, we obtain

∞∑

n=0

∣
∣pn

∣
∣
∣
∣Δxn

∣
∣2 =

∞∑

n=0

(∣
∣pn

∣
∣
∣
∣Δxn

∣
∣
)2

∣
∣pn

∣
∣

<∞. (3.37)

Hence, M is D and the proof of Theorem 3.1 is complete. �

Corollary 3.3. (1) Following the Dirichlet formula, (2.23), and Theorem 3.1(a)-(b), it
may be deduced that if either p−1 �∈ �1 or p−1 ∈ �1 but

∑∞
n=0 qn is not convergent, then CD

implies that the sum
∑∞

n=0(pn|Δxn|2 + qn|xn|2) is convergent for all x ∈ DT(M). (2) Under
the conditions of Theorem 3.1(a)-(b), D⇒ CD⇒ SLP⇒ LP on DT(M).

Remarks 3.4. (1) When w, p−1,q ∈ �1, it is proved by Atkinson [11, page 134] that M is
LC. We have additionally proved that M is also D. (2) The condition imposed on q in
Theorem 3.1(a) is in general weaker than q �∈ �1. Indeed, in Example 3.5, we prove that
q �∈ �1 is not sufficient to ensure that CD⇒ SLP.

Example 3.5. In this example, we want to establish an expression M of the form (2.3)
such that

∑∞
n=0 qn is conditionally convergent and w,1/p ∈ �1 while M is CD and LC,

hence not SLP, at the same time. This proves that q �∈ �1 is not sufficient to ensure that the
implication CD⇒ SLP. This example is a direct analogue of the example given in Kwong
[7, page 332]. Let

∑∞
n=0 rn be a conditionally convergent real series. Choose a constant C1

so that the sequence

{
Rn
}∞

0 =
{ n∑

k=0

rk

}∞

0

+C1 (3.38)

be positive, that is, Rn > 0 for all, n= 0,1,2, . . . . Then {Rn}∞0 is bounded, for pn > 0 n∈N
and given that C2 > 0, the sequence

{
xn
}∞

0 =
{ n∑

k=0

Rk−1

pk−1

}∞

0

+C2, R−1 = 0, pn−1 > 0∀n∈N, x−1 ≥ x0 (3.39)

is also positive. Note that {xn}∞−1 is monotonic increasing, that is, xn+1 ≥ xn for all n, from
the fact that xn are the sum of positive numbers. Now,

X = lim
n→∞xn exists (3.40)

since {Rn}∞−1 is bounded and p−1 = {p−1
n }∞−1 ∈ �1. Moreover, x ∈ �2

w since w ∈ �1 and
{xn}∞−1 is bounded. We see that if {qn}∞−1 is given by

qn = rn
xn

, n≥ 0, q−1 = 0, (3.41)
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then {xn}∞−1 is a solution of (2.5) with λ= 0. Note that, in

∣
∣qn

∣
∣=

∣
∣rn

∣
∣

xn
≥
∣
∣rn

∣
∣

X
∀n, (3.42)

summing over n, we have {qn}∞−1 �∈ �1 from the fact that
∑∞

0 rn is conditionally conver-
gent. Now, summation-by-parts formula gives, for all N ∈N,

N∑

n=0

qn =
N∑

n=0

rn
xn
= RN
xN
−

N−1∑

n=−1

Rn
xn+1

+
N−1∑

n=−1

Rn
xn
. (3.43)

For the first expression on the right-hand side, the limits limn→∞Rn and limn→∞ xn ex-
ist and X = limn→∞ xn > 0. For the sums on the right, since

∑∞
n=0Rn is convergent and

{1/xn}∞−1 is positive and decreasing, both
∑N

n=−1(Rn/xn+1) and
∑N

n=−1(Rn/xn) are conver-
gent, and therefore

∑∞
n=0 qn is convergent. Now, let {yn}∞−1 be another solution of (2.5)

together with (3.41) complementary to {xn}∞−1, that is, such that [x, y]n := pn−1(ynxn−1−
yn−1xn) is constant, or equivalently, [x, y]n = 1. Then,

Δ
(
yn−1

xn−1

)

= 1
pn−1xnxn−1

=⇒ yn = xn
n∑

k=0

1
pk−1xkxk−1

. (3.44)

So, since {yn}∞−1 is bounded and increasing,

lim
n→∞ yn exists. (3.45)

We note that
∑∞

k=0(1/pk−1xkxk−1) is absolutely convergent since {xn}∞−1 is bounded and
p−1 ∈ �1. So, y ∈ �2

w since w ∈ �1. We also see that Myn = 0. Hence, we have shown that
M is LC, and hence not SLP since x, y ∈ �2

w and x, y are linearly independent solutions of
Mxn = λxn, λ ∈ C. We now show that M is CD. Since, from the identity (2.12), the CD
property is equivalent to

(a) {pn|Δzn|2}∞−1 ∈ �1,
(b) limn→∞ pnΔznzn+1 exists∀z ∈DT(M),

and we will show both (a) and (b) above. So, let z ∈DT(M). Then,

{
T(M)zn

}∞
−1 =

{
Mzn

}∞
−1 =

{
fn
}∞
−1 ∈ �2

w, w ∈ �1. (3.46)

The method of variation of parameters gives

zn =Axn +Byn +
n∑

m=0

(
xnym− ynxm

)
fmwm

(
z−1 = 0, n∈N), (3.47)

whereA and B are constants. Note that limn→∞
∑n

m=0(xnym− ynxm) fmwm <∞, (3.40) and
(3.45) together imply that

lim
n→∞zn exists. (3.48)
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We see that {p1/2
n Δxn}∞−1, {p1/2

n Δyn}∞−1 ∈ �2 since {Rn}∞0 is bounded and {p−1
n }∞−1 ∈ �1.

Also, using the Cauchy-Schwarz inequality in �2,n, we see that, for all n∈N,

n∑

m=0

[
ym
(
p1/2
n Δxn

)− xm
(
p1/2
n Δyn

)]
fmwm ≤ C

p1/2
n

( n∑

m=0

wm

)1/2( n∑

m=0

wm

∣
∣ fm

∣
∣2
)1/2

,

(3.49)

where C is a constant. Hence,

{
p1/2
n Δzn

}∞
−1 ∈ �2. (3.50)

Finally,
(i) limn→∞ pnΔxn = limn→∞Rn <∞,

(ii) limn→∞ pnΔyn = limn→∞ [1/xn + (pnΔxn)
∑n

k=0(1/pk−1xkxk−1)] <∞ since the lim-
its limn→∞ 1/xn and limn→∞ pnΔxn exist and

∑∞
k=0(1/pk−1xkxk−1) is absolutely con-

vergent,
(iii) For K <∞,

lim
n→∞

∣
∣
∣
∣
∣
pnΔxn

n∑

m=0

ym
(
wm fm

)
∣
∣
∣
∣
∣
≤ K lim

n→∞

( n∑

m=0

wm

)1/2( n∑

m=0

wm

∣
∣ fm

∣
∣2
)1/2

<∞, (3.51)

(iv) limn→∞ |pnΔyn
∑n

m=0 xm(wm fm)| ≤ C limn→∞ |pnΔyn
∑n

m=0wm fm| <∞.
A consequence of (i), (ii), (iii), and (iv) is that limn→∞ pnΔzn exists. We know also that
limn→∞ zn exists from (3.48). Therefore,

lim
n→∞ pnΔznzn+1 exists. (3.52)

It is a consequence of (3.50) and (3.52) thatM isCD. This completes the desired example.

Theorem 3.6. Suppose that pn > 0 for all n, although {qn}∞−1 may still be complex. If either
{wm

∑m
n=−1 p

−1
n }∞m=−1 /∈ �1 or {qn}∞−1 /∈ �1, then

M is D on DT(M) ⇐⇒
{∣
∣qn

∣
∣1/2

xn
}∞
−1 ∈ �2, x ∈DT(M). (3.53)

Proof. Since M is D on DT(M) ⇒ {|qn|1/2xn}∞−1 ∈ �2 for all x ∈ DT(M), we only need to
prove the other implication. So, suppose that {|qn|1/2xn}∞−1 ∈ �2 for all x ∈DT(M). In the
formula

m∑

n=0

pn
∣
∣Δxn

∣
∣2 = pmΔxmxm+1− p−1Δx−1x0 +

m∑

n=0

xnMxn−
m∑

n=0

qn
∣
∣xn

∣
∣2

, (3.54)

the sums on the right converge as m→∞. Thus, we see that {p1/2
n |Δxn|}∞−1 /∈ �2 only if

limm→∞ pmΔxmxm+1 =∞. But,

pm
∣
∣Δxmxm+1

∣
∣≤ pm

∣
∣Δxm

∣
∣
(∣
∣xm+1

∣
∣+

∣
∣xm

∣
∣
)≤ pmΔ

(∣
∣xm

∣
∣2)

, (3.55)
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and hence

lim
m→∞ pmΔ

(∣
∣xm

∣
∣2)=∞. (3.56)

This implies, since pm > 0 for all m∈N, that {|xn|2}∞−1 is monotonic increasing, that is,
Δ|xn|2 ≥ 0 for all large n. We now have two cases: either {qn}∞−1 /∈ �1 or {qn}∞−1 ∈ �1. If
{qn}∞−1 /∈ �1, then we get a contradiction to the assumption since this would imply that
{|qn|1/2xn}∞−1 /∈ �1. So, {qn}∞−1 must be in �1. Then, Δ(|xn|2) > p−1

n since, from (3.56),
pnΔ(|xn|2) > 1 for large enough n∈N. This implies, for some m0 ∈N, that

∣
∣xm

∣
∣2 ≥ ∣∣xm

∣
∣2−∣∣xm0−1

∣
∣2
>

m∑

n=m0

p−1
n−1 m∈N, m>m0. (3.57)

So,

∞ >
∞∑

n=m0

wn

∣
∣xn

∣
∣2
>

∞∑

n=m0

wn

( n∑

k=m0

p−1
k−1

)

, (3.58)

which is a contradiction to the assumption that {wm
∑m

n=−1 p
−1
n }∞m=−1 /∈ �1, and hence

{p1/2
n |Δxn|}∞−1 is in �2, and M is D on DT(M) and the theorem is therefore proved. �

Remarks 3.7. (1) w /∈ �1 is a sufficient condition for Theorem 3.6 to hold. But, if w ∈ �1,
then the condition on p and w, that is,

{

wm

m∑

n=−1

p−1
n

}∞

m=−1

/∈ �1, (3.59)

is in general stronger than the requirement that p−1 /∈ �1.
(2) If w ∈ �1, then, for any m∈N∪{−1},

m∑

n=−1

wn

( n∑

k=−1

p−1
k

)

=
m∑

n=−1

p−1
n

( m∑

k=n
wk

)

, n <m. (3.60)

This follows by using the summation-by-parts formula. As m→∞, we see that the con-
dition in Theorem 3.6 is equivalent to the condition that

{

p−1
n

∞∑

k=n
wk

}∞

n=−1

/∈ �1 when w ∈ �1. (3.61)

For example, if m<∞ and w = 1, this condition becomes

∞∑

n=−1

p−1
n (m−n)=∞. (3.62)

Theorem 3.8. Suppose that pn > 0 for all n, w/p �∈ �1, and
{
wn/wn+1

}∞
−1 is bounded above.

Then, M is SLP on DT(M) if and only if M is WD on DT(M).
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Proof. Since SLP always implies WD by Corollary 2.4, we only need to prove that WD⇒
SLP under the conditions in the hypothesis. So, suppose thatM satisfies theWD property,
that is, β = limm→∞ pnΔxnxn+1 exists and is finite for all x ∈DT(M), but M is not SLP, that
is, β �= 0. We show that β �= 0 leads to a contradiction under the hypothesis, and hence M
is SLP. So, suppose that

β = lim
m→∞ pmΔxmxm+1 �= 0 ∀x ∈DT(M). (3.63)

Now, multiplying both sides of the following by β and wm, and summing over m:

xm+1Δxm = x2
m+1− xmxm+1, (3.64)

we have

∞∑

m=0

(
βpmΔxmxm+1

)
wmp

−1
m

= β
{ ∞∑

m=0

wm+1x
2
m+1

(
wm

wm+1

)

−
∞∑

m=0

(
wmwm+1

)1/2
xmxm+1

(
wm

wm+1

)1/2
}

.

(3.65)

Under the conditions of the hypothesis, the left-hand side of this equality is ∞ while the
right-hand side is finite. This contradiction leads us to say that β = 0 and M is SLP on
DT(M). Hence the theorem is proved. �

Remark 3.9. As a final remark, Theorem 3.1(c) demonstrates that when w, p−1,q ∈ �1

WD does not imply SLP or even LP. Thus, for the equivalency of WD and SLP, the
hypothesis of Theorem 3.8 is needed. For example, when w = 1, the requirements for the
result SLP ⇐⇒ WD become

∑∞
n=−1 p

−1
n =∞.
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