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We investigate some qualitative behavior of the solutions of the difference equation xn+1 =
axn− bxn/(cxn−dxn−1), n= 0,1, . . . , where the initial conditions x−1, x0 are arbitrary real
numbers and a, b, c, d are positive constants.
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1. Introduction

In this paper we deal with some properties of the solutions of the difference equation

xn+1 = axn− bxn
cxn−dxn−1

, n= 0,1, . . . , (1.1)

where the initial conditions x−1, x0 are arbitrary real numbers and a, b, c, d are positive
constants.

Recently, there has been a lot of interest in studying the global attractivity, bounded-
ness character, and the periodic nature of nonlinear difference equations. For some results
in this area, see, for example, [1–13], we recall some notations and results which will be
useful in our investigation.

Let I be some interval of real numbers and the function f has continuous partial
derivatives on Ik+1, where Ik+1 = I × I × ··· × I (k + 1− times). Then, for initial con-
ditions x−k, x−k+1, . . . , x0 ∈ I , it is easy to see that the difference equation

xn+1 = f
(
xn,xn−1, . . . ,xn−k

)
, n= 0,1, . . . , (1.2)

has a unique solution {xn}∞n=−k.
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A point x ∈ I is called an equilibrium point of (1.2) if

x = f (x,x, . . . ,x). (1.3)

That is, xn = x for n≥ 0 is a solution of (1.2), or equivalently, x is a fixed point of f .

Definition 1.1 (stability). (i) The equilibrium point x of (1.2) is locally stable if for every
ε > 0, there exists δ > 0 such that for all x−k, x−k+1, . . . , x−1, x0 ∈ I , with

∣
∣x−k − x

∣
∣+

∣
∣x−k+1− x

∣
∣+ ···+

∣
∣x0− x

∣
∣ < δ,

∣
∣xn− x

∣
∣ < ε ∀n≥−k.

(1.4)

(ii) The equilibrium point x of (1.2) is locally asymptotically stable if x is locally stable
solution of (1.2) and there exists γ > 0 such that for all x−k, x−k+1, . . . , x−1, x0 ∈ I , with

∣
∣x−k − x

∣
∣+

∣
∣x−k+1− x

∣
∣+ ···+

∣
∣x0− x

∣
∣ < γ,

lim
n→∞xn = x.

(1.5)

(iii) The equilibrium point x of (1.2) is global attractor if for all x−k,x−k+1, . . . ,x−1,
x0 ∈ I ,

lim
n→∞xn = x. (1.6)

(iv) The equilibrium point x of (1.2) is globally asymptotically stable if x is locally
stable, and x is also a global attractor of (1.2).

(v) The equilibrium point x of (1.2) is unstable if x is not locally stable.
The linearized equation of (1.2) about the equilibrium x is the linear difference equa-

tion

yn+1 =
k∑

i=0

∂ f (x,x, . . . ,x)
∂xn−i

yn−i. (1.7)

Now assume that the characteristic equation associated with (1.7) is

p(λ)= p0λ
k + p1λ

k−1 + ···+ pk−1λ+ pk = 0, (1.8)

where pi = ∂ f (x,x, . . . ,x)/∂xn−i.

Theorem 1.2 [9]. Assume that pi ∈R, i= 1,2, . . ., and k ∈ {0,1,2, . . .}. Then

k∑

i=1

∣
∣pi
∣
∣ < 1 (1.9)

is a sufficient condition for the asymptotic stability of the difference equation

yn+k + p1yn+k−1 + ···+ pk yn = 0, n= 0,1, . . . . (1.10)
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Corollary 1.3 [9]. Assume that f is a C1 function and let x be an equilibrium of (1.2).
Then the following statements are true.

(a) If all roots of the polynomial equation (1.8) lie in the open unite disk |λ| < 1, then
the equilibrium x of (1.2) is asymptotically stable.

(b) If at least one root of (1.8) has absolute value greater than one, then the equilibrium
x of (1.2) is unstable.

Remark 1.4. The condition (1.9) implies that all the roots of the polynomial equation
(1.8) lie in the open unite disk |λ| < 1.

Consider the following equation:

xn+1 = f
(
xn,xn−1

)
. (1.11)

The following theorem will be useful for the proof of our main results in this paper.

Theorem 1.5 [10]. Let [a,b] be an interval of real numbers and assume that

f : [a,b]2 −→ [a,b] (1.12)

is a continuous function satisfying the following properties.
(a) f (x, y) is nondecreasing in x ∈ [a,b] for each y ∈ [a,b], and is nonincreasing in

y ∈ [a,b] for each x ∈ [a,b].
(b) If (m,M)∈ [a,b]× [a,b] is a solution of the system

m= f (m,M), M = f (M,m), (1.13)

then

m=M. (1.14)

Then (1.11) has a unique equilibrium x ∈ [a,b] and every solution of (1.11) converges to x.

2. Periodic solutions

In this section we study the existence of periodic solutions of (1.1). The following theorem
states the necessary and sufficient conditions that this equation has periodic solutions.

Theorem 2.1. Equation (1.1) has positive prime period-two solutions if and only if

(c+d)(a+ 1) > 4d, ac �= d, c > d. (2.1)

Proof. First suppose that there exists a prime period-two solution

. . . , p,q, p,q, . . . (2.2)

of (1.1). We will prove that condition (2.1) holds.
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We see from (1.1) that

p = aq− bq

cq−dp
,

q = ap− bp

cp−dq
.

(2.3)

Then

cpq−dp2 = acq2− adpq− bq, (2.4)

cpq−dq2 = acp2− adpq− bp. (2.5)

Subtracting (2.5) from (2.4) gives

d
(
q2− p2)= ac

(
q2− p2)− b(q− p). (2.6)

Since p �= q, it follows that

p+ q = b

ac−d
. (2.7)

Again, adding (2.4) and (2.5) yields

2cpq−d
(
p2 + q2)= ac

(
p2 + q2)− 2adpq− b(p+ q). (2.8)

It follows by (2.7), (2.8), and the relation

p2 + q2 = (p+ q)2− 2pq ∀p,q ∈R, (2.9)

that

pq = b2d
(
ac−d

)2
(c+d)(a+ 1)

. (2.10)

Now it is clear from (2.7) and (2.10) that p and q are the two positive distinct roots of the
quadratic equation

(ac−d)t2− bt+
b2d

(ac−d)(c+d)(a+ 1)
= 0 (2.11)

and so

b2 >
4b2d

(c+d)(a+ 1)
. (2.12)

Therefore, inequality (2.1) holds.
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Second, suppose that inequality (2.1) is true. We will show that (1.1) has a prime
period-two solution.

Assume that

p = b+α

2(ac−d)
,

q = b−α

2(ac−d)
,

(2.13)

where α= √b2− 4b2d/((c+d)(a+ 1)).
From inequality (2.1) it follows that α is a real positive number, therefore, p and q are

distinct positive real numbers.
Set

x−1 = p, x0 = q. (2.14)

We show that x1 = x−1 = p and x2 = x0 = q.
It follows from (1.1) that

x1=aq− bq

cq−dp
= acq2−adpq− bq

cq−dp

= ac
[
(b−α)/

(
2(ac−d)

)]2−ad[b2d/
(
(ac−d)2(c+d)(a+1)

)]−b[(b−α)/
(
2(ac−d)

)]

c
[
(b−α)/

(
2(ac−d)

)]−d
[
(b+α)/

(
2(ac−d)

)] .

(2.15)

Multiplying the denominator and numerator by 4(ac−d)2 gives

x1 = 2b2d− (4ab2cd+ 4ab2d2
)
/
(
(c+d)(a+ 1)

)− 2bdα
2(ac−d)

{
cb− bd− (c+d)α

} . (2.16)

Multiplying the denominator and numerator by {cb− bd + (c+ d)α}{(c+ d)(a+ 1)} we
get

x1 =
[(

4b3d3 + 4b3cd2− 4ab3c2d− 4ab3cd2
)

+
(
4b2cd2 + 4b2d3− 4ab2c2d− 4ab2cd2

)
α
]

2(ac−d)
{

4b2cd2 + 4b2d3− 4ab2c2d− 4ab2cd2
} .

(2.17)

Dividing the denominator and numerator by {4b2cd2 + 4b2d3− 4ab2c2d− 4ab2cd2} gives

x1 = b+α

2(ac−d)
= p. (2.18)

Similarly as before one can easily show that

x2 = q. (2.19)

Then it follows by induction that

x2n = q, x2n+1 = p ∀n≥−1. (2.20)
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Thus (1.1) has the positive prime period two solution

. . . , p,q, p,q, . . . , (2.21)

where p and q are the distinct roots of the quadratic equation (2.11) and the proof is
complete. �

3. Local stability of the equilibrium point

In this section we study the local stability character of the solutions of (1.1).
The equilibrium points of (1.1) are given by the relation

x = ax− bx

cx−dx
. (3.1)

If (c−d)(a− 1) > 0, then the only positive equilibrium point of (1.1) is given by

x = b

(c−d)(a− 1)
. (3.2)

Let f : (0,∞)2 → (0,∞) be a function defined by

f (u,v)= au− bu

cu−dv
. (3.3)

Therefore,

∂ f (u,v)
∂u

= a+
bdv

(cu−dv)2
,

∂ f (u,v)
∂v

=− bdu

(cu−dv)2
.

(3.4)

Then we see that

∂ f (x,x)
∂u

= a+
d(a− 1)
(c−d)

= p0,

∂ f (x,x)
∂v

=−d(a− 1)
(c−d)

= p1.

(3.5)

Then the linearized equation of (1.1) about x is

yn+1− p0yn−1− p1yn = 0. (3.6)

Theorem 3.1. Assume that

|ac−d|+ |ad−d| < |c−d|. (3.7)

Then the equilibrium point of (1.1) is locally asymptotically stable.
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Proof. Suppose that

|ac−d|+ |ad−d| < |c−d|, (3.8)

then

∣
∣
∣
∣a+

d(a− 1)
(c−d)

∣
∣
∣
∣+

∣
∣
∣
∣−

d(a− 1)
(c−d)

∣
∣
∣
∣ < 1. (3.9)

Thus

∣
∣p1

∣
∣+

∣
∣p0

∣
∣ < 1. (3.10)

It is followed by Theorem 1.2 that (3.6) is asymptotically stable. The proof is complete.
�

4. Global attractor of the equilibrium point of (1.1)

In this section we investigate the global attractivety character of solutions of (1.1).

Theorem 4.1. The equilibrium point x of (1.1) is a global attractor if c �= d.

Proof. We can easily see that the function f (u,v) which is defined by (3.3) is increasing
in u and decreasing in v.

Suppose that (m,M) is a solution of the system

m= f (m,M), M = f (M,m). (4.1)

Then it results

1
cm−dM

= 1
cM−dm

, (4.2)

that is, M =m. It follows by Theorem 1.5 that x is a global attractor of (1.1) and then the
proof is complete. �

5. Special case of (1.1)

In this section we study the following special case of (1.1):

xn+1 = xn− xn
xn− xn−1

, (5.1)

where the initial conditions x−1, x0 are arbitrary real numbers with x−1, x0 ∈R/{0}, and
x−1 �= x0.
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5.1. The solution form of (5.1). In this section we give a specific form of the solutions of
(5.1).

Theorem 5.1. Let {xn}∞n=−1 be the solution of (5.1) satisfying x−1 = k, x0 = h with k �= h,
k,h∈R/{0}. Then for n= 0,1, . . . ,

x2n−1 = k+n
(
h− k− (n− 1)− h

h− k

)
,

x2n = h+n
(
h− k−n− h

h− k

)
.

(5.2)

Proof. For n= 0 the result holds. Now suppose that n > 0 and that our assumption holds
for n− 1. That is,

x2n−3 = k+ (n− 1)
(
h− k− (n− 2)− h

h− k

)
,

x2n−2 = h+ (n− 1)
(
h− k− (n− 1)− h

h− k

)
.

(5.3)

Now, it follows from (5.1) that

x2n−1 = x2n−2− x2n−2

x2n−2− x2n−3

= h+ (n− 1)
(
h− k− (n− 1)− h

h− k

)

− h+(n−1)
(
h−k−(n−1)−h/(h−k)

)

(
h+(n−1)

(
h−k−(n−1)−h/(h−k)

))− (k+ (n−1)
(
h−k−(n−2)−h/(h−k)

))

= h+ (n− 1)
(
h− k− (n− 1)− h

h− k

)
− h+ (n− 1)

(
h− k− (n− 1)−h/(h− k)

)

h− k− (n− 1)
.

(5.4)

Multiplying the denominator and numerator by (h− k) we get

x2n−1 = k+ (n− 1)
(
h− k− (n− 1)− h

h− k

)
−
(
h+ (n− 1)(h− k)

)

(h− k)
+ (h− k)

= k+ (n− 1)
(
h− k− (n− 1)− h

h− k

)
+ (h− k)− (n− 1)− h

(h− k)
,

(5.5)

then we have

x2n−1 = k+n
(
h− k− (n− 1)− h

h− k

)
. (5.6)
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Also, we get from (5.1)

x2n = x2n−1− x2n−1

x2n−1− x2n−2

= k+n
(
h− k− (n− 1)− h

h− k

)
+
k+n

(
h− k− (n− 1)−h/(h− k)

)

(n− 1) +h/(h− k)
.

(5.7)

Multiplying the denominator and numerator by (h− k) we get

x2n = k+n
(
h− k− (n− 1)− h

h− k

)

+

(
k(h− k) +n(h− k)2

)− (n(n− 1)(h− k) +nh
)

(n− 1)(h− k) +h
.

(5.8)

Thus we obtain

x2n = h+n
(
h− k−n− h

h− k

)
. (5.9)

Hence, the proof is complete. �

Remark 5.2. It is easy to see that every solution of (5.1) is unbounded.
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