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We offer criteria for the existence of positive solutions for two-point right focal eigenvalue
problems (−1)n−p yΔ

n
(t) = λ f (t, y(σn−1(t)), yΔ(σn−2(t)), . . . , yΔ

p−1
(σn−p(t))), t ∈ [0,1]∩

T, yΔ
i
(0)= 0, 0≤ i≤ p− 1, yΔ

i
(σ(1))= 0, p ≤ i≤ n− 1, where λ > 0, n≥ 2,1≤ p ≤ n− 1

are fixed and T is a time scale.
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1. Introduction

In this paper, we present results governing the existence of positive solutions to the dif-
ferential equation on time scales of the form

(−1)n−p yΔ
n

(t)= λ f
(
t, y
(
σn−1(t)

)
, . . . , yΔ

p−1(
σn−p(t)

))
, t ∈ [0,1]∩T (1.1)

subject to the two-point right focal boundary conditions

yΔ
i

(0)= 0, 0≤ i≤ p− 1,

yΔ
i(
σ(1)

)= 0, p ≤ i≤ n− 1,
(1.2)

where λ > 0, p, n are fixed integers satisfying n≥ 2, 1≤ p ≤ n− 1, 0,1∈ T, with 0 < σ(1)
and ρ(σ(1))= 1 and f : [0,1]×Rp→R is continuous.

We say that y(t) is a positive solution of BVP (1.1), (1.2) if y(t)∈ Cn
rd[0,1] is a solution

of BVP (1.1), (1.2) and yΔ
i
(t) > 0, t ∈ (0,σn−i(1)), i= 0,1, . . . , p− 1. If, for a particular λ,
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BVP (1.1), (1.2) has a positive solution y, then λ is called an eigenvalue and y a corre-
sponding eigenfunction of BVP (1.1), (1.2). We let

E = {λ > 0 : BVP (1.1), (1.2) has at least one positive solution
}

(1.3)

be the set of eigenvalues of BVP (1.1), (1.2).
To understand the notations used in BVP (1.1), (1.2), we recall some standard defini-

tions as follows. The reader may refer to [1] for an introduction to the subject.
(a) Let T be a time scale, that is, T is a closed subset of R. We assume that T has the

topology that it inherits from the standard topology on R. Throughout, for any
a,b (> a), the interval [a,b] is defined as [a,b] = {t ∈ T | a ≤ t ≤ b}. Analogous
notations for open and half-open intervals will also be used in the paper. We also
use the notation R[c,d] to denote the real interval {t ∈R | c ≤ t ≤ d}.

(b) For t < supT and s > inf T, the forward jump operator σ and the backward jump
operator ρ are, respectively, defined by

σ(t)= inf
{
τ ∈ T | τ > t

}∈ T, ρ(s)= sup
{
τ ∈ T | τ < s

}∈ T. (1.4)

We define σn(t)= σ(σn−1(t)) with σ0(t)= t. Similar definition is used for ρn(s).
(c) Fix t ∈ T. Let y : T→R. We define yΔ(t) to be the number (if it exists) with the

property that given ε > 0, there is a neighborhood U of t such that for all s∈U ,

∣
∣[y

(
σ(t)

)− y(s)
]− yΔ(t)

[
σ(t)− s

]∣∣ < ε
∣
∣σ(t)− s

∣
∣. (1.5)

We call yΔ(t) the delta derivative of y(t). Define yΔ
n
(t) to be the delta derivative

of yΔ
n−1

(t), that is, yΔ
n
(t)= (yΔ

n−1
(t))Δ.

(d) If FΔ(t)= f (t), then we define the integral

∫ t

a
f (τ)Δτ = F(t)−F(a). (1.6)

(e) If σ(t) > t, then call the point t right-scattered; while if ρ(t) < t, then say t is left-
scattered. If σ(t)= t, then call the point t right-dense; while if ρ(t)= t, then say t
is left-dense.

Focal boundary value problems have attracted a lot of attention in the recent literature,
see [2–7]. Recently, many papers have discussed the existence of nonnegative solution of
right focal boundary value problem on time scales, see [8–12]. Motivated by the works
mentioned above, the purpose of this article is to present results which guarantee the
existence of one or more positive solutions to BVP (1.1), (1.2).

The paper is outlined as follows. In Section 2, we will present some lemmas and defini-
tions which will be used later. In Section 3, by using Krasnoselskii’s fixed-point theorem
in a cone, we offer criteria for the existence of positive solution of BVP (1.1), (1.2).
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2. Preliminary

Definition 2.1 [9]. (1) Define the function hk : T×T→R, k ∈ 0,1, . . . , recursively as

h0(t,s)= 1 ∀s, t ∈ T,

hk+1(t,s)=
∫ t

s
hk(τ,s)Δτ ∀s, t ∈ T, k = 0,1, . . . .

(2.1)

(2) Define the function gk : T×T→R, k ∈ 0,1, . . . , recursively as

g0(t,s)= 1 ∀s, t ∈ T,

gk+1(t,s)=
∫ t

s
gk
(
σ(τ),s

)
Δτ ∀s, t ∈ T, k = 0,1, . . . .

(2.2)

(3) Let ti, 1 ≤ i ≤ n, such that 0 = t1 = ··· = tp < tp+1 = ··· = tn = σ(1). Define Ti :
[0,1]→R, 0≤ i≤ n− 1 as

T0(t)≡ 1,

Ti(t)= Ti
(
t : t1, . . . , ti

)= ∫ tt1
∫ τ1

t2 ···
∫ τi−1

ti Δτi ···Δτ2Δτ1, 1≤ i≤ n− 1.
(2.3)

Lemma 2.2 [1]. For nonnegative integer n,

hn(t,s)= (−1)ngn(s, t), t ∈ T , s∈ Tkn , (2.4)

where

Tk =
⎧
⎨

⎩
T , if T is unbounded above,

T \ (ρ(maxT),maxT
]
, otherwise,

(2.5)

and Tkn = (Tkn−1
)k. Further, the functions satisfy the inequalities

hn(t,s)≥ 0, gn(t,s)≥ 0 ∀t ≥ s. (2.6)

Lemma 2.3 [9]. Green’s function of the boundary value problem

(−1)n−p yΔ
n

(t)= 0, t ∈ [0,1],

yΔ
i

(0)= 0, 0≤ i≤ p− 1,

yΔ
i(
σ(1)

)= 0, p ≤ i≤ n− 1,

(2.7)

may be expressed as

K(t,s)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−p
p−1∑

i=0

Ti(t)hn−1−i
(
0,σ(s)

)
+ (−1)n−p+1hn−1

(
t,σ(s)

)
, t ≤ σ(s),

(−1)n−p
p−1∑

i=0

Ti(t)hn−1−i
(
0,σ(s)

)
, t ≥ σ(s),

(2.8)

where t ∈ [0,σn(1)] and s∈ [0,1].
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Lemma 2.4. Let k(t,s) be Green’s function of the equation

(−1)n−p yΔ
n−p+1

(t)= 0, t ∈ [0,σn−p+1(1)
]

(2.9)

subject to the boundary conditions

yΔ
i

(0)= 0, 0≤ i≤ p− 1,

yΔ
i(
σ(1)

)= 0, p ≤ i≤ n− 1.
(2.10)

Then

L(t)·gn−p
(
σ(s),0)≤ k(t,s)≤ gn−p

(
σ(s),0

)
, (t,s)∈ [0,σn−p+1(1)

]× [0,1], (2.11)

where

L(t)= t

σn−p+1(1)
≤ 1, t ∈ [0,σn−p+1(1)

]
. (2.12)

Proof. It is clear that

k(t,s)= KΔ
p−1
t (t,s)

=
⎧
⎪⎨

⎪⎩

(−1)n−p
(
hn−p

(
0,σ(s)

)−hn−p
(
t,σ(s)

))
, t ≤ σ(s),

(−1)n−phn−p
(
0,σ(s)

)
, t ≥ σ(s),

=
⎧
⎪⎨

⎪⎩

gn−p
(
σ(s),0

)− gn−p
(
σ(s), t

))
, t ≤ σ(s),

gn−p
(
σ(s),0

)
, t ≥ σ(s),

(2.13)

where t ∈ [0,σn−p+1(1)] and s∈ [0,1].
Obviously,

L(t)gn−p
(
σ(s),0

)≤ gn−p
(
σ(s),0

)
, t ≥ σ(s). (2.14)

Next, we will prove by induction that for k = 1,2, . . . , and t ≤ σ(s),

L(t)gk
(
σ(s),0

)≤ gk
(
σ(s),0

)− gk
(
σ(s), t

)≤ gk
(
σ(s),0

)
. (2.15)

For k = 1, we have

g1
(
σ(s),0

)− g1
(
σ(s), t

)= σ(s)− (σ(s)− t
)

= t ≥ t

σn−p+1(1)
·σ(s)= L(t)g1

(
σ(s),0

)
.

(2.16)

We now assume that (2.15) holds for some n≥ 1.
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Let k = n+ 1. We can obtain that for σ(s)≥ t,

gn+1
(
σ(s),0

)≥ gn+1
(
σ(s),0

)− gn+1
(
σ(s), t

)

=
∫ σ(s)

0
gn
(
σ(τ),0

)
Δτ −

∫ σ(s)

t
gn
(
σ(τ), t

)
Δτ

=
∫ t

0
gn
(
σ(τ),0

)
Δτ +

∫ σ(s)

t

[
gn
(
σ(τ),0

)− gn
(
σ(τ), t

)]
Δτ

≥
∫ t

0
L(t)gn

(
σ(τ),0

)
Δτ +

∫ σ(s)

t
L(t)gn

(
σ(τ),0

)
Δτ

= L(t)
∫ σ(s)

0
gn
(
σ(τ),0

)
Δτ = L(t)gn+1

(
σ(s),0

)
.

(2.17)

Thus, (2.15) holds by induction. Therefore, from (2.14) and (2.15), we get

L(t)gn−p
(
σ(s),0

)≤ k(t,s)≤ gn−p
(
σ(s),0

)
(2.18)

on [0,σn−p+1(1)]× [0,1]. �

Lemma 2.5. Let w(t) be the solution of BVP:

(−1)(n−p)uΔ
n

(t)= 1, t ∈ [0,1],

uΔ
i

(0)= 0, 0≤ i≤ p− 1,

uΔ
i(
σ(1)

)= 0, p ≤ i≤ n− 1.

(2.19)

Then

0≤wΔi

(t)≤ gn−p
(
σ(1),0

)
hp−i(t,0), t ∈ [0,σn−i(1)

]
, 0≤ i≤ p− 1. (2.20)

Proof. For σ(s)≤ t,

gn−p
(
σ(s),0

)= (−1)n−phn−p
(
0,σ(s)

)=−
∫ 0

σ(s)
(−1)n−p−1hn−p−1

(
τ,σ(s)

)
Δτ

=
∫ σ(s)

0
(−1)n−p−1hn−p−1

(
τ,σ(s)

)
Δτ

=
∫ σ(s)

0
gn−p−1

(
σ(s),τ

)
Δτ (by Lemma 2.2)

≤ gn−p−1
(
σ(s),0

)
∫ t

0
Δτ = gn−p−1

(
σ(s),0

)
h1(t,0).

(2.21)
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For t ≤ σ(s),

gn−p
(
σ(s),0

)− gn−p
(
σ(s), t

)

= (−1)n−phn−p
(
0,σ(s)

)− (−1)n−phn−p
(
t,σ(s)

)

=
∫ σ(s)

0
(−1)n−p−1hn−p−1

(
τ,σ(s)

)
Δτ −

∫ σ(s)

t
(−1)n−p−1hn−p−1

(
τ,σ(s)

)
Δτ

=
∫ t

0
(−1)n−p−1hn−p−1

(
τ,σ(s)

)
Δτ =

∫ t

0
gn−p−1

(
σ(s),τ

)
Δτ (by Lemma 2.2)

≤ gn−p−1
(
σ(s),0

)
∫ t

0
Δτ = gn−p−1

(
σ(s),0

)
h1(t,0).

(2.22)

Hence,

0≤ k(t,s)≤ gn−p−1
(
σ(s),0

)
h1(t,0), (t,s)∈ [0,σn−p+1(1)

]× [0,1]. (2.23)

By defining w(t) as w(t)= ∫ σ(1)
0 K(t,s)Δs, t ∈ [0,σn(1)], it is clear that

wΔp−1
(t)=

∫ σ(1)

0
k(t,s)Δs, t ∈ [0,σn−p+1(1)

]
. (2.24)

Then

0≤wΔp−1
(t)=

∫ σ(1)

0
k(t,s)Δs≤

∫ σ(1)

0

[
gn−p−1

(
σ(s),0

)
h1(t,0)

]
Δs

= gn−p
(
σ(1),0

)
h1(t,0).

(2.25)

Further, since wΔi
(0)= 0, 0≤ i≤ p− 1, we get

0≤wΔi

(t)≤ gn−p
(
σ(1),0

)
hp−i(t,0), t ∈ [0,σn−i(1)

]
, 0≤ i≤ p− 1. (2.26)

�

Lemma 2.6 [13]. Let E be a Banach space, and let C ⊂ E be a cone in E. Assume that Ω1, Ω2

are open subsets of E with 0∈Ω1 ⊂Ω1 ⊂Ω2, and let T : C∩ (Ω2 \Ω1)→C be a completely
continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u∈ C∩ ∂Ω1; ‖Tu‖ ≥ ‖u‖, u∈ C∩ ∂Ω2; or
(ii) ‖Tu‖ ≥ ‖u‖, u∈ C∩ ∂Ω1; ‖Tu‖ ≤ ‖u‖, u∈ C∩ ∂Ω2.

Then, T has a fixed point in C∩ (Ω2 \Ω1).

3. Main results

In this section, by using Lemma 2.6, we offer criteria for the existence of positive solution
of BVP (1.1), (1.2).

To begin, we will list the conditions that are needed later as follows. In these conditions,
f (t,u1,u2, . . . ,up) is a continuous function such that f : [0,1]×R[0,∞)p→R[0,∞).

(A1) There exists constant ε ∈ (0,1) such that

lim
u1,u2,...,up→∞

min
t∈[ε,1]

f
(
t,u1,u2, . . . ,up

)

up
=∞. (3.1)
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(A2) There exists constant a > 0 such that

lim
up→0+

min
(t,u1,u2,...,up−1)∈[0,1]×R[0,a]p−1

f
(
t,u1,u2, . . . ,up

)

up
=∞. (3.2)

(A3) f (t,u1,u2, . . . ,up) is nondecreasing in uj for each fixed (t,u1,u2, . . . ,uj−1,uj+1,
. . . ,up)

Definition 3.1. Define f ∈ Crd(T : R) to be right-dense continuous if for all t ∈ T,
lim s→t+ f (s) = f (t) at every right-dense point t ∈ T, lim s→t− f (s) exists and is finite at
every left-dense point t ∈ T.

Let Cn
rd([0,1]) denote the space of functions:

Cn
rd

(
[0,1]

)= {y : y ∈ C
([

0,σn(1)
])

, . . . , yΔ
n−1 ∈ C

([
0,σ(1)

])
, yΔ

n ∈ Crd
(
[0,1]

)}
.
(3.3)

Let B = {y ∈ Cn
rd([0,1]) : yΔ

i
(0) = 0, 0 ≤ i ≤ p− 2} be a Banach space with the norm

‖y‖ = sup t∈[0,σn−p+1(1)]|yΔ
p−1

(t)|, and let

C = {y ∈ B : yΔ
p−1

(t)≥ L(t)‖y‖, t ∈ [0,σn−p+1(1)
]}

, (3.4)

where L(t) is given in Lemma 2.4.
It is obvious that C is a cone in B. From yΔ

i
(0)= 0, 0≤ i≤ p− 2, it follows that for all

y ∈ C,

hp−i(t,0)

σn−p+1(1)
·‖y‖ ≤ yΔ

i

(t)≤ δ‖y‖ , i= 1,2, . . . , p− 1, (3.5)

where

δ := [σn(1)
]p−1

. (3.6)

Remark 3.2. If u,v ∈ C and uΔ
p−1

(t) ≥ vΔ
p−1

(t), t ∈ [0,σn−p+1(1)], it follows from
uΔ

i
(0)= vΔ

i
(0)= 0, 0≤ i≤ p− 2 that uΔ

i
(t)≥ vΔ

i
(t), t ∈ [0,σn−i(1)], 0≤ i≤ p− 1.

Let the operator S : C→B be defined by

(Sy)(t)= λ
∫ σ(1)

0
K(t,s) f

(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs, t ∈ [0,σn(1)

]
,

(Sy)Δ
p−1

(t)=λ
∫ σ(1)

0
k(t,s) f

(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs, t∈[0,σn−p+1(1)

]
.

(3.7)

To obtain a positive solution of BVP (1.1), (1.2), we seek a fixed point of the operator
S in the cone C.

Lemma 3.3. The operator S maps C into C.
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Proof. From Lemma 2.4, we know that for t ∈ [0,σn−p+1(1)],

(Sy)Δ
p−1

(t)= λ
∫ σ(1)

0
k(t,s) f

(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs

≤ λ
∫ σ(1)

0
gn−p

(
σ(s),0

)
f
(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs.

(3.8)

So

‖Sy‖ ≤ λ
∫ σ(1)

0
gn−p

(
σ(s),0

)
f
(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs, t ∈ [0,σn−p+1(1)

]
.

(3.9)

From Lemma 2.4 again, it follows that for t ∈ [0,σn−p+1(1)],

(Sy)Δ
p−1

(t)= λ
∫ σ(1)

0
k(t,s) f

(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1
(σn−p(s)

))
Δs

≥ λ
∫ σ(1)

0
L(t)gn−p

(
σ(s),0

)
f
(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs

≥ L(t)‖Sy‖.

(3.10)

Hence, S maps C into C. �

Lemma 3.4. The operator S : C→C is completely continuous.

Proof. First we will prove that the operator S is continuous. Let {ym}, y ∈ C be such that
limm→∞‖ym− y‖ = 0. From yΔ

i
(0)= 0, i= 0,1, . . . , p− 2, we have

sup
t∈[0,σn−i(1)]

∣
∣yΔ

i

m − yΔ
i∣∣−→ 0, i= 0,1, . . . , p− 1. (3.11)

Then, it is easy to see that

ρm = sup
s∈[0,1]

∣
∣ f
(
s, ym

(
σn−1(s)

)
, . . . , yΔ

p−1

m

(
σn−p(s)

))

− f
(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))∣∣−→ 0 as m−→∞.
(3.12)

Hence, we get from Lemma 2.4 that for t ∈ [0,σn−p+1(1)],

∣
∣
∣
(
Sym

)Δp−1

(t)− (Sy)Δ
p−1

(t)
∣
∣
∣

=
∣
∣
∣
∣λ
∫ σ(1)

0
k(t,s)

[
f
(
s, ym

(
σn−1(s)

)
, . . . , yΔ

p−1

m

(
σn−p(s)

))

− f
(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))]
Δs
∣
∣
∣
∣

≤ λρm

∫ σ(1)

0
k(t,s)Δs≤ λρm

∫ σ(1)

0
gn−p

(
σ(s),0

)
Δs−→ 0

(3.13)

as m→∞. This shows that S : C→C is continuous.
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Next, to show complete continuity, we will apply Arzela-Ascoli theorem. Let Ω be a
bounded subset of C and let y ∈Ω. Now there exists L > 0 such that for all y ∈Ω,

sup
∣
∣yΔ

p−1∣∣≤ L, sup
∣
∣yΔ

i∣∣≤ δL, i= 0,1, . . . , p− 2, (3.14)

where δ is given in (3.6). Let

M = sup
(s,u1,u2,...,up)∈[0,1]×R[0,δL]p−1×R[0,L]

∣
∣ f
(
s,u1,u2, . . . ,up

)∣∣. (3.15)

Clearly, we have for t ∈ [0,σn(1)],

∣
∣(Sy)(t)

∣
∣≤ λM

∫ σ(1)

0
K(t,s)Δs≤ λM sup

t∈[0,σn(1)]

∫ σ(1)

0
K(t,s)Δs, (3.16)

and for t, t′ ∈ [0,σn(1)],

∣
∣(Sy)(t)− (Sy)(t′)

∣
∣≤ λM

∫ σ(1)

0

∣
∣K(t,s)−K(t′,s)

∣
∣Δs. (3.17)

The Arzela-Ascoli theorem guarantees that SΩ is relatively compact, so S : C→C is com-
pletely continuous. �

For any L > 0, define

rL = L

ML

[
gn−p+1

(
σ(1),0

)]−1
, (3.18)

where

ML = sup
(t,u1,u2,...,up)∈[0,1]×R[0,δL]p−1×R[0,L]

f
(
t,u1,u2, . . . ,up

)
, (3.19)

and δ is given in (3.6).

Theorem 3.5. Let (A1) hold. For any λ∈R(0,rL], BVP (1.1), (1.2) has at least one positive
solution y such that ‖y‖ ≥ L.

Proof. Let L > 0 be given and let λ ∈ R(0,rL] be fixed. We separate the proof into the
following two steps.

Step 1. Let

Ω1 =
{
y ∈ B : ‖y‖ < L

}
. (3.20)

It follows from Lemma 2.4 that for all y ∈ ∂Ω1∩C,

(Sy)Δ
p−1

(t)= λ
∫ σ(1)

0
k(t,s) f

(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs

≤ λML

∫ σ(1)

0
gn−p

(
σ(s),0

)
Δs

= λML·gn−p+1
(
σ(1),0

)≤ L, t ∈ [0,σn−p+1(1)
]
.

(3.21)
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Hence

‖Sy‖ ≤ ‖y‖, y ∈ ∂Ω1∩C. (3.22)

Step 2. From (A1), we know that there exists η > L (η can be chosen arbitrarily large) such
that for all (u1,u2, . . . ,up)∈R[σ1η,∞)×R[σ2η,∞)× ··· ×R[σ pη,∞),

min
t∈[ε,1]

f
(
t,u1,u2, . . . ,up

)

up
≥
[∫ σ(1)

ε gn−p
(
σ(s),0

)
Δs
]−1

λσ p
, (3.23)

where

σi =
hp−i+1(ε,0)

σn−p+1(1)
, i= 1,2, . . . , p. (3.24)

So,

f
(
t,u1,u2, . . . ,up

)≥
[∫ σ(1)

ε gn−p
(
σ(s),0

)
Δs
]−1

η

λ
(3.25)

on [ε,1]×R[σ1η,∞)×R[σ2η,∞)× ··· ×R[σ pη,∞).

Using Lemma 2.4, we know that

(Sy)Δ
p−1(

σn−p+1(1)
)= λ

∫ σ(1)

0
k
(
σn−p+1(1),s

)
f
(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs

≥ λ
∫ σ(1)

ε
gn−p

(
σ(s),0

)
Δs·

[∫ σ(1)
ε gn−p

(
σ(s),0

)
Δs
]−1

η

λ
= η.

(3.26)

By letting Ω2 = {y ∈ B : ‖y‖ < η}, we have

‖Sy‖ ≥ ‖y‖, y ∈ ∂Ω2∩C. (3.27)

Therefore, it follows from Lemma 2.6 that BVP (1.1), (1.2) has a solution y ∈ C such
that ‖y‖ ≥ L. �

Theorem 3.6. Let (A2) hold. For any λ ∈ R(0,rL] (L ∈ R(0,a]), BVP (1.1), (1.2) has at
least one positive solution y such that 0 < ‖y‖ ≤ L.

Proof. Let L∈R(0,a] be given and let λ∈R(0,rL] be fixed. Let

Ω3 =
{
y ∈ B : ‖y‖ < L

}
. (3.28)

Then for y ∈ C∩ ∂Ω3, we have from Lemma 2.4 that for t ∈ [0,σn−p+1(1)],

(Sy)Δ
p−1

(t)= λ
∫ σ(1)

0
k(t,s) f

(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs

≤ λML

∫ σ(1)

0
gn−p

(
σ(s),0

)
Δs= λML·gn−p+1

(
σ(1),0

)≤ L.

(3.29)



Y. Lin and M. Pei 11

Therefore,

‖Sy‖ ≤ ‖y‖, y ∈ C∩ ∂Ω3. (3.30)

From (A2), there exists η, r0 where λη
∫ σ(1)

0 gn−p(σ(s),0)L(s)Δs > 1 with r0 < L such that

f
(
t,u1,u2, . . . ,up

)≥ ηup, (3.31)

on [0,1]×R[0,δr0]p−1×R[0,r0], where δ is given in (3.6).
For y ∈ C and ‖y‖ = r0, we have from Lemma 2.4 that

(Sy)Δ
p−1(

σn−p+1(1)
)= λ

∫ σ(1)

0
k
(
σn−p+1(1),s

)
f
(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs

≥ λ
∫ σ(1)

0
gn−p

(
σ(s),0

)
ηyΔ

p−1(
σn−p(s)

)
Δs

≥ λ
∫ σ(1)

0
gn−p

(
σ(s),0

)
L(s)η‖y‖Δs > ‖y‖ = r0.

(3.32)

By letting Ω4 = {y ∈ B : ‖y‖ < r0}, we have

‖Sy‖ ≥ ‖y‖, y ∈ C∩ ∂Ω4. (3.33)

Therefore, it follows from Lemma 2.6 that BVP (1.1), (1.2) has a solution y ∈ C such that
0 < r0 ≤ ‖y‖ ≤ L. �

Theorem 3.7. Let (A2) and (A3) hold. Suppose that λ0 ∈ E. Then R(0,λ0]⊆ E.

Proof. Let y0 be the eigenfunction corresponding to the eigenvalue λ0. Then for t ∈
[0,σn−p+1(1)],

yΔ
p−1

0 (t)= λ0

∫ σ(1)

0
k(t,s) f

(
s, y0

(
σn−1(s)

)
, . . . , yΔ

p−1

0

(
σn−p(s)

))
Δs. (3.34)

From y0 ∈ C, we have

t

σn−p+1(1)
·∥∥y0

∥
∥≤ yΔ

p−1

0 (t)≤ ∥∥y0
∥
∥, t ∈ [0,σn−p+1(1)

]
. (3.35)

We will consider two cases.

Case 1. f (t,0,0, . . . ,0) �≡ 0, t ∈ [0,1]. Define

K = {y ∈ C : 0≤ yΔ
p−1

(t)≤ yΔ
p−1

0 (t), t ∈ [0,σn−p+1(1)
]}
. (3.36)
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For y ∈ K and λ ∈ R(0,λ0), from Lemma 3.3, (A3) and Remark 3.2, we have that for
t ∈ [0,σn−p+1(1)],

0 < λ
∫ σ(1)

0
k(t,s) f (s,0, . . . ,0)Δs≤ (Sy)Δ

p−1

(t)

= λ
∫ σ(1)

0
k(t,s) f

(
s, y
(
σn−1(s)

)
, . . . , yΔ

p−1(
σn−p(s)

))
Δs

≤ λ0

∫ σ(1)

0
k(t,s) f

(
s, y0

(
σn−1(s)

)
, . . . , yΔ

p−1

0

(
σn−p(s)

))
Δs= yΔ

p−1

0 (t).

(3.37)

Hence, S maps K into K . Moreover, S is completely continuous, Schauder’s fixed point
theorem guarantees that S has a fixed point in K , which is a positive solution of BVP (1.1),
(1.2). Thus λ∈ E.

Case 2. f (t,0, . . . ,0)≡ 0, t ∈ [0,1]. Let

M∗ = 1
2

[
gn−p

(
σ(1),0

)·σn−p+1(1)
]−1·∥∥y0

∥
∥. (3.38)

From the continuity of f , there exists b ∈R(0,a] such that

M∗ ≥ f
(
t,u1,u2, . . . ,up

)≥ 0,
(
t,u1,u2, . . . ,up

)∈ [0,1]×R[0,δb]p−1×R[0,b], (3.39)

where δ is given in (3.6). From the proof of Theorem 3.6, let

L= b, rL =min
{

1,
L

M∗
[
gn−p+1

(
σ(s),0

)]−1
}

, (3.40)

we know that R(0,rL]⊆ E. If rL ≥ λ0, then the proof is completed. If rL < λ0, we still need
to prove that R(rL,λ0)⊆ E.

If rL < λ0, let λ∗ ∈R(0,rL] and let y∗ be the eigenfunction corresponding to the eigen-
value λ∗. It follows from Lemma 2.5 and (3.5) that for t ∈ [0,σn−p+1(1)],

yΔ
p−1

∗ (t)= λ∗
∫ σ(1)

0
k(t,s) f

(
s, y∗

(
σn−1(s)

)
, . . . , yΔ

p−1

∗
(
σn−p(s)

))
Δs

≤
∫ σ(1)

0
M∗k(t,s)Δs≤M∗·gn−p

(
σ(1),0

)
h1(t,0)

= 1
2

t

σn−p+1(1)
·∥∥y0

∥
∥ < yΔ

p−1

0 (t).

(3.41)

Define

K = {y ∈ C : yΔ
p−1

∗ (t)≤ yΔ
p−1

(t)≤ yΔ
p−1

0 (t), t ∈ [0,σn−p+1(1)
]}
. (3.42)
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For y ∈ K and λ ∈ R(λ∗,λ0), from Remark 3.2 and (A3), we have that for t ∈ [0,
σn−p+1(1)],

yΔ
p−1

∗ (t)= λ∗
∫ σ(1)

0
k(t,s) f

(
s, y∗

(
σn−1(s)

)
, . . . , yΔ

p−1

∗
(
σn−p(s)

))
Δs

≤ λ
∫ σ(1)

0
k(t,s) f

(
s, y
(
σn−1(s)), . . . , yΔ

p−1(
σn−p(s)

))
Δs= (Sy)Δ

p−1

(t)

≤ λ0

∫ σ(1)

0
k(t,s) f

(
s, y0

(
σn−1(s)

)
, . . . , yΔ

p−1

0

(
σn−p(s)

))
Δs= yΔ

p−1

0 (t).

(3.43)

Hence, S maps K into K . Schauder’s fixed point theorem guarantees that S has a fixed
point in K . Thus R(rL,λ0)⊆R(λ∗,λ0)⊆ E.

Therefore, R(0,λ0]⊂ E. �

From Theorems 3.5, 3.6, and 3.7, we can easily get the following results.

Corollary 3.8. Let (A2) and (A3) hold. Then E is an interval.

Corollary 3.9. Let (A1), (A2), and (A3) hold. For any λ ∈ R(0,rL] (L ∈ R(0,a]), BVP
(1.1), (1.2) has at least two positive solutions.

Theorem 3.10. Let

lim
u1,u2,...,up→∞

min
t∈[0,1]

f
(
t,u1,u2, . . . ,up

)

up
=∞, (3.44)

and (A2), (A3) hold. Then there are λ∗ > 0 such that BVP (1.1), (1.2) has no solution for
λ > λ∗.

Proof. First, the function f (t,u1,u2, . . . ,up)/up has the minimal value on [0,1]×R[0,∞)p,
whose existence is guaranteed by the continuity and nondecreasing property of f and by
assumption (3.44) and (A2). Let

N = min
(t,u1,...,up)∈[0,1]×R[0,∞)p

f
(
t,u1,u2, . . . ,up

)

up
. (3.45)

Let λ∈ E, then there exists yλ satisfying BVP (1.1), (1.2). By Lemma 2.4 and (3.5),

(
Syλ
)Δp−1(

σn−p+1(1)
)

= λ
∫ σ(1)

0
k
(
σn−p+1(1),s

)
f
(
s, yλ

(
σn−1(s)

)
, . . . , yΔ

p−1

λ

(
σn−p(s)

))
Δs

= λ
∫ σ(1)

0
k
(
σn−p+1(1),s

) f
(
s, yλ

(
σn−1(s)

)
, . . . , yΔ

p−1

λ

(
σn−p(s)

))

yΔ
p−1

λ

(
σn−p(s)

) ·yΔp−1

λ

(
σn−p(s)

)
Δs

≥ λ
∫ σ(1)

0
gn−p

(
σ(s),0

)
NyΔ

p−1

λ

(
σn−p(s)

)
Δs

≥ λ
∫ σ(1)

0
gn−p

(
σ(s),0

)
NL(s)Δs·∥∥yλ

∥
∥.

(3.46)
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It follows that

1≥ λ
∫ σ(1)

0
gn−p

(
σ(s),0

)
NL(s)Δs. (3.47)

Let

λ∗ =
[
N
∫ σ(1)

0
gn−p

(
σ(s),0

)
L(s)Δs

]−1

. (3.48)

Therefore, BVP (1.1), (1.2) has no solution for λ > λ∗. �
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