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We first give conditions which guarantee that every solution of a first order linear delay
dynamic equation for isolated time scales vanishes at infinity. Several interesting examples
are given. In the last half of the paper, we give conditions under which the trivial solution
of a nonlinear delay dynamic equation is asymptotically stable, for arbitrary time scales.
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1. Preliminaries

The unification and extension of continuous calculus, discrete calculus, q-calculus, and
indeed arbitrary real-number calculus to time-scale calculus, where a time scale is sim-
ply any nonempty closed set of real numbers, were first accomplished by Hilger in [4].
Since then, time-scale calculus has made steady inroads in explaining the interconnec-
tions that exist among the various calculuses, and in extending our understanding to a
new, more general and overarching theory. The purpose of this work is to illustrate this
new understanding by extending some continuous and discrete delay equations to cer-
tain time scales. Examples will include specific cases in differential equations, difference
equations, q-difference equations, and harmonic-number equations. The definitions that
follow here will serve as a short primer on the time-scale calculus; they can be found in
[1, 2] and the references therein.

Definition 1.1. Define the forward (backward) jump operator σ(t) at t for t < supT (resp.,
ρ(t) at t for t > inf T) by

σ(t)= inf{τ > t : τ ∈ T}, (
ρ(t)= sup{τ < t : τ ∈ T}), ∀t ∈ T. (1.1)

Also define σ(supT)= supT, if supT <∞, and ρ(inf T)= inf T, if inf T >−∞. Define the
graininess function μ : T→R by μ(t)= σ(t)− t.
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Throughout this work the assumption is made that T is unbounded above and has the
topology that it inherits from the standard topology on the real numbers R. Also assume
throughout that a < b are points in T and define the time scale interval [a,b]T = {t ∈ T :
a ≤ t ≤ b}. Other time scale intervals are defined similarly. The jump operators σ and ρ
allow the classification of points in a time scale in the following way: if σ(t) > t then call
the point t right-scattered; while if ρ(t) < t then we say t is left-scattered. If σ(t)= t then
call the point t right-dense; while if t > inf T and ρ(t)= t then we say t is left-dense. We
next define the so-called delta derivative. The novice could skip this definition and look
at the results stated in Theorem 1.4. In particular in part (2) of Theorem 1.4 we see what
the delta derivative is at right-scattered points and in part (3) of Theorem 1.4 we see that
at right-dense points the derivative is similar to the definition given in calculus.

Definition 1.2. Fix t ∈ T and let y : T→R. Define yΔ(t) to be the number (if it exists) with
the property that given ε > 0 there is a neighbourhood U of t such that, for all s∈U ,

∣
∣[y

(
σ(t)

)− y(s)
]− yΔ(t)

[
σ(t)− s]∣∣≤ ε∣∣σ(t)− s∣∣. (1.2)

Call yΔ(t) the (delta) derivative of y(t) at t.

Definition 1.3. If FΔ(t)= f (t) then define the (Cauchy) delta integral by

∫ t

a
f (s)Δs= F(t)−F(a). (1.3)

The following theorem is due to Hilger [4].

Theorem 1.4. Assume that f : T→R and let t ∈ T.
(1) If f is differentiable at t, then f is continuous at t.
(2) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f Δ(t)= f
(
σ(t)

)− f (t)
σ(t)− t . (1.4)

(3) If f is differentiable and t is right-dense, then

f Δ(t)= lim
s→t

f (t)− f (s)
t− s . (1.5)

(4) If f is differentiable at t, then f (σ(t))= f (t) +μ(t) f Δ(t).

Next we define the important concept of right-dense continuity. An important fact
concerning right-dense continuity is that every right-dense continuous function has a
delta antiderivative [1, Theorem 1.74]. This implies that the delta definite integral of any
right-dense continuous function exists.

Definition 1.5. We say that f : T→R is right-dense continuous (and write f ∈ Crd(T;R))
provided f is continuous at every right-dense point t ∈ T, and lims→t− f (s) exists and is
finite at every left-dense point t ∈ T.



Douglas R. Anderson et al. 3

We say p is regressive provided 1 +μ(t)p(t) �= 0,∀t ∈ T. Let

� := {p ∈ Crd(T;R) : 1 +μ(t)p(t) �= 0, t ∈ T}. (1.6)

Also, p ∈�+ if and only if p ∈� and 1 + μ(t)p(t) > 0, ∀t ∈ T. Then if p ∈�, t0 ∈ T,
one can define the generalized exponential function ep(t, t0) to be the unique solution of
the initial value problem

xΔ = p(t)x, x
(
t0
)= 1. (1.7)

We will use many of the properties of this generalized exponential function ep(t, t0) listed
in Theorem 1.6.

Theorem 1.6 ([1, Theorem 2.36]). If p,q ∈� and s, t ∈ T, then
(1) e0(t,s)≡ 1 and ep(t, t)≡ 1;
(2) ep(σ(t),s)= (1 +μ(t)p(t))ep(t,s);
(3) 1/ep(t,s)= e	p(t,s), where 	p :=−p/(1 +μp);
(4) ep(t,s)= 1/ep(s, t)= e	p(s, t);
(5) ep(t,s)ep(s,r)= ep(t,r);
(6) ep(t,s)eq(t,s)= ep⊕q(t,s), where p⊕ q := p+ q+μpq;

(7) ep(t,s)/eq(t,s)= ep	q(t,s).

2. Introduction to a delay dynamic equation

Since we are interested in the asymptotic properties of solutions we assume as mentioned
earlier that our time scale T is unbounded above. Consider the delay dynamic equation

xΔ(t)=−a(t)x
(
δ(t)

)
δΔ(t), t ∈ [t0,∞)T, (2.1)

where the delay function δ : [t0,∞)T → [δ(t0),∞)T is strictly increasing and delta differ-
entiable with δ(t) < t for t ∈ [t0,∞)T and limt→∞ δ(t)=∞. For example, if T= [−m,∞),
and δ(t) := t−m, t ∈ [0,∞), where m> 0, then (2.1) becomes the well-studied delay dif-
ferential equation

x′(t)=−a(t)x(t−m). (2.2)

If T= {−m,−m+ 1, . . . ,0,1,2, . . .}, and δ(t) := t−m, t ∈N0, wherem is a positive integer,
then (2.1) becomes

Δx(t)=−a(t)x(t−m), (2.3)

where Δ is the forward difference operator defined by Δx(t)= x(t+ 1)− x(t). If T= qN0 ∪
{q−1,q−2, . . . ,q−m} where qN0 := {1,q,q2, . . .}, q > 1, and δ(t) := (1/qm)t, t ∈ qN0 , where
m∈N, then (2.1) becomes the delay quantum equation

Dqx(t)=− 1
qm

a(t)x
(

1
qm

t
)

, (2.4)
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where

Dqx(t) := x(qt)− x(t)
(q− 1)t

(2.5)

is the so-called quantum derivative studied in Kac and Cheung [5]. More examples will
be given later. We will use the following three lemmas to prove Theorem 3.1.

Lemma 2.1 (chain rule). AssumeT is an isolated time scale, and g(σ(t))= σ(g(t)) for t ∈ T.
If g : T→ T and h : T→R, then

(∫ g(t)

t0
h(s)Δs

)Δ
= h(g(t)

)
gΔ(t). (2.6)

Proof. Since t is right-scattered,

(∫ g(t)

t0
h(s)Δs

)Δ
= 1
μ(t)

(∫ g(σ(t))

t0
h(s)Δs−

∫ g(t)

t0
h(s)Δs

)

= 1
μ(t)

∫ g(σ(t))

g(t)
h(s)Δs

= 1
μ(t)

∫ σ(g(t))

g(t)
h(s)Δs

= 1
μ(t)

h
(
g(t)

)(
σ
(
g(t)

)− g(t)
)

= h(g(t)
)g
(
σ(t)

)− g(t)
μ(t)

= h(g(t)
)
gΔ(t).

(2.7)

�

Lemma 2.2. Assume T is an isolated time scale and the delay δ satisfies δ ◦ σ = σ ◦ δ, or
T=R. Then the delay equation (2.1) is equivalent to the delay equation

xΔ(t)=−a(δ−1(t)
)
x(t) +

(∫ t

δ(t)
a
(
δ−1(s)

)
x(s)Δs

)Δ
. (2.8)

Proof. Assume x is a solution of (2.8). Then using the chain rule (Lemma 2.1) for isolated
time scales or the regular chain rule for T=R,

xΔ(t)=−a(δ−1(t)
)
x(t) +

(∫ t

δ(t)
a
(
δ−1(s)

)
x(s)Δs

)Δ

=−a(δ−1(t)
)
x(t) + a

(
δ−1(t)

)
x(t)− a(t)x

(
δ(t)

)
δΔ(t)

=−a(t)x
(
δ(t)

)
δΔ(t).

(2.9)

Hence x is a solution of (2.1). Reversing the above steps, we obtain the desired result.
�
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Lemma 2.3. If x is a solution of (2.1) with initial function ψ, then

x(t)= e−a(δ−1)
(
t, t0

)
ψ
(
t0
)

+
∫ t

δ(t)
a
(
δ−1(s)

)
x(s)Δs

− e−a(δ−1)
(
t, t0

)
∫ t0

δ(t0)
a
(
δ−1(s)

)
ψ(s)Δs

−
∫ t

t0

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)e−a(δ−1)(t,τ)
(∫ τ

δ(τ)
a
(
δ−1(s)

)
x(s)Δs

)
Δτ.

(2.10)

Proof. We use the variation of constants formula [1, page 77] for (2.8), to obtain

x(t)= e−a(δ−1)
(
t, t0

)
x
(
t0
)

+
∫ t

t0
e−a(δ−1)

(
t,σ(τ)

)
(∫ τ

δ(τ)
a
(
δ−1(s)

)
x(s)Δs

)Δτ
Δτ. (2.11)

Using integration by parts [1, page 28],

x(t)= e−a(δ−1)
(
t, t0

)
x
(
t0
)

+ e−a(δ−1)(t,τ)
∫ τ

δ(τ)
a
(
δ−1(s)

)
x(s)Δs |tt0

−
∫ t

t0
eΔτ−a(δ−1)(t,τ)

(∫ τ

δ(τ)
a
(
δ−1(s)

)
x(s)Δs

)
Δτ.

(2.12)

It follows from Theorem 1.6 that

x(t)= e−a(δ−1)
(
t, t0

)
x
(
t0
)

+
∫ t

δ(t)
a
(
δ−1(s)

)
x(s)Δs

− e−a(δ−1)
(
t, t0

)
∫ t0

δ(t0)
a
(
δ−1(s)

)
x(s)Δs

−
∫ t

t0
eΔτ	(−a(δ−1))(τ, t)

(∫ τ

δ(τ)
a
(
δ−1(s)

)
x(s)Δs

)
Δτ

= e−a(δ−1)
(
t, t0

)
x
(
t0
)

+
∫ t

δ(t)
a
(
δ−1(s)

)
x(s)Δs

− e−a(δ−1)
(
t, t0

)
∫ t0

δ(t0)
a
(
δ−1(s)

)
x(s)Δs

−
∫ t

t0
	(− a(δ−1))(τ)e	(−a(δ−1))(τ, t)

(∫ τ

δ(τ)
a
(
δ−1(s)

)
x(s)Δs

)
Δτ.

(2.13)

Finally, using Theorem 1.6 once again and x(t)= ψ(t) for t ∈ [δ(t0), t0],

x(t)= e−a(δ−1)
(
t, t0

)
ψ
(
t0
)

+
∫ t

δ(t)
a
(
δ−1(s)

)
x(s)Δs

− e−a(δ−1)
(
t, t0

)
∫ t0

δ(t0)
a
(
δ−1(s)

)
ψ(s)Δs

−
∫ t

t0

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)e−a(δ−1)(t,τ)
(∫ τ

δ(τ)
a
(
δ−1(s)

)
x(s)Δs

)
Δτ.

(2.14)

�



6 Delay dynamic equations with stability

3. Asymptotic properties of the delay equation

The results in this section generalize some of the results by Raffoul in [9]. Let ψ : [δ(t0),
t0]T → R be rd-continuous and let x(t) := x(t, t0,ψ) be the solution of (2.1) on [t0,∞)T
with x(t) = ψ(t) on [δ(t0), t0]T. Let ‖φ‖ = sup|φ(t)| for t ∈ [δ(t0),∞)T, and define the
Banach space B = {φ ∈ C([δ(t0),∞)T : φ(t)→ 0 as t→∞}, with

S :=
{
φ ∈ B : φ(t)= ψ(t)∀t ∈ [δ(t0

)
, t0
]
T

}
. (3.1)

In the following we assume

e−a(δ−1)
(
t, t0

)−→ 0 as t −→∞, (3.2)

and take D : [t0,∞)T→R to be the function

D(t) :=
∫ t

t0

(∣∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)
∣
∣
∣
∣
∣
∣e−a(δ−1)(t,τ)

∣
∣
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)∣∣Δs
)
Δτ

+
∫ t

δ(t)

∣
∣a
(
δ−1(s)

)∣∣Δs.

(3.3)

To enable the use of the contraction mapping theorem, we in fact assume there exists
α∈ (0,1) such that

D(t)≤ α, t ∈ [t0,∞)T. (3.4)

Theorem 3.1. Assume T = R or T is an isolated time scale. If (3.2) and (3.4) hold and
δ ◦ σ = σ ◦ δ, then every solution of (2.1) goes to zero at infinity.

Proof. Assume T is an isolated time scale. Fix ψ : [δ(t0), t0]→ R and define P : S→ B by
(Pφ)(t) := ψ(t) for t ≤ t0 and for t ≥ t0,

(Pφ)(t)= ψ(t0
)
e−a(δ−1)

(
t, t0

)
+
∫ t

δ(t)
a
(
δ−1(s)

)
φ(s)Δs

− e−a(δ−1)
(
t, t0

)
∫ t0

δ(t0)
a
(
δ−1(s)

)
ψ(s)Δs

−
∫ t

t0

(
a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)e−a(δ−1)(t,τ)
∫ τ

δ(τ)
a
(
δ−1(s)

)
φ(s)Δs

)

Δτ.

(3.5)

Then by Lemma 2.3, it suffices to show that P has a fixed point. We will use the contrac-
tion mapping theorem to show P has a fixed point. To show that (Pφ)(t)→ 0 as t→∞,
note that the first and third terms on the right-hand side of (Pφ)(t) go to zero by (3.2).
From (3.3) and (3.4) and the fact that φ(t)→ 0 as t→∞, we have that

∣
∣φ(t)

∣
∣
∫ t

δ(t)

∣
∣a
(
δ−1(s)

)∣∣Δs≤ ∣∣φ(t)
∣
∣α−→ 0, t −→∞. (3.6)
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Let ε > 0 be given and choose t∗ ∈ T so that

α‖φ‖∣∣e−a(δ−1)(t,T)
∣
∣ <

ε
2

, ∀t > t∗, (3.7)

for some large t∗ > T . For the same T it is possible to make

α‖φ‖[δ(T),∞)T <
ε
2

, (3.8)

where ‖φ‖[δ(T),∞)T = sup{|φ(t)|, t ∈ [δ(T),∞)T}. By (2.10) and (3.2), for t ≥ T ,

∫ t

t0

(∣∣
∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)

∣
∣
∣
∣
∣

∣
∣e−a(δ−1)(t,τ)

∣
∣
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)
φ(s)

∣
∣Δs

)

Δτ

=
(∫ T

t0
+
∫ t

T

)(∣∣
∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)

∣
∣
∣
∣
∣

∣
∣e−a(δ−1)(t,τ)

∣
∣

×
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)
φ(s)

∣
∣Δs

)

Δτ

=
∫ T

t0

(∣∣
∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)

∣
∣
∣
∣
∣

∣
∣e−a(δ−1)(t,T)e−a(δ−1)(T ,τ)

∣
∣

×
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)
φ(s)

∣
∣Δs

)

Δτ

+
∫ t

T

(∣∣
∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)

∣
∣
∣
∣
∣

∣
∣e−a(δ−1)(t,τ)

∣
∣
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)
φ(s)

∣
∣Δs

)

Δτ

≤ ∣∣e−a(δ−1)(t,T)
∣
∣‖φ‖

∫ T

t0

(∣∣
∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)

∣
∣
∣
∣
∣

∣
∣e−a(δ−1)(T ,τ)

∣
∣

×
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)∣∣Δs

)

Δτ

+‖φ‖[δ(T),∞)T

∫ t

T

(∣∣
∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)

∣
∣
∣
∣
∣

∣
∣e−a(δ−1)(t,τ)

∣
∣
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)∣∣Δs

)

Δτ

≤ α∣∣e−a(δ−1)(t,T)
∣
∣‖φ‖+α‖φ‖[δ(T),∞)T

<
ε
2

+
ε
2
= ε.

(3.9)
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Hence (Pφ)(t)→ 0 as t→∞ and therefore, P maps S into S. It remains to show that P is a
contraction under the sup norm. Let x, y ∈ S. Then

∣
∣(Px)(t)− (Py)(t)

∣
∣

≤
∫ t

t0

(∣∣
∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)

∣
∣
∣
∣
∣

∣
∣e−a(δ−1)(t,τ)

∣
∣
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)∣∣
∣
∣x(s)− y(s)

∣
∣Δs

)

Δτ

+
∫ t

δ(t)

∣
∣a
(
δ−1(s)

)∣∣
∣
∣(x(s)− y(s)

)∣∣Δs

≤ ‖x− y‖
[∫ t

δ(t)

∣
∣a
(
δ−1(s)

)∣∣Δs

+
∫ t

t0

(∣∣
∣
∣
∣

a
(
δ−1(τ)

)

1−μ(τ)a
(
δ−1(τ)

)

∣
∣
∣
∣
∣

∣
∣e−a(δ−1)(t,τ)

∣
∣
∫ τ

δ(τ)

∣
∣a
(
δ−1(s)

)∣∣Δs

)

Δτ

]

≤ α‖x− y‖.
(3.10)

Therefore, by the contraction mapping principle [6, page 300], P has a unique fixed point
in S. This completes the proof in the isolated time scale case. See Raffoul [9] for the proof
of the T= Z case and a reference for a proof of the continuous case. �

Example 3.2. For any real number q > 1 and positive integer m, define

T= {q−m,q−m+1, . . . ,q−1,1,q,q2, . . .
}
. (3.11)

We show if 0 < c < qm/2m(q− 1), then for any initial function ψ(t), t ∈ [q−m,1]T, the
solution of the delay initial value problem

Dqx(t)=− 1
qm

c

t
x
(

1
qm

t
)

, t ∈ [1,∞]T, (3.12)

x(t)= ψ(t), t ∈ [q−m,1
]
T (3.13)

goes to zero as t→∞.

To obtain (3.12) from (2.1), take a(t)= c/t and δ(t)= q−mt which implies a(δ−1(t))=
c/qmt and δΔ(t) = q−m. To use Theorem 3.1, we verify that conditions (3.2) and (3.4)
hold. Note that

e−a(δ−1)(t,1)=
∏

s∈[1,t)T

[
1− s(q− 1)a

(
qms

)]= (1− q−mc(q− 1)
)n

(3.14)

for t = qn. If c ∈ (0,qm/2m(q− 1)), then c ∈ (0,2qm/(q− 1)) so that 1− q−mc(q− 1) ∈
(−1,1) and

lim
t→∞e−a(δ−1)(t,1)= lim

n→∞
(
1− q−mc(q− 1)

)n = 0. (3.15)
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Thus, (3.2) is satisfied. Now considerD(t) as defined in (3.3). We seek α∈ (0,1) such that
D(t)≤ α,∀t ∈ [1,∞)T. Here we have t0 = 1, μ(t)= (q− 1)t, and

e−a(δ−1)(t,τ)= (1− q−mc(q− 1)
)n−k

(3.16)

for t = qn, τ = qk with k < n. For the second integral in D(t), note that
∫ qu

u
f (ζ)Δζ = (qu−u) f (u), (3.17)

whence
∫ t

δ(t)
a
(
δ−1(s)

)
Δs=

(∫ q−m+1t

q−mt
+
∫ q−m+2t

q−m+1t
+···+

∫ t

q−1t

)(
c

qms

)
Δs

=
(

mc

qm
(
q−mt

)q−mt

)

(q− 1)

= mc

qm
(q− 1),

(3.18)

which is independent of t. It follows that

D(t)= mc

qm
(q− 1) +

mc

qm
(q− 1)

∫ t

1

(
c

qmτ
· 1

1− (q− 1)τc/qmτ
e−a(δ−1)(t,τ)

)

Δτ

= mc

qm
(q− 1) +

mc

qm
(q− 1)

n−1∑

k=0

c

qmqk − qk(q− 1)c

(
1− q−mc(q− 1)

)n−k
(q− 1)qk

= mc

qm
(q− 1) +

mc

qm

n−1∑

k=0

c(q− 1)2

qm− (q− 1)c

(
1− q−mc(q− 1)

)n−k

= mc

qm
(q− 1) +

mc2q−m(q− 1)2

qm− c(q− 1)
1− q−mc(q− 1)
−q−m(q− 1)c

((
1− q−mc(q− 1)

)n− 1
)

= mc(q− 1)
qm

+
mcq−m(q− 1)

1− cq−m(q− 1)

(
1− q−mc(q− 1)

)(
1− (1− q−mc(q− 1)

)n)
.

(3.19)

Consequently,

D(t)= mc(q− 1)
qm

[
2− (1− q−mc(q− 1)

)n]
<

2mc(q− 1)
qm

, ∀t = qn ∈ [1,∞)T. (3.20)

Since 0 < c < qm/2m(q− 1), by taking α := 2mc(q− 1)/qm condition (3.4) is satisfied by

D(t) < α < 1, ∀t ∈ [1,∞)T. (3.21)

Thus (3.2) and (3.4) are met, so that by Theorem 3.1, the solution of the IVP (3.12),
(3.13) goes to zero as t→∞.
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Example 3.3. Consider the time scale of harmonic numbers

T= {H−m,H−m+1, . . . ,H0,H1, . . .
}

(3.22)

for some m ∈ N, where H0 := 0, Hn :=∑n
j=1(1/ j) and H−n := −Hn for n ∈ N. We will

show that if

0 < c <
Hm

2m
, (3.23)

then for any initial function ψ(t), t ∈ [H−m,0]T, the solution of the delay initial value
problem

Δnx
(
Hn
)=− (n−m+ 1)c

Hm
x
(
Hn−m

)
ΔnHn−m, n∈N0, (3.24)

x
(
Hn
)= ψ(Hn

)
, n= 0,−1, . . . ,−m, (3.25)

goes to zero as t→∞.

To get (3.24) from (2.1), take

a(t)= a(Hn
)= (n−m+ 1)c

Hm
, δ(t)= δ(Hn

)=Hn−m. (3.26)

It follows that

e−a(δ−1)
(
Hn,0

)=
(

1− c

Hm

)n
for n∈N0. (3.27)

If we restrict c ∈ (0,2Hm),

lim
t→∞e−a(δ−1)(t,0)= lim

n→∞

(
1− c

Hm

)n
= 0, (3.28)

satisfying (3.2). Simplifying (3.3),

D(t)=
∫ Hn

0

(
(τ + 1)c
Hm

1
1− (τ + 1)c/(τ + 1)Hm

(
1− c

Hm

)n−τ ∫ Hτ

Hτ−m

(s+ 1)c
Hm

Δs

)

Δτ

+
∫ Hn

Hn−m

(s+ 1)c
Hm

Δs

= cm

Hm
+
c2m

Hm
· 1
Hm− c

n−1∑

τ=0

(
1− c

Hm

)n−τ

= cm

Hm
+

c2m

Hm
(
Hm− c

)
(
Hm− c
Hm

)(−Hm

c

)[(
1− c

Hm

)n
− 1

]

= cm

Hm

[

2−
(

1− c

Hm

)n]

<
2cm
Hm

(3.29)
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for all t =Hn ∈ [0,∞)T. By choosing c ∈ (0,Hm/2m),D(t) < α := 2cm/Hm < 1,∀t =Hn ∈
[0,∞)T, satisfying (3.4). Thus by Theorem 3.1, for any given initial function ψ, the solu-
tion of the IVP (2.1), (3.25) goes to zero as t =Hn goes to infinity.

Example 3.4. Let T= {−mh, . . . ,−h,0,h,2h, . . .} where m∈N, then (2.1) becomes

Δhx(t)=−cx(t−hm), t ∈ hN, (3.30)

where Δhx(t) := (x(t+h)− x(t))/h. Our results give that if

0 < c <
1

2mh
, (3.31)

then all solutions go to zero as t→∞.

In this case, a(t)= c, δ(t)= t−mh, and δ−1(t)= t+mh. It can be shown that

e−a(δ−1)(t,0)= (1− ch)t/h. (3.32)

Note for 0 < ch < 2, condition (3.2) is satisfied because

e−a(δ−1)(t,0)−→ 0 (3.33)

as t→∞. It also can be shown that

D(t)=mhc+mhc
(
1−|1− ch|t/h)≤ 2mhc (3.34)

if 0 < ch < 1. Hence (3.4) holds if 0 < c < 1/2mh. Therefore, we use Theorem 3.1 to con-
clude that all solutions of (3.30) go to zero as t→∞. It can be shown that if c ≤ 0, then
there is λ≥ 1 such that x(t)= λht is a solution of (3.30). However, x(t) does not approach
zero as t →∞. Hence our lower estimate for c is sharp. If m = 1, then it can be shown
that all solutions of (3.30) go to zero if 0 < c < 1/h. If m = 2, our example shows that
if 0 < c < 1/4h all solutions go to zero as t →∞. It can be shown that if c = 1/2h, then
there is a solution that does not go to zero as t→∞. Next we give an elementary example
whereT is the real interval [−m,∞),m> 0. Delay differential equations have been studied
extensively; for example, see [8].

Example 3.5. Let T= [−m,∞). For the delay differential equation

x′(t)=−cx(t−m), t ∈ [0,∞), (3.35)

if 0 < c < 1/2m, then all solutions x(t) approach zero as t→∞.

Note that (2.1) reduces to (3.35) if a(t)= c, δ(t)= t−m, and T= [−m,∞). It can be
shown that

e−a(δ−1)(t,τ)= e−c(t−τ), D(t)= cm(2− e−ct). (3.36)

Note that c > 0 implies e−a(δ−1)(t,0)→ 0 as t →∞ and D(t) ≤ 2cm < 1 if c < 1/2m. Our
result follows from Theorem 3.1. Also note that if c = π/2m, then x(t)= sin((π/2m)t) is
a solution that does not approach zero as t →∞. It is well known that if 0 < c < π/2m,
then all solutions of (3.35) approach zero as t→∞.
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4. Asymptotic stability of a nonlinear delay dynamic equation

In this section we consider, on arbitrary time scales, the nonlinear delay dynamic equa-
tion

xΔ(t)=−
∫ t

δ(t)

( n∑

i=1

fi
(
t,x(s)

)
)

Δs, t ∈ [t0,∞)T, (4.1)

where fi(t,x) for each fixed t ∈ T is continuous with respect to x. In addition, we always
suppose

(H1) x fi(t,x)≥ 0 and
∑n

i=1 fi(t,x)= 0⇔ x = 0, t ∈ [t0,∞)T,
(H2) δ : T→ T is continuous and nondecreasing, with δ(t)≤ t and limt→∞ δ(t)=∞.

The initial condition associated with (4.1) takes the form

x(t)= ψ(t), t ∈ [δ(t0
)
, t0
]
, ψ is rd-continuous on

[
δ
(
t0
)
, t0
]
. (4.2)

Equation (4.1) is studied extensively in [7] in the case when T= R; indeed many of our
techniques in this section are motivated by those in [7]. See also a related discussion in
[3].

Theorem 4.1. Assume there exists M > 0 such that for |c| ≤M,

(i)
∫ σ(t)
δ(t)

∑n
i=1(1/c) fi(τ,c)(τ − δ(τ))Δτ ≤ ξ < 1, c �= 0, for t ∈ [t1,∞)T;

(ii)
∫∞
t0

∑n
i=1 | fi(τ,c)|(τ − δ(τ))Δτ =∞;

(iii) |∑n
i=1 fi(τ,c)| ≤∑n

i=1 ai(τ)|c| where the ai are rd-continuous and nonnegative for
τ ≥ t0;

(iv) |∑n
i=1 fi(τ,x)| ≤∑n

i=1 fi(τ, y) for |x| ≤ y ≤M, τ ∈ [δ(t0),∞)T.
Then for any 0 < ε ≤M, there is an η(ε) > 0 such that for any rd-continuous initial function
ψ with ‖ψ‖[δ(t0),t0]T < η(ε), the solution x of (4.1), (4.2) satisfies

∣
∣x(t)

∣
∣ < ε ∀t ∈ [δ(t0

)
,∞)T, lim

t→∞x(t)= 0. (4.3)

In other words, the trivial solution of (4.1) is asymptotically stable.

Proof. Let ε ∈ (0,M] and t1 ∈ [t0,∞)T be given. Also let p(t) :=∑n
i=1 ai(t)(t− δ(t)); by

(H2) and (iii), p ∈ �+. Define η(ε) := ε/ep(t1, t0) and take an initial function ψ with
‖ψ‖[δ(t0),t0]T < η(ε). Integrating (4.1) from t0 to t ∈ [t0, t1]T, we get

x(t)= x(t0
)−

∫ t

t0

(∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x(s)

)
Δs

)

Δτ. (4.4)

Taking absolute values,

∣
∣x(t)

∣
∣≤ ∣∣x(t0

)∣∣+
∫ t

t0

(∫ τ

δ(τ)

∣
∣
∣
∣
∣

n∑

i=1

fi
(
τ,x(s)

)
∣
∣
∣
∣
∣Δs

)

Δτ. (4.5)
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By property (iii),

∣
∣x(t)

∣
∣≤ ∣∣x(t0

)∣∣+
∫ t

t0

(∫ τ

δ(τ)

n∑

i=1

ai(τ)
∣
∣x(s)

∣
∣Δs

)

Δτ. (4.6)

Let x̃(t) :=max{|x(s)| : s∈ [δ(t0), t]}. Then rewriting (4.6), we have

x̃(t)≤ x̃(t0
)

+
∫ t

t0
x̃(τ)

n∑

i=1

ai(τ)
(
τ − δ(τ)

)
Δτ. (4.7)

By Gronwall’s inequality [1, page 257],

x̃(t)≤ x̃(t0
)
ep
(
t, t0

)
, ∀t ∈ [t0,∞)T. (4.8)

Therefore by the definition of η(ε) and the choice of ψ, it follows that x̃(t0) < η(ε) and
|x(t)| ≤ x̃(t) < ε for t ∈ [t0, t1]T. Suppose there exists t∗ ≥ t1 such that x(t∗) = ε and
xΔ(t∗)≥ 0. Note the case when x(t∗)=−ε and xΔ(t∗)≤ 0 is similar. By (4.1), there exists
t̄ ∈ [δ(t∗), t∗)T such that x(t̄)≤ 0. Integrating (4.1) from t̄ to t∗, we obtain

ε− x(t̄)=−
∫ t∗

t̄

(∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x(s)

)
Δs

)

Δτ. (4.9)

Since x(t̄)≤ 0,

ε ≤
∫ t∗

δ(t∗)

(∫ τ

δ(τ)

∣
∣
∣
∣
∣

n∑

i=1

fi
(
τ,x(s)

)
∣
∣
∣
∣
∣Δs

)

Δτ. (4.10)

By (H1) and (iv),

ε ≤
∫ t∗

δ(t∗)

(∫ τ

δ(τ)

n∑

i=1

∣
∣ fi(τ,ε)

∣
∣Δs

)

Δτ, (4.11)

so that

1≤ 1
ε

∫ t∗

δ(t∗)

(
τ − δ(τ)

) n∑

i=1

fi(τ,ε)Δτ, (4.12)

which is a contradiction of (i). Therefore no such t∗ exists. Now suppose there exists
t∗ ∈ [t1,∞)T such that t∗ is right scattered, |x(t)| ≤ ε for all t ∈ [δ(t0), t∗)T, and x(t∗)∈
(−ε,ε) but |x(σ(t∗))| ≥ ε. Without loss of generality, assume

x
(
σ
(
t∗
))≥ ε. (4.13)

By (4.1),

∫ t∗

δ(t∗)

( n∑

i=1

fi
(
t∗,x(s)

)
)

Δs < 0. (4.14)
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Therefore by (H1) and (4.1), there exists t̄ ∈ [δ(t∗), t∗)T such that x(t̄) ≤ 0. Integrate
(4.1) from t̄ to σ(t∗) and use (4.13) to see that

ε ≤ x(σ(t∗))≤ x(σ(t∗))− x(t̄)=−
∫ σ(t∗)

t̄

(∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x(s)

)
Δs

)

Δτ. (4.15)

Thus, comparing the extremities,

ε ≤
∫ σ(t∗)

δ(t∗)

(∫ τ

δ(τ)

∣
∣
∣
∣
∣

n∑

i=1

fi
(
τ,x(s)

)
∣
∣
∣
∣
∣Δs

)

Δτ ≤
∫ σ(t∗)

δ(t∗)

n∑

i=1

fi(τ,ε)
(
τ − δ(τ)

)
Δτ; (4.16)

division by ε yields

1≤ 1
ε

∫ σ(t∗)

δ(t∗)

n∑

i=1

fi(τ,ε)
(
τ − δ(τ)

)
Δτ, (4.17)

which also contradicts (i) and provides the desired result. Now we show the limit of x(t)
goes to zero as t→∞.

Case 1. Let x be a nonoscillatory function. Assume ξ < 1 but there exists a solution x of
(4.1) such that

lim
t→∞x(t) �= 0. (4.18)

Since x is nonoscillatory, there exists T1 > t0 such that x(t)x(T1) > 0 for all t ∈ [T1,∞)T.
Without loss of generality, assume x(t) > 0 for all t ∈ [T1,∞)T. From (4.1) and (H1),
xΔ(t) < 0. Hence there exists a constant x∗ > 0 such that

lim
t→∞x(t)= x∗ (4.19)

and there exists T∗ ∈ T such that for all t ∈ [T1,∞)T, x(t)∈ [x∗,3x∗/2]. Integrate (4.1)
from δ−1(T∗) to t to obtain

x
(
δ−1(T∗

))− x(t)=
∫ t

δ−1(T∗)

(∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x(s)

)
Δs

)

Δτ. (4.20)

For t ≥ δ−1(T∗),

x
(
δ−1(T∗

))− x(t)≤ x∗

2
, (4.21)

but

∫ t

δ−1(T∗)

(∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x(s)

)
Δs

)

Δτ ≥
∫ t

δ−1(T∗)

(∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x∗

)
Δs

)

Δτ

=
∫ t

δ−1(T∗)

( n∑

i=1

fi
(
τ,x∗

)(
τ − δ(τ)

)
)

Δτ,

(4.22)
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which goes to ∞ as t →∞ by (H1) and properties (ii) and (iv). This contradicts (4.20)
and (4.21), so when x is nonoscillatory, the limit of x(t) goes to zero as t→∞.

Case 2. Now assume x is oscillatory. Pick ε ∈ (0,M] and T2 > t0 such that

∫ t

δ(t)

( n∑

i=1

1
c
fi(τ,c)

(
τ − δ(τ)

)
)

Δτ < ξ (4.23)

for 0 < |c| ≤ ε and∀t ∈ [T2,∞)T. Assume

x̄ := limsup
t→∞

∣
∣x(t)

∣
∣ �= 0. (4.24)

Without loss of generality, we will assume

limsup
t→∞

x(t)= x̄ �= 0. (4.25)

Since the solution is oscillatory, there exists a sequence {t j}∞j=1 in T such that lim j→∞ t j =
∞, |x(σ(t j))| → x̄ ≤ ε as j →∞, and xΔ(t j) ≥ 0. Let β := (x̄/2)(1− ξ) and T3 > T2 such
that |x(t)| < β+ x̄ for t ∈ [T3,∞)T. Further assume the t j were chosen such that δ(t j) > T3

and x(σ(t j)) > x̄−β. From (4.1) and the choice of t j , we see that

0≤ xΔ(t j
)=−

∫ t j

δ(t j )

( n∑

i=1

fi
(
t j ,x(s)

)
)

Δs. (4.26)

By (H1), there exists t∗ ∈ [δ(t j), t j]T such that x(t∗)≤ 0. Then

x̄−β < x(σ(t j
))≤ x(σ(t j

))− x(t∗)=−
∫ σ(t j )

t∗

(∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x(s)

)
Δs

)

Δτ

x̄−β <
∫ σ(t j )

t∗

(∫ τ

δ(τ)

∣
∣
∣
∣
∣

n∑

i=1

fi
(
τ,x(s)

)
∣
∣
∣
∣
∣Δs

)

Δτ

≤
∫ σ(t j )

t∗

n∑

i=1

fi(τ,β+ x̄)
(
τ − δ(τ)

)
Δτ

≤
∫ σ(t j )

δ(t j )

n∑

i=1

fi(τ,β+ x̄)
(
τ − δ(τ)

)
Δτ

< (β+ x̄)ξ

(4.27)

by (i). But then β > ((1− ξ)/(1 + ξ))x̄, a contradiction of our selection of β. Therefore
x̄ = 0, in other words, the solution goes to zero as t→∞. �

Example 4.2. Let T= Z, the set of integers, the delay function δ(t) := t−m for some pos-
itive integer m, n= 1 and f1(t,x) := kx for some constant k. Then the four conditions of
Theorem 4.1 are met if 0 < k ≤ ξ/m(m+ 1) for any ξ ∈ (0,1), whereby the trivial solution
of (4.1) is asymptotically stable.
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For T= Z and f1 as above, (4.1) becomes the (delay) difference equation

x(t+ 1)= x(t)−
t−1∑

s=t−m
kx(s), t ∈ Z. (4.28)

Fix ξ ∈ (0,1), m∈N, and 0 < k ≤ ξ/m(m+ 1). To check (i), note that

t∑

τ=t−m

1
c
kc
(
τ − (τ −m)

)= km(m+ 1)≤ ξ < 1, t ∈ Z. (4.29)

In (ii),
∑∞

τ=t0 k|c|m=∞. For (iii), | f1(τ,c)| = k|c|, so we take a1(τ)≡ k > 0, which is rd-
continuous. Finally, (iv) is met as | f1(τ,x)| = k|x| ≤ ky = f1(τ, y) for |x| ≤ y ≤M with
τ ∈ [t0,∞)T. Therefore the trivial solution of (4.1) is asymptotically stable by Theorem
4.1.

Lemma 4.3. Assume x is a global solution for (4.1), (4.2). Then either x is bounded or x is
oscillatory.

Proof. If x is nonoscillatory, then there exists T > 0 such that for t > T , x does not change
sign. Without loss of generality, we suppose x(t) > 0 for t > T . By (H1),

∑n
i=1 fi(t,x(t)) > 0

for t > T , which together with (4.1) yields that xΔ(t) < 0 for large t. Therefore, x is strictly
decreasing on each interval, so by continuity, x is bounded. �

Theorem 4.4. Assume there exists M > 0 and t1 ≥ t0 such that for |c| ≥M,

(i)
∫ σ(t)
δ(t)

∑n
i=1(1/c) fi(τ,c)(τ − δ(τ))Δτ ≤ ξ < 1, for t ∈ [t1,∞)T;

(ii) |∑n
i=1 fi(τ,c)| ≤∑n

i=1 ai(τ)|c| where the ai are rd-continuous and nonnegative for
τ ≥ t0;

(iii) |∑n
i=1 fi(t,u)| ≤∑n

i=1 fi(t, y) for |u| ≤ y, t ∈ [δ(t0),∞)T.
Then every solution x of (4.1), (4.2) for bounded initial function ψ is bounded and satisfies

limsup
t→∞

∣
∣x(t)

∣
∣≤M. (4.30)

Proof. Appealing to assumption (ii), xΔ(t) exists and is finite for each t ∈ [t0,∞)T, so
that solutions of (4.1), (4.2) are global. Suppose x is an unbounded solution of (4.1),
(4.2) with bounded initial function ψ. By Lemma 4.3, x is also oscillatory. As in Case 2
of the proof of Theorem 4.1, without loss of generality there exists a sequence {t j}∞j=1 in
T such that lim j→∞ t j =∞, M ≤ x(σ(t j)) with |x(s)| ≤ x(σ(t j)) for all s∈ [δ2(t j), t j], and
x(σ(t j)) →∞ as j →∞. Moreover there exist corresponding t∗j ∈ [δ(t j), t j]T satisfying
x(t∗j )≤ 0. Then

x
(
σ
(
t j
))≤ x(σ(t j

))− x(t∗j
)=−

∫ σ(t j )

t∗j

(∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x(s)

)
Δs

)

Δτ, (4.31)
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so that by (iii) we have

x
(
σ
(
t j
))≤

∫ σ(t j )

t∗j

(∫ τ

δ(τ)

∣
∣
∣
∣
∣

n∑

i=1

fi
(
τ,x(s)

)
∣
∣
∣
∣
∣Δs

)

Δτ

≤
∫ σ(t j )

δ(t j )

∫ τ

δ(τ)

n∑

i=1

fi
(
τ,x

(
σ
(
t j
)))

ΔsΔτ.

(4.32)

But then

ξ < 1≤
∫ σ(t j )

δ(t j)

τ − δ(τ)
x
(
σ
(
t j
))

n∑

i=1

fi
(
τ,x

(
σ
(
t j
)))

Δτ, (4.33)

a contradiction of (i). Therefore x must be bounded. To prove the last assertion of the
theorem, suppose

limsup
t→∞

∣
∣x(t)

∣
∣= M̄ >M. (4.34)

As in the proof of Theorem 4.1 there are two cases to consider, nonoscillatory and os-
cillatory. Assuming the former leads to a contradiction; in the latter case, there exists a
sequence {t̄ j}∞j=1 as before, which would likewise lead to a contradiction, whereby the
conclusion of the theorem holds. �

Finally we consider the general nonlinear delay dynamic equation

xΔ(t)=−
∫ t

δ(t)

( n∑

i=1

fi
(
t,x(s)

)
)

Δsg(t,s), t ∈ [t0,∞)T, (4.35)

where for simplicity we define

∫ b

a
f (t,s)Δsg(t,s) :=

∫ b

a
f (t,s)gΔs(t,s)Δs (4.36)

and assume for each fixed t ∈ T that f (t,s)gΔs(t,s) is rd-continuous. Then it is straight-
forward to generalize Theorem 4.1 to get the following result.

Theorem 4.5. Assume there exists M > 0 such that for |c| ≤M,

(i)
∫ σ(t)
δ(t)

∑n
i=1(1/c) fi(τ,c)(g(τ,τ)− g(τ,δ(τ)))Δτ ≤ ξ < 1, c �= 0, for t ∈ [t1,∞)T;

(ii)
∫∞
t0

∑n
i=1 | fi(τ,c)|(g(τ,τ)− g(τ,δ(τ)))Δτ =∞;

(iii) |∑n
i=1 fi(τ,c)| ≤∑n

i=1 ai(τ)|c| where the ai are rd-continuous and nonnegative for
τ ≥ t0;

(iv) |∑n
i=1 fi(τ,x)| ≤∑n

i=1 fi(τ, y) for |x| ≤ y ≤M, τ ∈ [δ(t0),∞)T;
(v) g(t, t) > g(t,δ(t)), t ∈ [t0,∞)T.

Then the trivial solution of (4.35) is asymptotically stable.

Example 4.6. Equation (2.1) is a special case of (4.35) if T is an isolated time scale.
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If T is an isolated time scale, then the delay dynamic equation (4.35) with f1(t,x) =
a(t)δΔ(t)x and fi(t,x)= 0, 2≤ i≤ n becomes

xΔ(t)=−
∫ t

τ(t)
a(t)δΔ(t)x(s)Δsg(t,s), (4.37)

where τ(t)≤ δ(t) < t are delay functions and g is (the Heaviside function) defined by

g(t,s)=
⎧
⎨

⎩

0, τ(t)≤ s≤ δ(t),

1, s > δ(t).
(4.38)

Then (the Dirac delta function)

gΔs(t,s)=
⎧
⎪⎨

⎪⎩

1
μ(s)

, s= δ(t),

0, otherwise.
(4.39)

Using the above we obtain

xΔ(t)=−
∫ t

τ(t)
a(t)δΔ(t)x(s)Δsg(t,s)

=−a(t)δΔ(t)
∫ t

τ(t)
x(s)gΔs(t,s)Δs

=−a(t)δΔ(t)
∫ σ(δ(t))

δ(t)
x(s)gΔs(t,s)Δs

=−a(t)δΔ(t)x
(
δ(t)

) 1
μ
(
δ(t)

)μ
(
δ(t)

)

=−a(t)δΔ(t)x
(
δ(t)

)
.

(4.40)
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