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1. Introduction

Let H be a real Hilbert space with the scalar product 〈·,·〉 and the associated norm ‖ · ‖.
In this paper we will investigate the discrete hyperbolic system

duj

dt
(t) +

vj(t)− vj−1(t)

hj
+A

(
uj(t)

)� f j(t),

dvj
dt

(t) +
uj+1(t)−uj(t)

hj
+B

(
vj(t)

)� gj(t),

j = 1,N , t ∈ [0,T], in H , (S)

with the extreme conditions

v0(t)=−α(u1(t)
)
, uN+1(t)= β

(
vN (t)

)
, t ∈ [0,T], (EC)

and the initial data

uj(0)= uj0, vj(0)= vj0, j = 1,N , (ID)

where N ∈ N, hj > 0, j = 1,N , and α, β, A, B are operators in H , which satisfy some
assumptions.
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2 Existence for a class of discrete hyperbolic problems

This problem is a discrete version with respect to x (with H =R) of the problem

∂u

∂t
(t,x) +

∂v

∂x
(t,x) +A

(
u(t,x)

)� f (t,x),

∂v

∂t
(t,x) +

∂u

∂x
(t,x) +B

(
v(t,x)

)� g(t,x),

0 < x < 1, t > 0, in R, (S)

with the boundary conditions

v(t,0)=−α(u(t,0)
)
, u(t,1)= β

(
v(t,1)

)
, t > 0, (BC)

and the initial data

u(0,x)= u0(x), v(0,x)= v0(x), 0 < x < 1. (IC)

The above problem has applications in electrotechnics (the propagation phenomena
in electrical networks) and mechanics (the variable flow of a fluid)—see [7, 8, 13]. The
system (S) subject to various boundary conditions has been studied by many authors:
Barbu, Iftimie, Moroşanu, and Luca, in [4, 5, 9, 11, 12]. Using an idea from [14] we dis-
cretize the problem (S) + (BC) + (IC) in this way: let N be a given integer (N ≥ 1) and
h = 1/(N + 1). In a first stage we approximate the system (S) and the boundary condi-
tions (BC) by

∂u

∂t
(t,x) +

v(t,x)− v(t,x−h)
h

+A
(
u(t,x)

)� f (t,x), x ∈ (h, (N + 1)h
)
,

∂v

∂t
(t,x) +

u(t,x+h)−u(t,x)
h

+B
(
v(t,x)

)� g(t,x), x ∈ (0,Nh), t > 0,

v(t,0)=−α(u(t,0)
)
, u(t,Nh)= β

(
v(t,Nh)

)
.

(1.1)

We look for u and v of the form u(t,x)=∑N
j=0uj(t)ϕj(x) and v(t,x)=∑N

j=0 vj(t)ϕj(x),
where

ϕj(x)= χ[ jh,( j+1)h)(x)=
⎧
⎨

⎩
1, x ∈ [ jh, ( j + 1)h

)
,

0, x �∈ [ jh, ( j + 1)h
)
.

(1.2)

We write f , g, u0, v0 as

f (t,x)=
N∑

j=0

f j(t)ϕj(x), g(t,x)=
N∑

j=0

gj(t)ϕj(x),

u0(x)=
N∑

j=0

uj0ϕj(x), v0(x)=
N∑

j=0

vj0ϕj(x),

(1.3)

where f j(t)= f (t, jh), gj(t)= g(t, jh), uj0 = u0( jh), and vj0 = v0( jh).
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Then for uj and vj we obtain the system

u′j +
vj − vj−1

h
+A

(
uj
)� f j , j = 1,N ,

v′j +
uj+1−uj

h
+B

(
vj
)� gj , j = 0,N − 1,

(1.4)

with the conditions v0 =−α(u0), uN = β(vN ), uj(0)= uj0, j = 1,N , and vj(0)= vj0, j =
0,N − 1.

For a unitary writing, we take j = 1,N − 1 in both equations of the above system and
then the extreme conditions become v0 = −α(u1) and uN = β(vN−1) (they do not show
u0 and vN ). By passing N →N + 1 and taking different steps hj , we obtain the system (S)
in uj , vj , j = 1,N with v0 =−α(u1), uN+1 = β(vN ) (α= α, β = β), and H =R.

In this way the study of the partial differential system (S) reduces to the study of the
ordinary differential system (S) (with H = R and hj = h, for all j). The solution uj , vj
depends on h and it seems that ũ(t,x)=∑uj(t)ϕj(x), ṽ(t,x)=∑vj(t)ϕj(x) approximate
the solution u, v of the system (S). We will not study here the convergence of the solution
ũ, ṽ to u, v, but we will investigate the well-posedness of the discrete problem (S) + (EC) +
(ID).

We will also study the discrete system that corresponds to (S) for x ∈ (0,∞) with the
boundary condition

v(t,0)=−α(u(t,0)
)
, t > 0, (BC)1

and initial data

u(0,x)= u0(x), v(0,x)= v0(x), x > 0. (IC)1

More precisely we will investigate the infinite discrete hyperbolic system

dun
dt

+
vn− vn−1

h
+A

(
un
)� fn,

dvn
dt

+
un+1−un

h
+B

(
vn
)� gn, n= 1,2, . . . , t ∈ [0,T], in H ,

(S̃)

with the extreme condition

v0(t)=−α(u1(t)
)
, t ∈ [0,T], (ẼC)

and initial data

un(0)= un0, vn(0)= vn0, n= 1,2, . . . . (ĨD)

Although the proposed problems appeared by discretization of the problem (S) +
(BC) + (IC) and the corresponding one for x ∈ (0,∞), our problems also cover some
nonlinear differential systems in Hilbert spaces.



4 Existence for a class of discrete hyperbolic problems

For other classes of difference and differential equations in abstract spaces we refer the
reader to [1, 2, 10].

In Section 2 we recall some definitions and results from the theory of maximal mono-
tone operators that we need to prove our results. In Sections 3 and 4 we study the prob-
lems (S) + (EC) + (ID) and (S̃) + (ẼC) + (ĨD).

2. Notations and preliminaries

Let H be a real Hilbert space with the scalar product 〈·,·〉 and the associated norm
‖ · ‖. We denote by → and ⇀ the strong and weak convergence in H , respectively. For
a multivalued operator A : H →H we denote by D(A) = {x ∈H ; A(x) �= ∅} its domain
and by R(A) = ∪{A(x); x ∈ D(A)} its range. The operator A is identified with its graph
G(A)= {[x, y]∈H ×H ; x ∈D(A), y ∈ R(A)} ⊂H ×H .

We use for A the notation A : D(A)⊂H →H . If A,B ⊂H →H and λ∈R then

λA= {[x,λy]; y ∈A(x)
}

, D(λA)=D(A),

A+B = {[x, y + z]; y ∈A(x), z ∈A(x)
}

, D(A+B)=D(A)∩D(B).
(2.1)

The operator A : D(A) ⊂H →H is monotone if for all x1,x2 ∈ D(A) and y1 ∈ A(x1),
y2 ∈A(x2) we have 〈y1− y2,x1− x2〉 ≥ 0.

An operator A : H →H single-valued and everywhere defined is hemicontinuous if for
all x, y ∈H we have A(x+ ty)⇀ A(x), as t→ 0. The operator A : D(A)⊂H →H is demi-
continuous if it is strongly weakly continuous, that is, if ([xn, yn])n ⊂ A with xn → x, as
n→∞ and yn⇀ y, as n→∞, then [x, y]∈A.

A demicontinuous operator is also hemicontinuous.
The operator A : D(A)⊂H →H is maximal monotone if it is maximal in the set of all

monotone operators, that is, A is monotone and, as subset of H ×H , it is not properly
contained in any other monotone subset of H ×H .

The monotone operator A : D(A) ⊂ H → H is maximal monotone if and only if for
any λ > 0 (equivalently for some λ > 0), R(I + λA)=H .

If A : H → H is everywhere defined, single-valued, monotone, and hemicontinuous,
then it is maximal monotone.

If A : D(A) ⊂ H → H is maximal monotone and B : H → H is everywhere defined,
single-valued, monotone, and hemicontinuous, then A+B is maximal monotone.

For a maximal monotone operator A : D(A)⊂H →H , the operators

Jλ = (I + λA)−1 : H −→H , λ > 0, Aλ = 1
λ

(
I − Jλ

)
: H −→H , λ > 0, (2.2)

are the resolvent and the Yosida approximation of A.
For an operator A : D(A) ⊂ H → H , f : (0,∞) → H and u0 ∈ H , we consider the

Cauchy problem

du

dt
(t) +A

(
u(t)

)� f (t), t > 0, u(0)= u0. (CP)
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The function u∈ C([0,T];H) is strong solution for the problem (CP) if u is absolutely
continuous on every compact of (0,T), u(t)∈D(A), for a.a. t ∈ (0,T), u(0)= u0, and u
satisfies (CP)1 for a.a. t ∈ (0,T).

The function u ∈ C([0,T];H) is weak solution for the problem (CP) if there exist
(un)n ⊂W1,∞(0,T ;H) and ( fn)n ⊂ L1(0,T ;H) such that

dun
dt

(t) +A
(
un(t)

)� fn(t), for a.a. t ∈ (0,T), n= 1,2, . . . , (2.3)

un→ u, as n→∞, in C([0,T];H), u(0)= u0, and fn→ f , as n→∞, in L1(0,T ;H).
For other properties of the maximal monotone operators and for the main results

of existence, uniqueness of the strong and weak solutions for the nonlinear evolution
equations in Hilbert spaces, we refer the reader to [3, 6, 13].

3. The problem (S) + (EC) + (ID)

The assumptions we will use in this section are the following.
(H1) The operators A : D(A) ⊂ H → H , B : D(B) ⊂ H → H are maximal monotone,

possibly multivalued, with D(A) �= ∅, D(B) �= ∅.
(H2) The operators α,β : H →H are single-valued and maximal monotone.
(H3) The constants hj > 0, j = 1,N .
We will write our problem as a Cauchy problem in a certain Hilbert space, for we con-

sider the Hilbert space X = H2N = {(u1,u2, . . . ,uN ,v1,v2, . . . ,vN )T ; uj ,vj ∈ H , j = 1,N}
with the scalar product

〈(
u1, . . . ,uN ,v1, . . . ,vN

)T
,
(
u1, . . . ,uN ,v1, . . . ,vN

)T〉
X =

N∑

j=1

hj
(〈
uj ,uj

〉
+
〈
vj ,v j

〉)
(3.1)

and the corresponding norm ‖ · ‖X .
We introduce the operator � : D(�)⊂ X → X ,

�
((
u1,u2, . . . ,uN ,v1,v2, . . . ,vN

)T)

=
(
v1 +α

(
u1
)

h1
,
v2− v1

h2
, . . . ,

vN − vN−1

hN
,
u2−u1

h1
,
u3−u2

h2
, . . . ,

β
(
vN
)−uN
hN

)T
.

(3.2)

Because D(α)=D(β)=H , we deduce that D(�)= X .
We also define the operator � : D(�)⊂ X → X , D(�)=D(A)N ×D(B)N ,

�
((
u1,u2, . . . ,uN ,v1,v2, . . . ,vN

)T)

= {(γ1,γ2, . . . ,γN ,δ1,δ2, . . . ,δN
)T

; γi ∈ A
(
ui
)
, δi ∈ B

(
vi
)
, i= 1,N

}
.

(3.3)
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Using the operators � and �, our problem can be equivalently expressed as the fol-
lowing Cauchy problem in the space X

dU

dt
(t) + �

(
U(t)

)
+ �

(
U(t)

)� F(t), U(0)=U0, (P)

where U = (u1,u2, . . . ,uN ,v1, . . . ,vN )T , U0 = (u10,u20, . . . ,uN0,v10, . . . ,vN0)T , F = ( f1,
f2, . . . , fN ,g1, . . . ,gN )T .

Lemma 3.1. If the assumptions (H2) and (H3) hold, then the operator � is monotone and
demicontinuous; so it is maximal monotone.

Proof. The operator � is defined on X and it is single-valued. � is monotone, because

〈
�(U)−�(U),U −U

〉
X

=
N∑

j=1

hj

〈
vj − vj−1− v j + v j−1

hj
,uj −uj

�

+
N∑

j=1

hj

〈
uj+1−uj −uj+1 +uj

hj
,vj − v j

�

= 〈v1 +α
(
u1
)− v1−α

(
u1
)
,u1−u1

〉

+
N∑

j=2

(〈
vj − v j ,uj −uj

〉− 〈vj−1− v j−1,uj −uj
〉)

+
N−1∑

j=1

(〈
uj+1−uj+1,vj − v j

〉− 〈uj −uj ,vj − v j
〉)

+
〈
β
(
vN
)−uN −β

(
vN
)

+uN ,vN − vN
〉

= 〈v1− v1,u1−u1
〉

+
〈
α
(
u1
)−α

(
u1
)
,u1−u1

〉

− 〈u1−u1,v1− v1
〉

+
〈
vN − vN ,uN −uN

〉

+
〈
β
(
vN
)−β

(
vN
)
,vN − vN

〉− 〈uN −uN ,vN − vN
〉

= 〈α(u1
)−α

(
u1
)
,u1−u1

〉
+
〈
β
(
vN
)−β

(
vN
)
,vN − vN

〉≥ 0,

(3.4)

with v0 = −α(u1), v0 = −α(u1), uN+1 = β(vN ), uN+1 = β(vN+1), for all U = (u1,u2,
. . . ,uN ,v1, . . . ,vN )T , U = (u1,u2, . . . ,uN ,v1, . . . ,vN )T ∈ X .

The operator � is also demicontinuous, that is, if Un → U0 and �(Un)⇀ V 0, then
V 0 =�(U0). Indeed, let Un = (un1,un2, . . . ,unN ,vn1 , . . . ,vnN ), U0 = (u0

1,u0
2, . . . ,u0

N ,v0
1, . . . ,v0

N ),
Un → U0 and �(Un) = ((vn1 + α(un1))/h1, (vn2 − vn1 )/h2, . . . , (vnN − vnN−1)/hN , (un2 − un1)/
h1, . . . , (β(vnN )−unN )/hN )T , V 0 = (x0

1,x0
2, . . . ,x0

N , y0
1, . . . , y0

N )T , �(Un)⇀V 0.
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From Un→U0 we deduce that

unj −→ u0
j , vnj −→ v0

j , for n−→∞,∀ j = 1,N. (3.5)

Because �(Un)⇀V 0, we get 〈�(Un),Y〉X → 〈V 0,Y〉X , for all Y ∈ X , Y = (α1,α2, . . . ,αN ,
β1, . . . ,βN )T , that is,

〈
vn1 +α

(
un1
)
,α1
〉−→ h1

〈
x0

1,α1
〉

,
〈
vnj − vnj−1,αj

〉−→ hj
〈
x0
j ,αj

〉
, j = 2,N ,

〈
unj −unj−1,βj−1

〉−→ hj−1
〈
y0
j−1,βj−1

〉
, j = 2,N ,

〈
β
(
vnN
)−unN ,βN

〉−→ hN
〈
y0
N ,βN

〉
, in H ,

=⇒ vn1 +α
(
un1
)

h1x
0
1 , (3.6)

vnj − vnj−1 hjx
0
j , j = 2,N ,

unj −unj−1 hj−1y
0
j−1, j = 2,N ,

(3.7)

β
(
vnN
)−unN hN y

0
N , in H , as n−→∞. (3.8)

From the relations (3.5) and (3.7) we obtain x0
j = (v0

j − v0
j−1)/hj , j = 2,N , y0

j−1 = (u0
j −

u0
j−1)/hj−1, j = 2,N . Because α and β are demicontinuous, by (3.5), (3.6), and (3.8) we

deduce

h1x
0
1 − v0

1 = α
(
u0

1

)
, hN y

0
N +u0

N = β
(
v0
N

)=⇒ x0
1 =

v0
1 +α

(
u0

1

)

h1
, y0

N =
β
(
v0
N

)−u0
N

hN
.

(3.9)

Therefore V 0 =�(U0). Hence the operator � is demicontinuous (so it is also hemicon-
tinuous) and, by [6, Proposition 2.4] we deduce that it is maximal monotone. �

Lemma 3.2. If the assumptions (H1) and (H3) hold, then the operator � is maximal mono-
tone in X .

Proof. The operator � is evidently monotone

〈Z−Z,U −U〉X =
N∑

j=1

hj
(〈
γj − γ j ,uj −uj

〉
+
〈
δj − δ j ,vj − v j

〉)≥ 0, (3.10)

for allU = (u1,u2, . . . ,uN ,v1, . . . ,vN )T ,U = (u1,u2, . . . ,uN ,v1, . . . ,vN )T ∈D(�),Z ∈�(U),
Z ∈�(U), for all γj ∈A(uj), γ j ∈ A(uj), δj ∈ B(vj), δ j ∈ B(v j), j = 1,N .

It is also maximal monotone in X . Indeed, by [6, Proposition 2.2] it is sufficient (and
necessary) to show that for λ > 0,R(I + λ�)= X ⇔ for allY ∈ X ,Y= (x1,x2, . . . ,xN , y1, . . . ,
yN )T there exists U ∈ X , U = (u1,u2, . . . ,uN ,v1, . . . ,vN )T such that

U + λ�(U)� Y. (3.11)



8 Existence for a class of discrete hyperbolic problems

The last relation gives us

uj + λγj = xj , j = 1,N ,

vj + λδj = yj , j = 1,N ,
=⇒

uj =
(
I + λA

)−1(
xj
)= JAλ

(
xj
)
, j = 1,N ,

vj =
(
I + λB

)−1(
yj
)= JBλ

(
yj
)
, j = 1,N ,

(3.12)

where γj ∈ A(uj), δj ∈ B(vj) j = 1,N , and JAλ and JBλ are the resolvents of A and B, re-
spectively (A and B are maximal monotone). Then U = (u1, . . . ,uN ,v1, . . . ,vN )T , where uj

and vj , j = 1,N , defined above, satisfy our condition (3.11). �

We give now the main result for our initial problem (S) + (EC) + (ID).

Theorem 3.3. Assume that the assumptions (H1)–(H3) hold. If uj0 ∈ D(A), for all j =
1,N , vj0 ∈ D(B), for all j = 1,N , and f j ,gj ∈W1,1(0,T ;H), j = 1,N , then there exist
unique functions uj and vj ∈W1,∞(0,T ;H), j = 1,N , uj(t) ∈ D(A), vj(t) ∈ D(B), for all
j = 1,N , for all t ∈ [0,T], which verify the system (S) for every t ∈ [0,T), the condition
(EC) for every t ∈ [0,T), and the initial data (ID).

Moreover uj and vj , j = 1,N , are everywhere differentiable from right in the topology of
H and

d+uj

dt
=
(
f j −A

(
uj
)− vj − vj−1

hj

)0

, j = 1,N ,

d+vj
dt

=
(
gj −B

(
vj
)− uj+1−uj

hj

)0

, j = 1,N , ∀t ∈ [0,T),

(3.13)

with v0(t)=−α(u1(t)), uN+1(t)= β(vN (t)),∀t ∈ [0,T).

Proof. Because the operator � is maximal monotone in X and � is single-valued, with
D(�)= X , monotone, and hemicontinuous, by [3, Corollary 1.3, Chapter II] we deduce
that � + � : D(�) ⊂ X → X is maximal monotone. By [3, Theorem 2.2, Corollary 2.1,
Chapter III] we deduce that, for U0 ∈D(�) and F ∈W1,1(0,T ;X), the problem (P) has
a unique solution U = (u1,u2, . . . ,uN ,v1, . . . ,vN )T ∈W1,∞(0,T ;X), U(t) ∈ D(�), for all
t ∈ [0,T). We consider (P)1 in the interval [0,T + ε], ε > 0, (by extending correspondingly
the functions f j and gj , j = 1,N) and we get U(T)∈D(�).

The solution U is everywhere differentiable from right and

d+U

dt
(t)= (F(t)−�

(
U(t)

)−�
(
U(t)

))0
, ∀t ∈ [0,T), (3.14)

that is, the relations from theorem are verified. In addition we have

∥
∥
∥
∥
d+U

dt
(t)
∥
∥
∥
∥
X
≤ ∥∥(F(0)−�

(
U0
)−�

(
U0
))0∥∥

X +
∫ t

0

∥
∥
∥
∥
dF

ds
(s)
∥
∥
∥
∥
X
ds, ∀t ∈ [0,T).

(3.15)
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If U and V are the solutions of (P) corresponding to (U0,F), (V0,G) ∈ D(�)×W1,1(0,
T ;X), then

∥
∥U(t)−V(t)

∥
∥
X ≤

∥
∥U0−V0

∥
∥
X +

∫ t

0

∥
∥F(s)−G(s)

∥
∥
Xds, ∀t ∈ [0,T]. (3.16)

�

Remark 3.4. If U0 ∈D(�)=D(A)
N ×D(B)

N
and F ∈ L1(0,T ;X), then, by [3, Corollary

2.2, Chapter III], the problem (P)⇔ (S) + (EC) + (ID) has a unique weak solution U ∈
C([0,T];X), that is, there exist (Fn)n ⊂W1,1(0,T ;X), Fn→ F, as n→∞, in L1(0,T ;X) and
(Un)n ⊂W1,∞(0,T ;X), Un(0) = U0, Un → U , as n→∞ in C([0,T];X), strong solutions
for the problems

dUn

dt
(t) + (� + �)

(
Un(t)

)� Fn(t), for a.a. t ∈ (0,T), n= 1,2, . . . . (3.17)

4. The problem (S̃) + (ẼC) + (ĨD)

We present the assumptions that we will use in this section as follows.
(H̃1) The operators A : D(A) ⊂ H → H and B : D(B) ⊂ H → H are maximal mono-

tone, 0∈A(0), 0∈ B(0), and there exist a1,a2 > 0 such that

‖γ‖ ≤ a1‖u‖, ∀u∈D(A), ∀γ ∈ A(u); ‖δ‖ ≤ a2‖u‖, ∀u∈D(B), ∀δ ∈ B(u).
(4.1)

(H̃2) The operator α : H →H is single-valued and maximal monotone.
(H̃3) The constant h > 0.
We consider the space Y = l2h(H)× l2h(H), where l2h(H)= {(un)n ⊂H ;

∑∞
n=1‖un‖2 <∞}

(= l2(H)), with the scalar product

〈((
un
)
n,
(
vn
)
n

)
,
((
un
)
n,
(
vn
)
n

)〉
Y =

〈(
un
)
n,
(
un
)
n

〉
l2h(H) +

〈(
vn
)
n,
(
vn
)
n

〉
l2h(H)

=
∞∑

n=1

h
〈
un,un

〉
+

∞∑

n=1

h
〈
vn,vn

〉
.

(4.2)

We define the operator �̃ : Y → Y ,

�̃
((
un
)
n,
(
vn
)
n

)=
((

vn− vn−1

h

)

n
,
(
un+1−un

h

)

n

)

, with v0 =−α
(
u1
)
, (4.3)

and the operator �̃ : D(�̃)⊂ Y → Y ,

�̃
((
un
)
n,
(
vn
)
n

)= {((γn
)
n,
(
δn
)
n

)∈ Y , γn ∈ A
(
un
)
, δn ∈ B

(
vn
)
, ∀n≥ 1

}
, (4.4)

with D(�̃)= {((un)n, (vn)n)∈ Y ; un ∈D(A), vn ∈D(B), ∀n≥ 1}.
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Lemma 4.1. If the assumptions (H̃2) and (H̃3) hold, then the operator �̃ is monotone and
demicontinuous in Y .

Proof. First we observe that �̃ is well-defined in Y . If ((un)n, (vn)n) ∈ Y , then �̃((un)n,

(vn)n)∈ Y , and D(�̃)= Y .
The operator �̃ is monotone, because

〈
�̃
((
un
)
n,
(
vn
)
n

)− �̃
((
un
)
n,
(
vn
)
n

)
,
((
un
)
n,
(
vn
)
n

)− ((un
)
n,
(
vn
)
n

)〉
Y

=
〈(

vn− vn−1

h

)

n
−
(
vn− vn−1

h

)

n
,
(
un−un

)
n

�

l2h(H)

+
〈(

un+1−un
h

)

n
−
(
un+1−un

h

)

n
,
(
vn− vn

)
n

�

l2h(H)

= 〈α(u1
)−α

(
u1
)
,u1−u1

〉≥ 0.

(4.5)

Next we prove that �̃ is demicontinuous, that is, if

((
u
j
n
)
n,
(
v
j
n
)
n

)−→ ((
u0
n

)
n,
(
v0
n

)
n

)
, for j −→∞ in Y , (4.6)

�̃
((
u
j
n
)
n,
(
v
j
n
)
n

) ((
xn
)
n,
(
yn
)
n

)
, for j −→∞ in Y , (4.7)

then ((xn)n, (yn)n)= �̃((u0
n)n, (v0

n)n).
From (4.6) we deduce

√

h
∥
∥(u

j
n
)
n−

(
u0
n

)
n

∥
∥2
l2(H) +h

∥
∥(v

j
n
)
n−

(
v0
n

)
n

∥
∥2
l2(H) −→ 0, for j −→∞=⇒

∥
∥(u

j
n
)
n−

(
u0
n

)
n

∥
∥
l2(H) −→ 0, for j −→∞

∥
∥(v

j
n
)
n−

(
v0
n

)
n

∥
∥
l2(H) −→ 0, for j −→∞

=⇒

∞∑

n=1

∥
∥u

j
n−u0

n

∥
∥2 −→ 0, for j −→∞

∞∑

n=1

∥
∥v

j
n− v0

n

∥
∥2 −→ 0, for j −→∞

=⇒
u
j
n −→ u0

n, for j −→∞, ∀n,

v
j
n −→ v0

n, for j −→∞, ∀n.

(4.8)

Then by (4.7) we have

〈
�̃
((
u
j
n
)
n,
(
v
j
n
)
n

)
,
((
αn
)
n,
(
βn
)
n

)〉
Y

−→ 〈((
xn
)
n,
(
yn
)
n

)
,
((
αn
)
n,
(
βn
)
n

)〉
Y , as j −→∞, ∀((αn

)
n,
(
βn
)
n

)∈ Y ,

=⇒
〈((

v
j
n− v

j
n−1

h

)

n

,

(
u
j
n+1−u

j
n

h

)

n

)

,
((
αn
)
n,
(
βn
)
n

)
〉

Y

,
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−→
∞∑

n=1

h
〈
xn,αn

〉
+

∞∑

n=1

h
〈
yn,βn

〉
, as j −→∞, with v

j
0 =−α

(
u
j
1

)
, ∀ j ≥ 1,

=⇒
∞∑

n=1

〈
v
j
n− v

j
n−1,αn

〉
+

∞∑

n=1

〈
u
j
n+1−u

j
n,βn

〉

−→
∞∑

n=1

h
〈
xn,αn

〉
+

∞∑

n=1

h
〈
yn,βn

〉
, as j −→∞.

(4.9)

We take αn = 0, for all n≥ 1, and (βn)n = (x,0,0, . . .), (0,x,0, . . .), . . .(x ∈H); we obtain
by (4.8) yn = (u0

n+1−u0
n)/h, for all n≥ 1. For βn = 0, for all n≥ 1 and (αn)n = (0,x,0, . . .),

(0,0,x, . . .), . . ., (x ∈H) we obtain by (4.8) that xn = (v0
n− v0

n−1)/h, n≥ 2. For βn = 0, for

all n≥ 1 and αn = (x,0,0, . . .) we find (v
j
1 +α(u

j
1))/h⇀ x1, so

α
(
u
j
1

)= v
j
1 +α

(
u
j
1

)− v
j
1 hx1− v0

1, as j −→∞ (4.10)

(v
j
1 → v0

1 as j →∞, by (4.8) with n= 1). Now since α is a demicontinuous operator, and

moreover u
j
1 → u0

1, as j →∞ (by (4.8) with n= 1), we have

hx1− v0
1 = α

(
u0

1

)⇐⇒ x1 = v0
1 +α

(
u0

1

)

h
. (4.11)

Therefore (((v0
n− v0

n−1)/h)n, ((u0
n+1−u0

n)/h)n)= ((xn)n, (yn)n), (v0
0 =−α(u0

1)). We deduce

that �̃ is demicontinuous, so it is maximal monotone. �

Lemma 4.2. If the assumptions (H̃1) and (H̃3) hold, then the operator �̃ is maximal mono-
tone in Y .

Proof. We suppose without loss of generality (for an easy writing) that A and B are single-

valued. The operator �̃ under the assumptions of this lemma is well-defined inY . Indeed,
for ((un)n, (vn)n) ∈ D(�̃)⇔ ((un)n, (vn)n) ∈ Y , un ∈ D(A), vn ∈ D(B), for all n ≥ 1, we
have �̃((un)n, (vn)n)∈ Y , that is, (A(un))n, (B(vn))n ∈ l2(H).

By (H̃1) we have

∞∑

n=1

∥
∥A
(
un
)∥∥2 ≤

∞∑

n=1

a2
1

∥
∥un

∥
∥2 = a2

1

∥
∥(un

)
n

∥
∥2
l2(H) <∞,

∞∑

n=1

∥
∥B
(
vn
)∥∥2 ≤

∞∑

n=1

a2
2

∥
∥vn

∥
∥2 = a2

2

∥
∥(vn

)
n

∥
∥2
l2(H) <∞.

(4.12)
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The operator �̃ is monotone

〈
�̃
((
un
)
n,
(
vn
)
n

)− �̃
((
un
)
n,
(
vn
)
n

)
,
((
un
)
n,
(
vn
)
n

)− ((un
)
n,
(
vn
)
n

)〉
Y

= 〈((A(un
))

n,
(
B
(
vn
))

n

)− ((A(un
))

n,
(
B
(
vn
))

n

)
,
((
un−un

)
n,
(
vn− vn

)
n

)〉
Y

= 〈(A(un
)−A

(
un
))

n,
(
un−un

)
n

〉
l2h(H) +

〈(
B
(
vn
)−B

(
vn
))

n,
(
vn− vn

)
n

〉
l2h(H)

=
∞∑

n=1

h
〈
A
(
un
)−A

(
un
)
,un−un

〉
+

∞∑

n=1

h
〈
B
(
vn
)−B

(
vn
)
,vn− vn

〉≥ 0,

∀((un
)
n,
(
vn
)
n

)
,
((
un
)
n,
(
vn
)
n

)∈D(�̃).
(4.13)

Moreover �̃ is maximal monotone, that is,

∀λ > 0, R(I + λB̃)= Y ⇐⇒∀Z = ((xn
)
n,
(
yn
)
n

)∈ Y , ∃W = ((un
)
n,
(
vn
)
n

)∈D(�̃)
(4.14)

such that W + λ�̃(W)= Z. The last relation is equivalent to

((
un
)
n,
(
vn
)
n

)
+ λ
((
A
(
un
))

n,
(
B
(
vn
))

n

)= ((xn
)
n,
(
yn
)
n

)⇐⇒
(
un
)
n + λ

(
A
(
un
))

n =
(
xn
)
n

(
vn
)
n + λ

(
B
(
vn
))

n =
(
yn
)
n

=⇒
un + λA

(
un
)= xn,

vn + λB
(
vn
)= yn, ∀n≥ 1

=⇒

un = (I + λA)−1(xn
)= JAλ

(
xn
)
, vn = (I + λB)−1(yn

)= JBλ
(
yn
)
, ∀n≥ 1.

(4.15)

Because A(0)= 0 we have JAμ (0)= 0, for all μ > 0 and

∥
∥JAμ (x)− JAμ (0)

∥
∥≤ ‖x‖ =⇒ ∥

∥JAμ (x)
∥
∥≤ ‖x‖, ∀x ∈H , ∀μ > 0. (4.16)

Similarly by B(0)= 0 we deduce JBμ (0)= 0, for all μ > 0, and ‖JBμ x‖ ≤ ‖x‖, for all x ∈H ,
for all μ > 0.

With this remark we have

∞∑

n=1

∥
∥JAλ (xn)

∥
∥2 ≤

∞∑

n=1

∥
∥xn

∥
∥2

<∞,
∞∑

n=1

∥
∥JBλ (yn)

∥
∥2 ≤

∞∑

n=1

∥
∥yn

∥
∥2

<∞, (4.17)

so W = ((un)n, (vn)n)∈D(�̃).
Using the operators �̃ and �̃, the problem (S̃) + (ẼC) + (ĨD) can be written as

dV

dt
(t) + �̃

(
V(t)

)
+ �̃

(
V(t)

)� F̃(t), t ∈ (0,T), in Y

V(0)=V0,
(P̃)

where V = ((un)n, (vn)n), V0 = ((un0)n, (vn0)n), and F̃ = (( fn)n, (gn)n). �
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Theorem 4.3. Assume that the assumptions (H̃1)–(H̃3) hold. If V0 ∈D(�̃) (un0 ∈D(A),
vn0 ∈D(B), for all n≥ 1 with (un0)n, (vn0)n ∈ l2(H)) and F̃ ∈W1,1(0,T ;Y) (( fn)n, (gn)n ∈
W1,1(0,T ; l2(H))), then there exists a unique function V = ((un)n, (vn)n)∈W1,∞(0,T ;Y),
with V(t) ∈ D(B̃), for all t ∈ [0,T], and V verifies the system (S̃), for all t ∈ [0,T), the
extreme condition (ẼC), for all t ∈ [0,T), and the initial data (ĨD).

Proof. By Lemmas 4.1 and 4.2 we have D(�̃ + �̃) = D(�̃) and, by [3, Corollary 1.3,

Chapter II], �̃ + �̃ is maximal monotone. Using again [3, Theorem 2.2, Chapter III]
we obtain the conclusion of the theorem. In addition un and vn are everywhere differen-
tiable from the right on [0,T) and, by extended fn and gn on [0,T + ε] with ε > 0, we have

V(t)∈D(�̃), for all t ∈ [0,T]. �

Remark 4.4. Although the operators � and �̃ have semblable forms, we cannot establish
connections between them, because the spaces, where these operators are defined, are
different. Indeed, defining un = vn = 0, for all n≥N + 1, we have

�̃
((
un
)
n,
(
vn
)
n

)=
(
v1− v0

h
, . . . ,

vN − vN−1

h
,−vN

h
,
u2−u1

h
, . . . ,

uN −uN−1

h
,−uN

h

)
.

(4.18)

Therefore �̃((un)n, (vn)n)∈HN+1×HN �= X . Thus, Theorem 3.3 is not a consequence of
Theorem 4.3.
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(1979), no. 1, 141–148.



14 Existence for a class of discrete hyperbolic problems
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