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We study the behavior of all eigenvalues for boundary value problems of fourth-order
difference equations Δ4yi = λai+2yi+2, −1≤ i≤ n− 2, y0 = Δ2y−1 = Δyn = Δ3yn−1 = 0, as
the sequence {ai}ni=1 varies. A comparison theorem of all eigenvalues is established for
two sequences {ai}ni=1 and {bi}ni=1 with aj ≥ bj , 1 ≤ j ≤ n, and the existence of positive
eigenvector corresponding to the smallest eigenvalue of the problem is also obtained in
this paper.
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1. Introduction

Boundary value problems have important applications to physics, chemistry, and biology.
For example, the boundary value problem

u(4)(t)= g(t) f
(
u(t)

)
, 0≤ t ≤ 1, (1.1)

u(0)= u′′(0)= u′(1)= u′′′(1)= 0 (1.2)

arises in the study of elasticity and has definite physical meanings. Equation (1.1) is often
referred to as the beam equation. It describes the deflection of a beam under a certain
force. The boundary condition (1.2) means that the beam is simply supported at the end
t = 0 and fastened with a sliding clamp at t = 1. In 2000, Graef and Yang [4] studied the
problem (1.1)-(1.2), and obtained sufficient conditions for existence and nonexistence of
positive solutions to the problem.

In this paper, we consider the eigenvalue problems for boundary value problems of
fourth-order difference equations:

Δ4yi = λai+2yi+2, −1≤ i≤ n− 2,

y0 = Δ2y−1 = Δyn = Δ3yn−1 = 0,
(1.3)
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2 Eigenvalue comparisons for the beam equation

Δ4yi = μbi+2yi+2, −1≤ i≤ n− 2,

y0 = Δ2y−1 = Δyn = Δ3yn−1 = 0,
(1.4)

where λ and μ are parameters, and the forward difference operator Δ is defined as

Δyi = yi+1− yi. (1.5)

We are going to show that comparison results can be established for all the eigenvalues
of the systems (1.3) and (1.4) under certain conditions. Note that the problems (1.3) and
(1.4) are discrete analogies to the following boundary value problems for fourth-order
linear beam equations:

y(4)(t)= λa(t)y(t), y(0)= y′′(0)= y′(1)= y′′′(1)= 0,

y(4)(t)= μb(t)y(t), y(0)= y′′(0)= y′(1)= y′′′(1)= 0.
(1.6)

Throughout the paper, we assume that
(H1) n≥ 3 is a fixed integer;
(H2) ai ≥ 0 and bi ≥ 0 for 1≤ i≤ n with

∑n
i=1 ai > 0 and

∑n
i=1 bi > 0.

If λ is a number (maybe complex) such that (1.3) has a nontrivial solution {yi}n+2
i=−1,

then λ is said to be an eigenvalue of the problem (1.3), and the corresponding nontrivial
solution {yi}n+2

i=−1 is called an eigenvector of (1.3) corresponding to λ. Similarly, if μ is a
number such that (1.4) has a nontrivial solution {yi}n+2

i=−1, then μ is said to be an eigen-
value of the problem (1.4), and the corresponding nontrivial solution {yi}n+2

i=−1 is called
an eigenvector of (1.4) corresponding to μ.

Travis [7] established some comparison results for the smallest eigenvalues of two
eigenvalue problems for boundary value problems of 2nth-order linear differential equa-
tions, by using the theory of u0-positive linear operator in a Banach space equipped with
a cone of “nonnegative” elements. Since then, some progress has been made on compar-
isons of eigenvalues of boundary value problems of differential equations or difference
equations. We refer the reader to the papers of Davis et al. [1], Gentry and Travis [2, 3],
Hankerson and Peterson [5, 6]. However, in all the papers mentioned above, the compar-
ison results are for the smallest eigenvalues only.

The purpose of this paper is to establish the existence and comparison theorems for
all the eigenvalues of the problems (1.3) and (1.4). We will also prove the existence of
positive eigenvectors corresponding to the smallest eigenvalues of the problems.

2. Eigenvalue comparisons

In this section, we denote by x∗ the conjugate transpose of a vector x. A Hermitian matrix
A is said to be positive semidefinite if x∗Ax ≥ 0 for any x. It is said to be positive definite if
x∗Ax > 0 for any nonzero x. In what follows we will write X ≥ Y if X and Y are Hermitian
matrices of order n and X −Y is positive semidefinite. A matrix is said to be positive if
every component of the matrix is positive. We also denote by Nul(X) the null space of a
matrix X .
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The boundary conditions in (1.3) are the same as

y0 = 0, y−1 =−y1, yn+1 = yn, yn+2 = yn−1. (2.1)

And the problem (1.3) is equivalent to the linear system

(−D+ λA)y = 0, (2.2)

where A = diag(a1,a2, . . . ,an−1,an), y = (y1, y2, . . . , yn−1, yn)T , and D is a banded n× n
matrix given by

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5 −4 1 0 0 ··· 0 0 0 0
−4 6 −4 1 0 ··· 0 0 0 0

1 −4 6 −4 1 ··· 0 0 0 0
0 1 −4 6 −4 ··· 0 0 0 0
··· ··· ··· ··· ··· ··· ··· ··· ··· ···

0 0 0 0 ··· 1 −4 6 −4 1
0 0 0 0 ··· 0 1 −4 6 −3
0 0 0 0 ··· 0 0 1 −3 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.3)

Obviously, there is a one-to-one correspondence between the solution

(
y1, y2, . . . , yn−1, yn

)T
(2.4)

to the problem (2.2) and the solution (y−1, y0, y1, . . . , yn, yn+1, yn+2)T to the problem (1.3)
under the relationship (2.1). We will not distinguish one from the other, denote by y
either one of these two vectors, and say that problems (1.3) and (2.2) are equivalent.
Similarly, the problem (1.4) is equivalent to

(−D+μB)y = 0, (2.5)

where B = diag(b1,b2, . . . ,bn−1,bn) and D, y are defined as above.
Let ei be the ith column of the identity matrix I of order n. Define the elementary

matrix Pi = I + ei−1e
T
i . It is easily seen that APi = A+ (Aei−1)eTi is the matrix obtained by

adding the (i− 1)th column of A to the ith column of A and that PiA= A+ ei−1(eTi A) is
the matrix obtained by adding the ith row of A to the (i− 1)th row of A. Similarly, APT

i

and PT
i A are matrices obtained by adding the ith column of A to the (i− 1)th column of

A and by adding the (i− 1)th row of A to the ith row of A, respectively.

Lemma 2.1. D is positive definite and D−1 is a positive matrix.

Proof. Multiplying on D by Pn and PT
n , we have PnDPT

n . Further multiplying Pn−1 and
PT
n−1, we have Pn−1PnDPT

n P
T
n−1, continuing this way, P2P3 ···Pn−1PnDPT

n P
T
n−1 ···PT

3 P
T
2

will be a tridiagonal matrix which is further reduced to the identity matrix by multiplying
PT

2 and P2, PT
3 and P3, . . . ,PT

n and Pn, that is,

PT
n P

T
n−1 ···PT

3 P
T
2 P2P3 ···Pn−1PnDP

T
n P

T
n−1 ···PT

3 P
T
2 P2P3 ···Pn−1Pn = I. (2.6)
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Thus, we have

D =WTW , (2.7)

where

W = P−1
n P−1

n−1 ···P−1
3 P−1

2 P−T2 P−T3 ···P−Tn−1P
−T
n . (2.8)

Obviously, D is positive definite since W is nonsingular. We also have

D−1 = PT
n P

T
n−1 ···PT

3 P
T
2 P2P3 ···Pn−1PnP

T
n P

T
n−1 ···PT

3 P
T
2 P2P3 ···Pn−1Pn, (2.9)

which is positive due to the fact that each Pi (2≤ i≤ n) is positive. The proof is complete.
�

Lemma 2.2. If λ is an eigenvalue of the problem (1.3) and y = (y1, y2, . . . , yn−1, yn)T is a
corresponding eigenvector, then

(a) y∗Ay > 0,
(b) λ is real and positive,
(c) if ρ is an eigenvalue of the problem (1.3) which is different from λ and x = (x1,x2, . . . ,

xn−1,xn)T is a corresponding eigenvector, then xTAy = 0.

Proof. (a) The assumption (H2) indicates that y∗Ay ≥ 0. Assume the contrary, that
y∗Ay = 0. Obviously, we have

√
Ay = 0 where

√
A= diag(

√
a1,
√
a2, . . . ,

√
an). Then Dy =

λAy = λ
√
A
√
Ay = 0 which, as well as Lemma 2.1, implies that y = 0, a contradiction.

(b) We can write

λy∗Ay = y∗(λAy)= y∗Dy = y∗D∗y = (Dy)∗y = (λAy)∗y = λ̄y∗A∗y = λ̄y∗Ay,
(2.10)

which, together with (a), implies that λ= λ̄, that is, λ is real. Finally, the relations above
indicate that λ= y∗Dy/

(
y∗Ay

)
> 0 thanks to Lemmas 2.1 and 2.2(a).

The part (c) follows from

(λ− ρ)xTAy = λxTAy− ρxTAy = xT(λAy)− (ρAx)T y = xTDy− (Dx)T y = 0. (2.11)

The proof is complete. �

Lemma 2.3. The eigenvalues of the problem (1.3) are related to those of the matrix
D−1/2AD−1/2 as follows.

(a) If λ is an eigenvalue of the problem (1.3), then 1/λ is an eigenvalue of D−1/2AD−1/2.
(b) If α is a positive eigenvalue of D−1/2AD−1/2, then 1/α is an eigenvalue of the problem

(1.3).
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Proof. (a) Let λ be an eigenvalue of the problem (1.3) and y = (y1, y2, . . . , yn−1, yn)T be a
corresponding eigenvector. Then, in view of Lemma 2.2, λ > 0 and λAy =Dy. Therefore

λAy =D1/2D1/2y,

D−1/2AD−1/2(D1/2y
)= 1

λ

(
D1/2y

)
.

(2.12)

The result in (b) can be proved similarly. The proof is complete. �

Next, we state the well-known Perron-Frobenius theorem. For a proof, please refer to
[8, page 30].

Lemma 2.4 (Perron-Frobenius). Let A be a real square matrix. If A is also a nonnegative
irreducible matrix, then the spectral radius ρ(A) of the matrix A is a simple eigenvalue of A
associated to a positive eigenvector. Moreover, ρ(A) > 0.

Theorem 2.5. If λ1 > 0 is the smallest eigenvalue of the problem (1.3), then there exists a
positive eigenvector y corresponding to λ1.

Proof. We note that

D−1Ay = 1
λ1

y. (2.13)

Thus 1/λ1 is the maximum eigenvalue of D−1A and the y is an eigenvector corresponding
to 1/λ1.

In the case when ai > 0 for all 1 ≤ i ≤ n, we obtain that the matrix D−1A is positive
in view of Lemma 2.1 and thus is irreducible. Therefore, the result follows immediately
from the Perron-Frobenius theorem.

In the case when some of the ai’s are zero, without loss of generality we assume that
a1 = a2 = ··· = ap = 0 and ai > 0 for p < i≤ n, we can write D−1A as follows:

D−1A=
(
O V
O Z

)

, (2.14)

whereV is a p× (n− p) matrix and Z is a (n− p)× (n− p) matrix. Both V and Z are pos-
itive matrices. Also, 1/λ1 is the maximum eigenvalue of Z. Applying the Perron-Frobenius
theorem to the positive matrix Z, there exists a positive vector yz > 0 such that

Zyz = 1
λ1

yz. (2.15)

Define yv = λ1V yz and y = (yTv , yTz )T . Obviously, we have

y > 0, D−1Ay = 1
λ1

y. (2.16)

This completes the proof. �

Lemma 2.6. Suppose that z = (z−1,z0,z1, . . . ,zn+2)T is a nonzero solution to (1.3). Then
z1 �= 0.
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Proof. Assume the contrary, that is, z1 = 0. Then, it is easily seen from the initial condi-
tions in (1.3) that

Δz0 = z1− z0 = 0, Δz−1 = Δz0−Δ2z−1 = 0, z−1 = z0−Δz−1 = 0. (2.17)

We claim that z2 = 0. Assume the contrary, that is, z2 �= 0. For simplicity, we rescale the
vector z so that z2 = 1. Therefore, it is seen from (1.3) and (2.17) that

Δz1 = z2− z1 = 1, Δ2z0 = Δz1−Δz0 = 1, Δ3z−1 = Δ2z0−Δ2z−1 = 1, (2.18)

which further implies that

Δ4z−1 = λa1z1 ≥ 0,

Δ3z0 = Δ3z−1 +Δ4z−1 ≥ 1 + 0≥ 1,

Δ2z1 = Δ2z0 +Δ3z0 ≥ 1 + 1≥ 1,

Δz2 = Δz1 +Δ2z1 ≥ 1 + 1≥ 1,

z3 = z2 +Δz2 ≥ 1 + 1≥ 1.

(2.19)

Similarly, we have

Δ4z0 = λa2z2 ≥ 0, Δ3z1 ≥ 1, Δ2z2 ≥ 1, Δz3 ≥ 1, z4 ≥ 1. (2.20)

Continuing this procedure, we will finally get

Δ4zn−2 = λanzn ≥ 0, Δ3zn−1 ≥ 1, Δ2zn ≥ 1, Δzn+1 ≥ 1, zn+2 ≥ 1,
(2.21)

which contradicts the boundary condition Δ3zn−1 = 0. Therefore, we have z−1 = z0 = z1 =
z2 = 0. The difference equation (1.3) can be written as

yi+4 = 4yi+3 +
(
λai+2− 6

)
yi+2 + 4yi+1− yi, −1≤ i≤ n− 2, (2.22)

from which zi = 0 for all i can be deduced recursively from the initial conditions z−1 =
z0 = z1 = z2 = 0. This contradicts the assumption that z �= 0. Therefore we have z1 �= 0.

�

Lemma 2.7. Suppose that both

x = (x−1,x0,x1, . . . ,xn+2
)T

, y = (y−1, y0, y1, . . . , yn+2
)T

(2.23)

are nonzero solutions to (1.3) for a fixed λ. Then x and y are linearly dependent.

Proof. It is easily seen from Lemma 2.6 that x1 �= 0 and y1 �= 0. Define z = y1x − x1y.
Obviously, z is a solution to (1.3) with z1 = 0. Therefore, in view of Lemma 2.6, z is a
trivial solution, that is, z = 0, leading to the desired result. �
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Lemma 2.8. Let N ≥ 1 be the number of positive elements in the set {a1,a2, . . . ,an}. Then
there are N distinct eigenvalues λi (i = 1,2, . . . ,N) of the problem (1.3) and αi = 1/λi (i =
1,2, . . . ,N) are the only positive eigenvalues of D−1/2AD−1/2.

Proof. The assumption (H2) implies N ≥ 1. Suppose that α1 ≥ α2 ≥ ··· ≥ αn ≥ 0 are all
eigenvalues of D−1/2AD−1/2. The fact that D−1/2AD−1/2 is real and symmetric indicates
that there exists an orthogonal matrix Q such that

QTD−1/2AD−1/2Q = diag
(
α1,α2, . . . ,αn

)
. (2.24)

The nonsingularity of D−1/2Q and (2.24) imply that

rank(A)= rank
(
QTD−1/2AD−1/2Q

)= rank
(

diag
(
α1,α2, . . . ,αn

))
(2.25)

indicating that the number of positive αi is the same as that of positive ai in A which is
equal to N .

We claim that all of positive αi, i = 1,2, . . . ,N , are distinct. Suppose the contrary that
αi0 = αi0+1 > 0 for some i0 where 1 ≤ i0 ≤ N − 1. Observe that QTD−1/2AD−1/2Qei = αiei
(see (2.24)) which further implies that

D
(
D−1/2Qei

)= 1
αi
A
(
D−1/2Qei

)
, i= i0, i0 + 1. (2.26)

Thus, we have two independent nonzero solutions to (2.2) with λ= 1/αi0 from which two
independent nonzero solutions to (1.3) with λ= 1/αi0 can be constructed, contradicting
Lemma 2.7. Thus, it is seen from Lemma 2.3 that {λi = 1/αi : i = 1,2, . . . ,N} gives the
complete set of eigenvalues of the problem (1.3). The proof is complete. �

Theorem 2.9. Assume the hypotheses of (H1)-(H2) hold. Let j be the number of positive
elements in the set {a1,a2, . . . ,an} and let k be the number of positive elements in the set
{b1,b2, . . . ,bn}. Let {λ1 < λ2 < ··· < λj} be the set of all eigenvalues of the problem (1.3)
and let {μ1 < μ2 < ··· < μk} be the set of all eigenvalues of the problem (1.4). If ai ≥ bi for
1≤ i≤ n, then λi ≤ μi for 1≤ i≤ k.

Proof. In view of Lemma 2.8, we have that

α1 = 1
λ1

> α2 = 1
λ2

> ··· > αj = 1
λj

> 0, αj+1 = ··· = αn = 0,

β1 = 1
μ1

> β2 = 1
μ2

> ··· > βk = 1
μk

> 0, βk+1 = ··· = βn = 0

(2.27)

are the eigenvalues of D−1/2AD−1/2 and D−1/2BD−1/2, respectively. If ai ≥ bi for 1≤ i≤ n,
then A≥ B implying that

D−1/2AD−1/2 ≥D−1/2BD−1/2. (2.28)
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By Weyl’s inequality and (2.28), we have

αi ≥ βi ≥ 0, 1≤ i≤ n. (2.29)

The desired result follows directly from (2.27) and (2.29). The proof is complete. �

Remark 2.10. Equation (1.1) is usually studied together with a set of boundary condi-
tions, which might be (1.2) or one of the following:

u(0)= u′′(0)= u′(1)= u(1)= 0, (2.30)

u(0)= u′′(0)= u′′(1)= u(1)= 0, (2.31)

u(0)= u′(0)= u′(1)= u′′′(1)= 0, (2.32)

u(0)= u′(0)= u′′(1)= u′′′(1)= 0, (2.33)

u(0)= u′(0)= u′(1)= u(1)= 0. (2.34)

Each of the above boundary conditions has specific physical meaning. For example, (2.30)
means that the beam is simply supported at the end t = 0, and embedded at the end t = 1.

In fact, the results obtained in this paper can be generalized to eigenvalue problems
of boundary value problems of linear beam equations which include the discrete form of
any of the above boundary conditions, (2.30) through (2.34). For example, comparison
results can be established for the eigenvalue problems for boundary value problems of
fourth-order difference equations

Δ4yi = λai+2yi+2, −1≤ i≤ n− 2,

y−1 = Δy−1 = Δyn+1 = yn+2 = 0,

Δ4yi = μbi+2yi+2, −1≤ i≤ n− 2,

y−1 = Δy−1 = Δyn+1 = yn+2 = 0,

(2.35)

where y−1 = Δy−1 = Δyn+1 = yn+2 = 0 is the discrete form of (2.34). We leave the details
of such generalizations to the reader.
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