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1. Introduction

The bidirectional associative memory (BAM) neural network model was first introduced
by Kosko [1]. This class of neural networks has been successfully applied to pattern recog-
nition, signal and image processing, artificial intelligence due to its generalization of the
single-layer auto-associative Hebbian correlation to two-layer pattern-matched heteroas-
sociative circuits. Some of these applications require that the designed network has a
unique stable equilibrium point.

In hardware implementation, time delays occur due to finite switching speed of the
amplifiers and communication time [2]. Time delays will affect the stability of designed
neural networks and may lead to some complex dynamic behaviors such as periodic oscil-
lation, bifurcation, or chaos [3]. Therefore, study of neural dynamics with consideration
of the delayed problem becomes extremely important to manufacture high-quality neural
networks. Some results concerning the dynamical behavior of BAM neural networks with
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delays have been reported, for example, see [2–12] and references therein. The circuits di-
agram and connection pattern implementing for the delayed BAM neural networks can
be found in [8].

Most widely studied and used neural networks can be classified as either continuous
or discrete. Recently, there has been a somewhat new category of neural networks which
are neither purely continuous-time nor purely discrete-time ones, these are called im-
pulsive neural networks. This third category of neural networks displays a combination
of characteristics of both the continuous-time and the discrete systems [13]. Impulses
can make unstable systems stable, so they have been widely used in many fields such as
physics, chemistry, biology, population dynamics, and industrial robotics. Some results
for impulsive neural networks have been given, for example, see [13–22] and references
therein.

It is well known that diffusion effect cannot be avoided in the neural networks when
electrons are moving in asymmetric electromagnetic fields [23], so we must consider that
the activations vary in space as well as in time. There have been some works devoted to
the investigation of the stability of neural networks with reaction-diffusion terms, which
are expressed by partial differential equations, for example, see [23–26] and references
therein. To the best of our knowledge, few authors have studied the stability of impulsive
BAM neural network model with both time-varying delays and reaction-diffusion terms.

Motivated by the above discussions, the objective of this paper is to give some sufficient
conditions ensuring the existence, uniqueness, and global exponential stability of equilib-
rium point for impulsive BAM neural networks with time-varying delays and reaction-
diffusion terms, without assuming the boundedness, monotonicity, and differentiability
on these activation functions. Our methods, which do not make use of Lyapunov func-
tional, are simple and valid for the stability analysis of impulsive BAM neural networks
with time-varying or constant delays.

2. Model description and preliminaries

In this paper, we consider the following model:

∂ui(t,x)
∂t

=
l∑

k=1

∂

∂xk

(
Dik

∂ui(t,x)
∂xk

)
− aiui(t,x)

+
m∑

j=1

ci j f j
(
vj
(
t− τi j(t),x

))
+αi, t �= tk, i= 1, . . . ,n,

Δui
(
tk,x

)= Ik
(
ui
(
tk,x

))
, i= 1, . . . ,n, k = 1,2, . . . ,

∂vj(t,x)

∂t
=

l∑

k=1

∂

∂xk

(
D∗jk

∂vj(t,x)

∂xk

)
− bjvj(t,x)

+
n∑

i=1

djigi
(
ui
(
t− σji(t),x

))
+βj , t �= tk, j = 1, . . . ,m,

Δvj
(
tk,x

)= Jk
(
vi
(
tk,x

))
, j = 1, . . . ,m, k = 1,2, . . .

(2.1)
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for t > 0, where x = (x1,x2, . . . ,xl)T ∈Ω ⊂ Rl, Ω is a bounded compact set with smooth
boundary ∂Ω and mesΩ > 0 in space Rl; u= (u1,u2, . . . ,un)T ∈Rn; v = (v1,v2, . . . ,vm)T ∈
Rm; ui(t,x) and vj(t,x) are the state of the ith neurons from the neural field FU and the
jth neurons from the neural field FV at time t and in space x, respectively; f j and gi denote
the activation functions of the jth neurons from FV and the ith neurons from FU at time
t and in space x, respectively; αi and βj are constants, and denote the external inputs
on the ith neurons from FU and the jth neurons from FV , respectively; τi j(t) and σji(t)
correspond to the transmission delays and satisfy 0≤ τi j(t)≤ τi j and 0≤ σji(t)≤ σji (τi j
and σji are constants); ai and bj are positive constants, and denote the rates with which the
ith neurons from FU and the jth neurons from FV will reset their potentials to the resting
state in isolation when disconnected from the networks and external inputs, respectively;
ci j and dji are constants, and denote the connection strengths; smooth functions Dik =
Dik(t,x) ≥ 0 and D∗jk = D∗jk(t,x) ≥ 0 correspond to the transmission diffusion operator
along the ith neurons from FU and the jth neurons from FV , respectively. Δui(tk,x) =
ui(t+

k ,x)− ui(t−k ,x) and Δvj(tk,x) = vj(t+
k ,x)− vj(t−k ,x) are the impulses at moments tk

and in space x, and t1 < t2 < ··· is a strictly increasing sequence such that limk→∞ tk =
+∞. The boundary conditions and initial conditions are given by

∂ui
∂n

:=
(
∂ui
∂x1

,
∂ui
∂x2

, . . . ,
∂ui
∂xl

)T
= 0, i= 1,2, . . . ,n,

∂vj
∂n

:=
(
∂vj
∂x1

,
∂vj
∂x2

, . . . ,
∂vj
∂xl

)T
= 0, j = 1,2, . . . ,m,

(2.2)

ui(s,x)= φui(s,x), s∈ [− σ ,0
]
, σ = max

1≤i≤n,1≤ j≤m
{
σji
}

, i= 1,2, . . . ,n,

vj(s,x)= φvj (s,x), s∈ [−τ,0], τ = max
1≤i≤n,1≤ j≤m

{
τi j
}

, j = 1,2, . . . ,m,
(2.3)

where φui(s,x), φvj (s,x) (i= 1,2, . . . ,n, j = 1,2, . . . ,m) denote real-valued continuous func-
tions defined on [−σ ,0]×Ω and [−τ,0]×Ω, respectively.

Since the solution (u1(t,x), . . . ,un(t,x),v1(t,x), . . . ,vm(t,x))T of model (2.1) is discon-
tinuous at the point tk, by theory of impulsive differential equations, we assume that
(u1(tk,x), . . . ,un(tk,x),v1(tk,x), . . . ,vm(tk,x)) ≡ (u1(tk − 0,x), . . . ,un(tk − 0,x),v1(tk − 0,x),
. . . ,vm(tk − 0,x))T . It is clear that, in general, the partial derivatives ∂ui(tk,x)/∂t and
∂vj(tk,x)/∂t do not exist. On the other hand, according to the first and the third equa-
tions of model (2.1), there exist the limits ∂ui(tk ∓ 0,x)/∂t and ∂vj(tk ∓ 0,x)/∂t. According
to the above convention, we assume ∂ui(tk,x)/∂t = ∂ui(tk − 0,x)/∂t and ∂vj(tk,x)/∂t =
∂vj(tk − 0,x)/∂t.

Throughout this paper, we make the following assumption.
(H) There exist two positive diagonal matrices G = diag(G1,G2, . . . ,Gn) and F = diag

(F1,F2, . . . ,Fm) such that

∣∣gi
(
u1
)− gi

(
u2
)∣∣≤Gi

∣∣u1−u2
∣∣,

∣∣ f j
(
v1
)− f j

(
v2
)∣∣≤ Fj

∣∣v1− v2
∣∣ (2.4)

for all u1,u2,v1,v2 ∈R, i= 1,2, . . . ,n, j = 1,2, . . . ,m.
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For convenience, we introduce two notations. For any u(t,x) = (u1(t,x),u2(t,x), . . . ,
uk(t,x))T ∈Rk, define

∥∥ui(t,x)
∥∥

2 =
[∫

Ω

∣∣ui(t,x)
∣∣2
dx
]1/2

, i= 1,2, . . . ,k. (2.5)

For any u(t)= (u1(t),u2(t), . . . ,uk(t))T ∈Rk, define ‖u(t)‖ = [
∑k

i=1 |ui(t)|r]1/r , r > 1.

Definition 2.1. A constant vector (u∗1 , . . . ,u∗n ,v∗1 , . . . ,v∗m)T is said to be an equilibrium of
model (2.1) if

−aiu∗i +
m∑

j=1

ci j f j
(
v∗j
)

+αi = 0, i= 1,2, . . . ,n,

Ik
(
u∗i
)= 0, i= 1,2, . . . ,n, k ∈ Z+,

−bjv
∗
j +

n∑

i=1

djigi
(
u∗i
)

+βj = 0, j = 1,2, . . . ,m,

Jk
(
v∗j
)= 0, j = 1,2, . . . ,m, k ∈ Z+,

(2.6)

where Z+ denotes the set of all positive integers.

Definition 2.2 (see [3]). A real matrix A= (ai j)n×n is said to be an M-matrix if ai j ≤ 0 (i,
j = 1,2, . . . ,n, i �= j) and successive principle minors of A are positive.

Definition 2.3 (see [27]). A map H : Rn → Rn is a homomorphism of Rn onto itself if
H ∈ C0, H is one-to-one, H is onto, and the inverse map H−1 ∈ C0.

To prove our result, the following four lemmas are necessary.

Lemma 2.4 (see [3]). Let Q be n×n matrix with nonpositive off-diagonal elements, then Q
is an M-matrix if and only if one of the following conditions holds.

(i) There exists a vector ξ > 0 such that Qξ > 0.
(ii) There exists a vector ξ > 0 such that ξTQ > 0.

Lemma 2.5 (see [27]). If H(x)∈ C0 satisfies the following conditions:
(i) H(x) is injective on Rn,

(ii) ‖H(x)‖→ +∞ as ‖x‖→ +∞,
then H(x) is homomorphism of Rn.

Lemma 2.6 (see [28]). Let a,b ≥ 0, p > 1, then

ap−1b≤ p− 1
p

ap +
1
p
bp. (2.7)

Lemma 2.7 (see [29]) (Cp inequality). Let a≥ 0, b ≥ 0, p > 1, then

(a+ b)1/p ≤ a1/p + b1/p. (2.8)
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3. Existence and uniqueness of equilibria

Theorem 3.1. Under assumption (H), if there exist real constants αi j , βi j , α∗ji, β
∗
ji (i=

1,2, . . . ,n, j = 1,2, . . . ,m), and r > 1 such that

W =
(
A− C̃ −C∗
−D∗ B− D̃

)
(3.1)

is an M-matrix, and

Ik
(
u∗i
)= 0, i= 1,2, . . . ,n, k ∈ Z+,

Jk
(
v∗j
)= 0, j = 1,2, . . . ,m, k ∈ Z+,

(3.2)

then model (2.1) has a unique equilibrium point (u∗1 , . . . ,u∗n ,v∗1 , . . . ,v∗m)T , where

A= diag
(
a1,a2, . . . ,an

)
,

C̃ = diag
(
c̃1, . . . , c̃n

)
with c̃i =

m∑

j=1

r− 1
r

∣∣ci j
∣∣(r−αi j )/(r−1)

F
(r−βi j )/(r−1)
j ,

B = diag
(
b1,b2, . . . ,bm

)
,

D̃ = diag
(
d̃1, . . . , d̃m

)
with d̃ j =

n∑

i=1

r− 1
r

∣∣dji

∣∣(r−α∗ji)/(r−1)
G

(r−β∗ji)/(r−1)
i ,

C∗ = (c∗i j
)
n×m with c∗i j =

1
r

∣∣ci j
∣∣αi j F

βi j
j ,

D∗ = (d∗ji
)
m×n with d∗ji =

1
r

∣∣dji

∣∣α∗jiG
β∗ji
i .

(3.3)

Proof. Define the following map associated with model (2.1):

H(x, y)=
(
−A 0
0 −B

)(
x
y

)
+

(
0 C
D 0

)(
g(x)
f (y)

)
+

(
α
β

)
, (3.4)

where

C = (ci j
)
n×m, D = (dji

)
m×n,

g(x)= (g1(x1
)
,g2(x2), . . . ,gn

(
xn)
)T

,

f (y)= ( f1
(
y1
)
, f2
(
y2
)
, . . . , fm

(
ym
))T

,

α= (α1,α2, . . . ,αn
)T

, β = (β1,β2, . . . ,βm
)T
.

(3.5)

In the following, we will prove that H(x, y) is a homomorphism.
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First, we prove that H(x, y) is an injective map on Rn+m.
In fact, if there exist (x, y)T , (x, y)T ∈ Rn+m and (x, y)T �= (x, y)T such that H(x, y) =

H(x, y), then

ai
(
xi− xi

)=
m∑

j=1

ci j
(
f j
(
yj
)− f j

(
y j

))
, i= 1,2, . . . ,n, (3.6)

bj
(
yj − y j

)=
n∑

i=1

dji
(
gi
(
xi
)− gi

(
xi
))

, j = 1,2, . . . ,m. (3.7)

Multiply both sides of (3.6) by |xi − xi|r−1, it follows from assumption (H) and Lemma
2.6 that

ai
∣∣xi− xi

∣∣r ≤
m∑

j=1

∣∣ci j
∣∣Fj

∣∣xi− xi
∣∣r−1∣∣yj − y j

∣∣

≤
m∑

j=1

r− 1
r

∣∣ci j
∣∣(r−αi j )/(r−1)

F
(r−βi j )/(r−1)
j

∣∣xi− xi
∣∣r

+
1
r

m∑

j=1

∣∣ci j
∣∣αi j F

βi j
j

∣∣yj − y j

∣∣r .

(3.8)

Similarly, we have

bj

∣∣yj − y j

∣∣r ≤
n∑

i=1

r− 1
r

∣∣dji

∣∣(r−α∗ji)/(r−1)
G

(r−β∗ji)/(r−1)
i

∣∣yj − y j

∣∣r

+
1
r

n∑

i=1

∣∣dji

∣∣α∗ji g
β∗ji
i

∣∣xi− xi
∣∣r .

(3.9)

From (3.8) and (3.9) we get

W
(∣∣x1− x1

∣∣r , . . . ,
∣∣xn− xn

∣∣r ,
∣∣y1− y1

∣∣r , . . . ,
∣∣ym− ym

∣∣r)T ≤ 0. (3.10)

Since W is an M-matrix, we get xi = xi, yj = y j , i = 1,2, . . . ,n, j = 1,2, . . . ,m, which is a
contradiction. So, H(x, y) is an injective map on Rn+m.

Second, we prove that ‖H(x, y)‖→ +∞ as ‖(x, y)T‖→ +∞.
Since W is an M-matrix, from Lemma 2.4, we know that there exists a vector γ =

(λ1, . . . ,λn,λn+1, . . . ,λn+m)T > 0 such that γTW > 0, that is,

λi
(
ai− c̃i

)−
m∑

j=1

λn+ jd
∗
ji > 0, i= 1,2, . . . ,n,

λn+ j
(
bj − d̃ j

)−
n∑

i=1

λic
∗
i j > 0, j = 1,2, . . . ,m.

(3.11)
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We can choose a small number δ such that

λi
(
ai− c̃i

)−
m∑

j=1

λn+ jd
∗
ji ≥ δ > 0, i= 1,2, . . . ,n,

λn+ j
(
bj − d̃ j

)−
n∑

i=1

λic
∗
i j ≥ δ > 0, j = 1,2, . . . ,m.

(3.12)

Let H̃(x, y)=H(x, y)−H(0,0), and sgn(θ) is the signum function defined as 1 if θ > 0, 0
if θ = 0, −1 if θ < 0. From assumption (H), Lemma 2.6, and (3.12) we have

n∑

i=1

λi
∣∣xi
∣∣r−1

sgn
(
xi
)
H̃i(x, y) +

m∑

j=1

λn+ j

∣∣yj
∣∣r−1

sgn
(
yj
)
H̃n+ j(x, y)

≤−
n∑

i=1

λiai
∣∣xi
∣∣r +

n∑

i=1

λi

m∑

j=1

∣∣ci j
∣∣Fj

∣∣yj
∣∣∣∣xi

∣∣r−1−
m∑

j=1

λn+ jb j

∣∣yj
∣∣r

+
m∑

j=1

λn+ j

n∑

i=1

∣∣dji

∣∣Gi

∣∣xi
∣∣∣∣yj

∣∣r−1

≤
n∑

i=1

λi

[(
− ai +

m∑

j=1

r− 1
r

∣∣ci j
∣∣(r−αi j )/(r−1)

F
(r−βi j )/(r−1)
j

)
∣∣xi
∣∣r

+
m∑

j=1

1
r

∣∣ci j
∣∣αi j F

βi j
j

∣∣yj
∣∣r
]

+
m∑

j=1

λn+ j

[(
− bj +

n∑

i=1

r− 1
r

∣∣dji

∣∣(r−α∗ji)/(r−1)
G

(r−β∗ji)/(r−1)
i

)
∣∣yj
∣∣r

+
n∑

i=1

1
r

∣∣dji

∣∣α∗jiG
β∗ji
i

∣∣xi
∣∣r
]

=−
n∑

i=1

[
λi
(
ai− c̃i

)−
m∑

j=1

λn+ jd
∗
ji

]
∣∣xi
∣∣r −

m∑

j=1

[
λn+ j

(
bj − d̃ j

)−
n∑

i=1

λic
∗
i j

]
∣∣yj
∣∣r

≤−δ∥∥(x, y)T
∥∥r .

(3.13)

From (3.13) we have

δ
∥∥(x, y)T

∥∥r ≤−
[ n∑

i=1

λi
∣∣xi
∣∣r−1

sgn
(
xi
)
H̃i(x, y) +

m∑

j=1

λn+ j

∣∣yj
∣∣r−1

sgn
(
yj
)
H̃n+ j(x, y)

]

≤ max
1≤i≤n+m

{
λi
}
[ n∑

i=1

∣∣xi
∣∣r−1∣∣H̃i(x, y)

∣∣+
m∑

j=1

∣∣yj
∣∣r−1∣∣H̃n+ j(x, y)

∣∣
]
.

(3.14)
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By using Hölder inequality we get

∥∥(x, y)T
∥∥r ≤ max1≤i≤n+m

{
λi
}

δ

( n∑

i=1

∣∣xi
∣∣r +

m∑

j=1

∣∣yj
∣∣r
)(r−1)/r

×
( n∑

i=1

∣∣H̃i(x, y)
∣∣r +

m∑

j=1

∣∣H̃n+ j(x, y)
∣∣r
)1/r

,

(3.15)

that is,

∥∥(x, y)T
∥∥≤ max1≤i≤n+m

{
λi
}

δ

∥∥H̃(x, y)
∥∥. (3.16)

Therefore, ‖H̃(x, y)‖∞ → +∞ as ‖(x, y)T‖∞ → +∞, which directly implies that
‖H(x, y)‖ → +∞ as ‖(x, y)T‖ → +∞. From Lemma 2.5 we know that H(x, y) is a ho-
momorphism on Rn+m. Thus, equation

−aiui +
m∑

j=1

ci j f j
(
vj
)

+αi = 0, i= 1,2, . . . ,n,

−bjvj +
n∑

i=1

djigi
(
ui
)

+βj = 0, j = 1,2, . . . ,m

(3.17)

has unique solution (u∗1 , . . . ,u∗n ,v∗1 , . . . ,v∗m)T , which is one unique equilibrium point of
model (2.1). The proof is completed. �

4. Global exponential stability

Theorem 4.1. Under assumption (H), if W in Theorem 3.1 is an M-matrix, and
Ik(ui(tk,x)) and Jk(vj(tk,x)) satisfy

Ik
(
ui
(
tk,x

))=−γik
(
ui
(
tk,x

)−u∗i
)
, 0 < γik < 2, i= 1,2, . . . ,n, k ∈ Z+,

Jk
(
vj
(
tk,x

))=−δjk
(
vj
(
tk,x

)− v∗j
)
, 0 < δik < 2, j = 1,2, . . . ,m, k ∈ Z+,

(4.1)

then model (2.1) has a unique point (u∗1 , . . . ,u∗n ,v∗1 , . . . ,v∗m)T , which is globally exponentially
stable.

Proof. From (4.1) we know that Ik(u∗i ) = 0 and Jk(v∗j ) = 0 (i = 1,2, . . . ,n, j = 1,2, . . . ,m,
k ∈ Z+), so the existence and uniqueness of equilibrium point of (2.1) follow from
Theorem 3.1.
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Let (u1(t,x), . . . ,un(t,x),v1(t,x), . . . ,vm(t,x))T be any solution of model (2.1), then

∂
(
ui(t,x)−u∗i

)

∂t

=
l∑

k=1

∂

∂xk

(
Dik

∂
(
ui(t,x)−u∗i

)

∂xk

)
− ai

(
ui(t,x)−u∗i

)

+
m∑

j=1

ci j
(
f j
(
vj
(
t− τi j(t),x

))− f j
(
v∗j
))

, t > 0, t �= tk, i= 1, . . . ,n, k ∈ Z+,

(4.2)

∂
(
vj(t,x)− v∗j

)

∂t

=
l∑

k=1

∂

∂xk

(
D∗jk

∂
(
vj(t,x)− v∗j

)

∂xk

)
− bj

(
vj(t,x)− v∗j

)

+
n∑

i=1

dji
(
gi
(
ui
(
t− σji(t),x

))− gi
(
u∗i
))

, t > 0, t �= tk, j = 1, . . . ,m, k ∈ Z+.

(4.3)

Multiply both sides of (4.2) by ui(t,x)−u∗i , and integrate, then we have

1
2
d

dt

∫

Ω

(
ui(t,x)−u∗i

)2
dx =

l∑

k=1

∫

Ω

(
ui(t,x)−u∗i

) ∂

∂xk

(
Dik

∂
(
ui(t,x)−u∗i

)

∂xk

)
dx

− ai

∫

Ω

(
ui(t,x)−u∗i

)2
dx

+
m∑

j=1

ci j

∫

Ω

(
ui(t,x)−u∗i

)(
f j
(
vj
(
t− τi j(t),x

))− f j
(
v∗j
))
dx.

(4.4)

From the boundary condition (2.2) and the proof of [22, Theorem 1] we get

l∑

k=1

∫

Ω

(
ui(t,x)−u∗i

) ∂

∂xk

(
Dik

∂
(
ui(t,x)−u∗i

)

∂xk

)
dx =−

l∑

k=1

∫

Ω
Dik

(
∂
(
ui(t,x)−u∗i

)

∂xk

)2

dx.

(4.5)

From (4.4), (4.5), assumption (H), and Cauchy integrate inequality we have

d
∥∥ui(t,x)−u∗i

∥∥2
2

dt
≤−2ai

∥∥ui(t,x)−u∗i
∥∥2

2

+ 2
m∑

j=1

∣∣ci j
∣∣Fj

∥∥ui(t,x)−u∗i
∥∥

2

∥∥vj
(
t− τi j(t),x

)− v∗j
∥∥

2.
(4.6)
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Thus

D+
∥∥ui(t,x)−u∗i

∥∥
2 ≤−ai

∥∥ui(t,x)−u∗i
∥∥

2 +
m∑

j=1

∣∣ci j
∣∣Fj

∥∥vj
(
t− τi j(t),x

)− v∗j
∥∥

2 (4.7)

for t > 0, t �= tk, i= 1, . . . ,n, k ∈ Z+.
Multiply both sides of (4.3) by vj(t,x)− v∗j , similarly, we can get

D+
∥∥vj(t,x)− v∗j

∥∥
2 ≤−bj

∥∥vj(t,x)− v∗j
∥∥

2 +
n∑

i=1

∣∣dji

∣∣Gi

∥∥ui
(
t− σji(t),x

)−u∗i
∥∥

2 (4.8)

for t > 0, t �= tk, j = 1, . . . ,m, k ∈ Z+.
It follows from (4.1) that

∥∥ui
(
tk + 0,x

)−u∗i
∥∥

2 =
∣∣1− γik

∣∣∥∥ui
(
tk,x

)−u∗i
∥∥

2, i= 1, . . . ,n, k ∈ Z+,
∥∥vj
(
tk + 0,x

)− v∗j
∥∥

2 =
∣∣1− δjk

∣∣∥∥vj
(
tk,x

)− v∗j
∥∥

2, i= j, . . . ,m, k ∈ Z+.
(4.9)

Let us consider functions

ρi(θ)= λi

(
θ

r
− ai + c̃i

)
+

m∑

j=1

λn+ j c
∗
i j e

τθ , i= 1,2, . . . ,n,

χj(θ)= λn+ j

(
θ

r
− bj + d̃ j

)
+

n∑

i=1

λid
∗
jie

σθ , j = 1,2, . . . ,m.

(4.10)

Since W is an M-matrix, from Lemma 2.4, we know that there exists a vector γ =
(λ1, . . . ,λn,λn+1, . . . ,λn+m)T > 0 such that Wγ > 0, that is,

λi
(
ai− c̃i

)−
m∑

j=1

λn+ j c
∗
i j > 0, i= 1,2, . . . ,n,

λn+ j
(
bj − d̃ j

)−
n∑

i=1

λid
∗
ji > 0, j = 1,2, . . . ,m.

(4.11)

From (4.11) and (4.10) we know that ρi(0) < 0, χj(0) < 0, and ρi(θ) and χj(θ) are con-
tinuous for θ ∈ [0,+∞). Moreover, ρi(θ),χj(θ) → +∞ as θ → +∞. Since dρi(θ)/dθ > 0,
dχj(θ)/dθ > 0, ρi(θ) and χj(θ) are strictly monotone increasing functions on [0,+∞).
Thus, there exist constants z∗i and z̃∗j ∈ (0,+∞) such that

ρi
(
z∗i
)= λi

(
z∗i
r
− ai + c̃i

)
+

m∑

j=1

λn+ j c
∗
i j e

z∗i τ = 0, i= 1,2, . . . ,n,

χj
(
z̃∗j
)= λn+ j

( z̃∗j
r
− bj + d̃ j

)
+

n∑

i=1

λid
∗
jie

z̃∗j σ = 0, j = 1,2, . . . ,m.

(4.12)
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Choosing 0 < ε < min{z∗1 , . . . ,z∗n , z̃∗1 , . . . , z̃∗m}, then

λi

(
ε

r
− ai + c̃i

)
+

m∑

j=1

λn+ j c
∗
i j e

ετ < 0, i= 1,2, . . . ,n,

λn+ j

(
ε

r
− bj + d̃ j

)
+

n∑

i=1

λid
∗
jie

εσ < 0, j = 1,2, . . . ,m.

(4.13)

Let

Ui(t)= eεt
∥∥ui(t,x)−u∗i

∥∥r
2, i= 1,2, . . . ,n,

Vj(t)= eεt
∥∥vj(t,x)− v∗j

∥∥r
2, j = 1,2, . . . ,m,

(4.14)

then it follows from (4.7), (4.8), and (4.14) that

D+Ui(t)≤ r
[(

ε

r
− ai + c̃i

)
Ui(t) +

m∑

j=1

c∗i j e
ετVj

(
t− τi j(t)

)]
,

t > 0, t �= tk, k ∈ Z+, i= 1,2, . . . ,n,

D+Vj(t)≤ r
[(

ε

r
− bj + d̃ j

)
Vj(t) +

n∑

i=1

d∗jie
εσUi

(
t− σji(t)

)]
,

t > 0, t �= tk, k ∈ Z+, j = 1,2, . . . ,m.

(4.15)

From (4.9) and (4.1) we get that

Ui
(
tk + 0

)= ∣∣1− γik
∣∣Ui

(
tk
)≤Ui

(
tk
)
, k ∈ Z+, i= 1,2, . . . ,n,

Vj
(
tk + 0

)= ∣∣1− δjk
∣∣Vj

(
tk
)≤Vj

(
tk
)
, k ∈ Z+, j = 1,2, . . . ,m.

(4.16)

Let l0 = (1 + δ)(sups∈[−σ ,0]

∑n
i=1‖φui(s,x)−u∗i ‖r2 + sups∈[−τ,0]

∑m
j=1‖φv j(s,x)− v∗j ‖r2)/

min1≤i≤n+m{λi} (δ is a positive constant), then

Ui(s)= eεs
∥∥ui(s,x)−u∗i

∥∥r
2 ≤

∥∥ui(s,x)−u∗i
∥∥r

2 =
∥∥φui(s,x)−u∗i

∥∥r
2 < λil0, −σ ≤ s≤ 0,

Vj(s)= eεs
∥∥vj(s,x)− v∗j

∥∥r
2 ≤

∥∥vj(s,x)− v∗j
∥∥r

2 =
∥∥φv j(s,x)− v∗j

∥∥r
2 < λn+ j l0, −τ ≤ s≤ 0.

(4.17)

In the following, we will prove

Ui(t) < λil0, Vj(t) < λn+ j l0, 0≤ t < t1, i= 1,2, . . . ,n, j = 1,2, . . . ,m. (4.18)

If (4.18) is not true, no loss of generality, then there exist some i0 and t∗ ∈ [0, t1) such
that

Ui0

(
t∗
)= λi0 l0, D+Ui0

(
t∗
)≥ 0,

Ui(t)≤ λil0, −σ ≤ t ≤ t∗, i= 1,2, . . . ,n,

Vj(t)≤ λn+ j l0, −τ ≤ t ≤ t∗, j = 1,2, . . . ,m.

(4.19)
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However, from (4.15) and (4.13) we get

D+Ui0

(
t∗
)≤ r

[(
ε

r
− ai0 + c̃i0

)
Ui0

(
t∗
)

+
m∑

j=1

c∗i0 j e
ετVj

(
t∗ − τi0 j

(
t∗
))]

≤ r
[(

ε

r
− ai0 + c̃i0

)
λi0 l0 +

m∑

j=1

c∗i0 j e
ετλn+ j l0

]
< 0,

(4.20)

this is a contradiction, so (4.18) holds.
Suppose that for all k = 1,2, . . . ,N , the inequalities

Ui(t) < λil0, tN−1 ≤ t < tN , i= 1,2, . . . ,n,

Vj(t) < λn+ j l0, tN−1 ≤ t < tN , j = 1,2, . . . ,m,
(4.21)

hold. Then from (4.16) and (4.21) we get

Ui
(
tk + 0

)≤Ui
(
tk
)
< λil0, i= 1,2, . . . ,n,

Vj
(
tk + 0

)≤Vj
(
tk
)
< λn+ j l0, j = 1,2, . . . ,m.

(4.22)

This, together with (4.21), leads to

Ui(t) < λil0, tN − σ ≤ t ≤ tN , i= 1,2, . . . ,n,

Vj(t) < λn+ j l0, tN − τ ≤ t ≤ tN , j = 1,2, . . . ,m.
(4.23)

In the following, we will prove

Ui(t) < λil0, tN ≤ t < tN+1, i= 1,2, . . . ,n,

Vj(t) < λn+ j l0, tN ≤ t < tN+1, j = 1,2, . . . ,m.
(4.24)

If (4.24) is not true, no loss of generality, then there exist some i1 and t∗∗ ∈ [tN , tN+1)
such that

Ui1

(
t∗∗
)= λi1 l0, D+Ui1

(
t∗∗
)≥ 0,

Ui(t)≤ λil0, tN − σ ≤ t ≤ t∗∗, i= 1,2, . . . ,n,

Vj(t)≤ λn+ j l0, tN − τ ≤ t ≤ t∗∗, j = 1,2, . . . ,m.

(4.25)

However, from (4.15), (4.23), and (4.13) we get

D+Ui1

(
t∗∗
)≤ r

[(
ε

r
− ai1 + c̃i1

)
Ui1

(
t∗∗
)

+
m∑

j=1

c∗i1 j e
ετVj(t∗∗ − τi1 j

(
t∗∗
))]

≤ r
[(

ε

r
− ai1 + c̃i1

)
λi1 l0 +

m∑

j=1

c∗i1 j e
ετλn+ j l0

]
< 0,

(4.26)

this is a contradiction, so (4.24) holds.
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By the mathematical induction, we can conclude that

Ui(t) < λil0, tN−1 ≤ t < tN , N = 1,2, . . . , i= 1,2, . . . ,n,

Vj(t) < λn+ j l0, tN−1 ≤ t < tN , N = 1,2, . . . , j = 1,2, . . . ,m.
(4.27)

This implies that

Ui(t) < λil0, i= 1,2, . . . ,n,

Vj(t) < λn+ j l0, j = 1,2, . . . ,m
(4.28)

for any t > 0. That is,

eεt
∥∥ui(t,x)−u∗i

∥∥r
2 ≤ sup

s∈[−σ ,0]

n∑

i=1

∥∥φui(s,x)−u∗i
∥∥r

2

+ sup
s∈[−τ,0]

m∑

j=1

∥∥φv j(s,x)− v∗j
∥∥r

2, i= 1,2, . . . ,n,

eεt
∥∥vj(t,x)− v∗j

∥∥r
2 ≤ sup

s∈[−σ ,0]

n∑

i=1

∥∥φui(s,x)−u∗i
∥∥r

2

+ sup
s∈[−τ,0]

m∑

j=1

∥∥φv j(s,x)− v∗j
∥∥r

2, j = 1,2, . . . ,m

(4.29)

for any t > 0. Let M = n1/r +m1/r , from (4.29) and Lemma 2.7, we get that

( n∑

i=1

∥∥ui(t,x)−u∗i
∥∥r

2

)1/r

+
( m∑

j=1

∥∥vj(t,x)− v∗j
∥∥r

2

)1/r

≤M
([

sup
s∈[−σ ,0]

n∑

i=1

∥∥φui(s,x)−u∗i
∥∥r

2

]1/r

+
[

sup
s∈[−τ,0]

m∑

j=1

∥∥φv j(s,x)− v∗j
∥∥r

2

]1/r)
e(−ε/r)t

(4.30)

for all t > 0. Therefore, the unique point of model (2.1) is globally exponentially stable,
and the exponential convergence rate index ε/r comes from (4.12). The proof is com-
pleted. �

Corollary 4.2. Under assumption (H) and condition (4.1), if

W1 =
(

A −C∗
−D∗ B

)
(4.31)

is an M-matrix, then model (2.1) has a unique equilibrium point (u∗1 , . . . ,u∗n ,v∗1 , . . . ,
v∗m)T , which is globally exponentially stable, where A= diag(a1,a2, . . . ,an), B = diag(b1,b2,
. . . ,bm), C∗ = (Fj|ci j|)n×m, D∗ = (Gi|dji|)m×n.

Proof. Take αi j = βi j = α∗ji = β∗ji = 1, and let r → 1+, then W turns to W1. The proof is
completed. �
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Remark 4.3. As the smooth operators Dik = 0, D∗jk = 0 (i= 1,2, . . . ,n, j = 1,2, . . . ,m, k =
1,2, . . . , l), model (2.1) becomes the following impulsive BAM neural networks with time-
varying delays:

dui(t)
dt

=−aiui(t) +
m∑

j=1

ci j f j
(
vj
(
t− τi j(t)

))
+αi, t > 0, t �= tk, i= 1, . . . ,n,

Δui
(
tk
)= Ik

(
ui
(
tk
))

, i= 1, . . . ,n, k = 1,2, . . . ,

dvj(t)

dt
=−bjvj(t) +

n∑

i=1

djigi
(
ui
(
t− σji(t)

))
+βj , t > 0, t �= tk, j = 1, . . . ,m,

Δvj
(
tk
)= Jk

(
vi
(
tk
))

, j = 1, . . . ,m, k = 1,2, . . . .

(4.32)

For this model, we have the following results.

Corollary 4.4. Under assumption (H), if W in Theorem 3.1 is an M-matrix, and impul-
sive operators Ik(ui(tk)) and Jk(vj(tk)) satisfy

Ik
(
ui
(
tk
))=−γik

(
ui
(
tk
)−u∗i

)
, 0 < γik < 2, i= 1,2, . . . ,n, k ∈ Z+,

Jk
(
vj
(
tk
))=−δjk

(
vj
(
tk
)− v∗j

)
, 0 < δik < 2, j = 1,2, . . . ,m, k ∈ Z+,

(4.33)

then model (4.32) has a unique equilibrium point (u∗1 , . . . ,u∗n ,v∗1 , . . . ,v∗m)T , which is globally
exponentially stable.

Corollary 4.5 (see [18]). Under assumption (H) and condition (4.33), when τi j (t),σji (t)
(i = 1,2, . . . ,n, j = 1,2, . . . ,m) are constants, model (4.32) has a unique equilibrium point
(u∗1 , . . . ,u∗n ,v∗1 , . . . ,v∗m)T , which is globally exponentially stable, if

ai > Fi

m∑

j=1

∣∣dji

∣∣, bj > Gj

n∑

i=1

∣∣ci j
∣∣, i= 1,2, . . . ,n, j = 1,2, . . . ,m. (4.34)

Proof. If condition (4.34) holds, then matrix W1 in Corollary 4.2 is column diagonally
dominant, so W1 is an M-matrix. The proof is completed. �

Remark 4.6. In [18, 21], the globally exponential stability for impulsive BAM neural net-
works with constant delays was investigated by constructing a suitable Lyapunov func-
tional. In [20], authors have considered the impulsive BAM neural networks with dis-
tributed delays, several sufficient criteria checking the globally exponential stability were
obtained by constructing a suitable Lyapunov functional. It should be noted that our
methods, which do not make use of Lyapunov functional, are simple and valid for the
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stability analysis of impulsive BAM neural networks with constant delays, time-varying
or distributed delays. It may be difficult to apply the Lyapunov approach in [18, 21, 20]
to discuss the exponential stability of model (4.32) and model (2.1).

Remark 4.7. In [3, 5, 8–10, 12, 15], the boundedness of the activation functions was re-
quired. In [4, 6, 7, 10, 26], the monotonicity of the activation functions was needed. How-
ever, the boundedness and monotonicity of the activation functions have been removed
in this paper.

5. Examples

Example 5.1. Consider the following impulsive BAM neural networks with fixed delays:

du(t)
dt

=−5u(t) + 6 f
(
v(t− 3)

)
+ 11, t > 0, t �= tk,

Δu
(
tk
)=−γ1k

(
u
(
tk
)− 1

)
, k = 1,2, . . . ,

dv(t)
dt

=−3v(t)− gi
(
ui(t− 1)

)
+ 2, t > 0, t �= tk,

Δvj
(
tk
)=−δ1k

(
v
(
tk
)− 1

)
, k = 1,2, . . . ,

(5.1)

where f (y) = g(y) = −|y|, and t1 < t2 < ··· is strictly increasing sequence such that
limk→∞ tk = +∞, γ1k = 1 + (1/2)sin(2 + k), δ1k = 1 + (6/7)cos(9 + k2), k ∈ Z+.

Since b1 = 3 < |c11| = 6, conditions (4.34) are not satisfied, which means that the the-
orem in [18] is not applicable to ascertain the stability of neural networks (5.1). However,
it is easy to check that (5.1) satisfies all conditions of Corollary 4.4 in this paper. Hence,
model (5.1) has a unique equilibrium point, which is globally exponentially stable. In
fact, the unique equilibrium (1,1)T is a unique stable equilibrium point. From (4.12) we
can estimate the exponential convergence rate index which is 0.2008.

Example 5.2. Consider the following impulsive BAM neural networks with both time-
varying delays and reaction-diffusion terms:

∂ui(t,x)
∂t

= ∂

∂xk

(
t2x6 ∂ui(t,x)

∂xk

)
− aiui(t,x) +

2∑

j=1

ci j f j
(
vj
(
t− τi j(t),x

))
+αi, t �= tk,

Δui
(
tk,x

)= Ik
(
ui
(
tk,x

))
,

∂vj(t,x)

∂t
= ∂

∂xk

(
t4x2 ∂vj(t,x)

∂xk

)
− bjvj(t,x) +

2∑

i=1

djigi
(
ui
(
t− σji(t),x

))
+βj , t �= tk,

Δvj
(
tk,x

)= Jk
(
vi
(
tk,x

))

(5.2)
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for i, j = 1,2, k ∈ Z+, where

fi(r)= gj(r)= ∣∣r + 1
∣∣+

∣∣r− 1
∣∣, τi j(t)= σji(t)=

∣∣sin
(
(i+ j)t

)∣∣, i, j = 1,2,

Δu1
(
tk,x

)=−
(

1 +
1
2

sin
(
7 + k2)

)
u1
(
tk,x

)
,

Δu2
(
tk,x

)=−(1 + cos(3− k)
)(
u2
(
tk,x

)− 1
)
,

Δv1
(
tk,x

)=−∣∣2sin(1− 5k)
∣∣(v1

(
tk,x

)− 1
)
,

Δv2
(
tk,x

)=−
(

1− 1
3

cos(11k)
)(

v2
(
tk,x

)− 2
)
,

a1 = 7, a2 = 12, c11 = 2, c12 = 3, c21 = 1.5, c22 = 2.5, α1 =−16, α2 =−1,

b1 = 4, b2 = 36, d11 = 2, d12 = 2, d21 = 2, d22 = 3.5, β1 =−4, β2 = 61.
(5.3)

Since f j and gi are not monotone increasing functions, the conditions of two theo-
rems in [26] are not satisfied, which means that the theorems in [26] are not applicable
to ascertain the stability of neural networks (5.2). However, It is easy to check that (5.2)
satisfies all conditions of Corollary 4.2 in this paper. Hence, model (5.2) has a unique
equilibrium point, which is globally exponentially stable. In fact, the unique equilibrium
(0,1,1,2)T is a unique stable equilibrium point. From (4.12) we can estimate the expo-
nential convergence rate index which is 0.1374.

6. Conclusions

In this paper, several easily checked sufficient criteria ensuring the existence, unique-
ness, and global exponential stability of equilibrium point have been given for impul-
sive bidirectional associative memory neural networks with both time-varying delays and
reaction-diffusion terms. In particular, the estimate of convergence rate index has been
also provided. Some existing results are improved and extended. Two examples have been
given to show that obtained results are less restrictive than previously known criteria. The
method is simpler and more effective for stability analysis of neural networks with time-
varying delays.
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