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1. Neutral delay dynamic equation

We consider, on arbitrary time scales, the neutral delay dynamic equation

[
x(t)− p(t)x

(
k(t)

)]Δ
+ q(t)x

(
�(t)

)= 0, t ∈ [t0,∞)T, (1.1)

where T is a time scale unbounded above, the variable delays k,� : [t0,∞)T → T are
nondecreasing with k(t), �(t) < t for all t ∈ [t0,∞)T such that limt→∞ k(t), �(t)=∞. The
coefficient functions p,q : T→R are right-dense continuous with p bounded and q ≥ 0.
To clarify some notation, take �−1(t) := sup{s : �(s) ≤ t}, �−(n+1)(t)= �−1(�−n(t)) for t ∈
[�(t0),∞)T, and �n+1(t) = �(�n(t)) for t ∈ [�−3(t0),∞)T. For p and k above, let Ω be the
linear set of all functions given by

Ω := {x : T→R :
[
x(t)− p(t)x

(
k(t)

)]Δ ∈ Crd
([
t0,∞)T;R

)}
; (1.2)

solutions of (1.1) will belong to Ω.
In the aftermath of Hilger’s breakthrough paper [4], a rapidly diversifying body of

literature has sought to unify, extend, and generalize ideas from discrete calculus, con-
tinuous calculus, and quantum calculus to arbitrary time-scale calculus, where a time
scale is merely a nonempty closed set of real numbers. This paper illustrates this new
understanding by extending some discrete results from difference equations to dynamic
equations on time scales. In particular, (1.1) is studied in [6] with T= Z and p ≡ 0, and
in [5] in the case when T = Z with variable p. Much of the organization of and moti-
vation for this paper arise from [5, 6]. For more on delay dynamic equations, see, for
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2 Neutral dynamic equations

example, [1]; for more on time scales, jump ahead to the appendix, or consult the recent
texts [2, 3].

2. Vanishing of solutions at infinity

Recall that in this paper we consider only the case where the coefficient function p in
(1.1) is nonconstant but bounded. Before stating the main results, we need the following
lemma, which is a version of the integration-by-parts formula from continuous calcu-
lus, extended to arbitrary time scales; note the interesting dependence on the graininess
function μ in the last term.

Lemma 2.1 (integration by parts). For right-dense continuous functions q : T→ R and
points a, t ∈ T,

∫ t

a

(

q(s)
∫ σ(s)

a
q(z)Δz

)

Δs= 1
2

(∫ t

a
q(s)Δs

)2

+
1
2

∫ t

a
μ(s)q2(s)Δs. (2.1)

Proof. Let

Q(t) := 1
2

(∫ t

a
q(s)Δs

)2

+
1
2

∫ t

a
μ(s)q2(s)Δs−

∫ t

a

(

q(s)
∫ σ(s)

a
q(z)Δz

)

Δs. (2.2)

Then Q(a)= 0, and

QΔ(t)= 1
2
q(t)

(∫ t

a
q(s)Δs−

∫ σ(t)

a
q(s)Δs+μ(t)q(t)

)

. (2.3)

Since
∫ σ(t)
a = ∫ ta +

∫ σ(t)
t and

∫ σ(t)
t q(s)Δs = μ(t)q(t) using [2, Theorem 1.75], QΔ(t) ≡ 0. By

the uniqueness of solutions to initial value problems,Q(t)≡ 0 and the conclusion follows.
�

For example, if T=R, then the graininess is zero and the simple formula is

∫ t

a
q(s)

(∫ s

a
q(z)dz

)

ds= 1
2

(∫ t

a
q(s)ds

)2

; (2.4)

when T= Z, we have μ(t)≡ 1 and

t−1∑

k=a

k∑

j=a
qkqj = 1

2

( t−1∑

k=a
qk

)2

+
1
2

t−1∑

k=a
q2
k. (2.5)

On a quantum time scale, T = {1,r,r2,r3, . . .} for some r > 1, so that the graininess is
increasing. Interpret the points a and t as ra and rt for positive integers a and t with t > a.
Then we have

t−1∑

k=a

k∑

j=a
rk+ jq

(
rk
)
q
(
r j
)= 1

2

( t−1∑

k=a
rkq

(
rk
)
)2

+
1
2

t−1∑

k=a

(
rkq

(
rk
))2

. (2.6)
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As a final example, we consider the time scale T= {∑k
n=1 1/n : k ∈N} of harmonic num-

bers, where the graininess is decreasing; the result may then be viewed as

t−1∑

k=a

k∑

j=a

1
(k+ 1)( j + 1)

q

( k∑

n=1

1
n

)

q

( j∑

n=1

1
n

)

= 1
2

( t−1∑

k=a

1
k+ 1

q

( k∑

n=1

1
n

))2

+
1
2

t−1∑

k=a

(

k+ 1
q

( k∑

n=1

1
n

))2
(2.7)

for positive integers a and t with t > a.

Theorem 2.2. Suppose there exists a constant p ∈ (0,1/2] such that |p(t)| ≤ p for all t ∈ T,
and that for large t ∈ T,

0 < p <
1
4

,
∫ σ(t)

�(t)
q(s)Δs≤ 3

2
− 2p (2.8)

or

1
2
≤ p ≤ 1

2
,

∫ σ(t)

�(t)
q(s)Δs≤

√
2(1− 2p). (2.9)

Then every solution x ∈Ω of (1.1) is bounded.

Proof. Find t1 ∈ T large enough, say t1 > k−1(�−1(t0)), such that

∫ σ(t)

�(t)
q(s)Δs≤

⎧
⎪⎪⎨

⎪⎪⎩

A= 3
2
− 2p : 0 < p <

1
4

,

B =
√

2(1− 2p) :
1
4
≤ p ≤ 1

2
,

t ∈ [t1,∞)T. (2.10)

Suppose that, contrary to the asserted conclusion, x is an unbounded solution of (1.1).
Set

z(t) := x(t)− p(t)x
(
k(t)

)
, t ∈ [t0,∞)T. (2.11)

Then there exists t∗ ∈ (k−1(�−2(t1)),∞)T large enough such that

∣
∣x
(
t∗
)∣∣ >

∣
∣z
(
�−2

(
t1
))∣∣

2(1− p)
,

∣
∣x
(
t∗
)∣∣ > sup

{∣∣x(t)
∣
∣ : t ∈ [t0, t∗

)
T

}
. (2.12)

Then

∣
∣z
(
t∗
)∣∣= ∣∣x(t∗)− p

(
t∗
)
x
(
k
(
t∗
))∣∣ > (1− p)

∣
∣x
(
t∗
)∣∣ >

1
2

∣
∣z
(
�−2(t1

))∣∣. (2.13)

Without loss of generality, assume that z(t∗) > 0. Then by (2.13), there exist points T ∈
T and t† ∈ [�(T),T)T such that

z(T)=max
{
z(t) : t ∈ [�−2(t1

)
, t∗
]
T

}
, zΔ

(
t†
)
> 0. (2.14)
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Set

y(t) := z(t)− p
∣
∣x
(
t∗
)∣∣ for t ∈ [�(t1

)
,∞)T. (2.15)

It follows that

x
(
�(t)

)= z
(
�(t)

)
+ p

(
�(t)

)
x
(
�
(
k(t)

))≥ z
(
�(t)

)− p
∣
∣x
(
t∗
)∣∣= y

(
�(t)

)
, t ∈ [t1,T

]
T

(2.16)

(actually t ∈ [t1,k−1(�−1(t∗))]T) so that

yΔ(t)= zΔ(t)=−q(t)x
(
�(t)

)≤−q(t)y
(
�(t)

)
, t ∈ [t1,T

]
T, (2.17)

using (1.1), (2.11), and (2.13). Since p ∈ (0,1/2],

y(T)≥ z
(
t∗
)− p

∣
∣x
(
t∗
)∣∣ > (1− 2p)

∣
∣x
(
t∗
)∣∣≥ 0, (2.18)

but by the selection of t†, by (1.1), and (2.15),

0 < zΔ
(
t†
)=−q(t†)x(�(t†))≤−q(t†)y(�(t†)), zΔ

(
t†
)= yΔ

(
t†
)
. (2.19)

Consequently y(�(t†)) < 0 and y(T) > 0, so that by the intermediate value theorem [2,
Theorem 1.115], there exists t2 ∈ [�(t†),T)T such that either y(t2) < 0 < yσ(t2) or y(t2)=
0. Either way, y(t2)yσ(t2)≤ 0, hence there exists a real number ξ ∈ (0,1] such that

yσ
(
t2
)− ξ

[
yσ
(
t2
)− y

(
t2
)]= y

(
t2
)

+ (1− ξ)
[
yσ
(
t2
)− y

(
t2
)]= 0. (2.20)

From (2.17), we have yΔ(s)≤ q(s)|x(t∗)| for s∈ [t1,T]T; integrating this from �(t) to t2
and using (2.20) and Theorem A.4, we obtain for t ∈ [t2,T)T that

−y(�(t)
)=

∫ t2

�(t)
yΔ(s)Δs+ (1− ξ)μ

(
t2
)
yΔ
(
t2
)

≤ ∣∣x(t∗)∣∣
(∫ σ(t2)

�(t)
q(s)Δs− ξμ

(
t2
)
q
(
t2
)
)

.

(2.21)

Combine this with (2.17) to get

yΔ(t)≤ ∣∣x(t∗)∣∣q(t)

(∫ σ
(
t2
)

�(t)
q(s)Δs− ξμ

(
t2
)
q
(
t2
)
)

, t ∈ [t2,T
)
T. (2.22)

In order to contradict (2.18), we now show that y(T)≤ (1− 2p)|x(t∗)| in the following
three cases.
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Case 1. Assume that 0 < p < 1/4 and
∫ T
σ(t2) q(s)Δs+ ξμ(t2)q(t2)≤ 1. Then

y(T)
FTC=

∫ T

σ(t2)
yΔ(s)Δs+ yσ

(
t2
)

(2.20)=
∫ T

σ(t2)
yΔ(s)Δs+ ξμ

(
t2
)
yΔ
(
t2
)

(2.22)≤ ∣
∣x
(
t∗
)∣∣
{∫ T

σ(t2)
q(s)

(∫ σ(t2)

�(s)
q(z)Δz− ξμ

(
t2
)
q
(
t2
)
)

Δs

+ ξμ
(
t2
)
q
(
t2
)
(∫ σ(t2)

�
(
t2
) q(s)Δs− ξμ

(
t2
)
q
(
t2
)
)}

.

(2.23)

By the property of delta integrals
∫ b
a +

∫ c
b =

∫ c
a ,

y(T)≤ ∣∣x(t∗)∣∣
{∫ T

σ(t2)
q(s)

(∫ σ(s)

�(s)
q(z)Δz−

∫ σ(s)

σ(t2)
q(z)Δz− ξμ

(
t2
)
q
(
t2
)
)

Δs

+ ξμ
(
t2
)
q
(
t2
)
(∫ σ(t2)

�(t2)
q(s)Δs− ξμ

(
t2
)
q
(
t2
)
)}

.

(2.24)

Multiplying terms, rearranging them, then using (2.10) and Lemma 2.1 yield

y(T)≤ ∣∣x(t∗)∣∣
{

A
∫ T

σ(t2)
q(s)Δs− 1

2

(∫ T

σ(t2)
q(s)Δs

)2

− 1
2

∫ T

σ(t2)
μ(s)q2(s)Δs

+ ξμ
(
t2
)
q
(
t2
)
(

A−
∫ T

σ(t2)
q(s)Δs− ξμ

(
t2
)
q
(
t2
)
)}

= ∣∣x(t∗)∣∣
{

A

[∫ T

σ(t2)
q(s)Δs+ξμ

(
t2
)
q
(
t2
)
]

− 1
2

(∫ T

σ(t2)
q(s)Δs+ξμ

(
t2
)
q
(
t2
)
)2

− 1
2

(∫ T

σ(t2)
μ(s)q2(s)Δs+

[
ξμ
(
t2
)
q
(
t2
)]2
)}

≤ ∣∣x(t∗)∣∣
⎛

⎝A

[∫ T

σ(t2)
q(s)Δs+ξμ

(
t2
)
q
(
t2
)
]

− 1
2

(∫ T

σ(t2)
q(s)Δs+ξμ

(
t2
)
q
(
t2
)
)2
⎞

⎠ .

(2.25)

Let w(z) := Az− (1/2)z2, where z = ∫ Tσ(t2) q(s)Δs+ ξμ(t2)q(t2)≤ 1. Then w′(1) > 0 by the
choice of A and the fact that in this case p < 1/4. As a result,

y(T)≤ ∣∣x(t∗)∣∣
(
A− 1

2

)
= ∣∣x(t∗)∣∣(1− 2p). (2.26)
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Case 2. Assume that 0 < p < 1/4 and
∫ T
σ(t2) q(s)Δs+ ξμ(t2)q(t2) > 1. Actually, from ξ ≤ 1,

we have in this case that
∫ T
t2 q(s)Δs > 1. Note that

g(t) :=
∫ T

t
q(s)Δs− 1, t ∈ [t2,T

]
T, (2.27)

is a delta-differentiable and decreasing function, so that g is continuous [2, Theorem
1.16(i)] on t ∈ [t2,T]T. Since g(t2) > 0 and g(T)=−1 < 0, by the intermediate value the-
orem [2, Theorem 1.115], there exists t3 ∈ [t2,T)T such that either g(t3) = 0 or g(t3) >
0 > gσ(t3). Either way,

∫ T

σ(t3)
q(s)Δs < 1≤

∫ T

t3
q(s)Δs= μ

(
t3
)
q
(
t3
)

+
∫ T

σ(t3)
q(s)Δs, (2.28)

therefore there exists a real number η ∈ (0,1] such that

∫ T

σ(t3)
q(s)Δs+ημ

(
t3
)
q
(
t3
)= 1. (2.29)

Recall from (2.17) that

yΔ(s)≤ q(s)
∣
∣x
(
t∗
)∣∣ for s∈ [t1,T

]
T; (2.30)

then

y(T)
(2.20)=

∫ T

σ(t2)
yΔ(s)Δs+ ξμ

(
t2
)
yΔ
(
t2
)

Theorem A.4= ξμ
(
t2
)
yΔ
(
t2
)

+
∫ t3

σ(t2)
yΔ(s)Δs+ (1−η)μ

(
t3
)
yΔ
(
t3
)

+ημ
(
t3
)
yΔ
(
t3
)

+
∫ T

σ(t3)
yΔ(s)Δs

(2.22),(2.30)≤ ∣
∣x
(
t∗
)∣∣
[

ξμ
(
t2
)
q
(
t2
)

+
∫ t3

σ(t2)
q(s)Δs+ (1−η)μ

(
t3
)
q
(
t3
)

+ημ
(
t3
)
q
(
t3
)
(∫ σ(t2)

�(t3)
q(s)Δs− ξμ

(
t2
)
q
(
t2
)
)

+
∫ T

σ(t3)
q(s)

(∫ σ(t2)

�(s)
q(z)Δz− ξμ

(
t2
)
q
(
t2
)
)

Δs

]

= ∣∣x(t∗)∣∣
[

1 ·
(∫ σ(t3)

σ(t2)
q(s)Δs−ημ

(
t3
)
q
(
t3
)
)

+
∫ T

σ(t3)
q(s)

(∫ σ(t2)

�(s)
q(z)Δz

)

Δs+ημ
(
t3
)
q
(
t3
)
∫ σ(t2)

�(t3)
q(s)Δs

]

.

(2.31)
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Replace the number 1 above using (2.29) and simplify to get

y(T)≤ ∣∣x(t∗)∣∣
[∫ T

σ(t3)
q(s)

(∫ σ(t3)

�(s)
q(z)Δz−ημ

(
t3
)
q
(
t3
)
)

Δs

+ημ
(
t3
)
q
(
t3
)
(∫ σ(t3)

�(t3)
q(s)Δs−ημ

(
t3
)
q
(
t3
)
)]

.

(2.32)

Use the fact that
∫ σ(t3)
�(s) = ∫ σ(s)

�(s) −
∫ σ(s)
σ(t3) and Lemma 2.1 to obtain

y(T)≤ ∣∣x(t∗)∣∣
[

A

(∫ T

σ(t3)
q(s)Δs+ημ

(
t3
)
q
(
t3
)
)

− 1
2

(∫ T

σ(t3)
q(s)Δs

)2

− 1
2

∫ T

σ(t3)
μ(s)q2(s)Δs−ημ

(
t3
)
q
(
t3
)
∫ T

σ(t3)
q(s)Δs− (ημ

(
t3
)
q
(
t3
)
)2

]

(2.29)≤ ∣
∣x
(
t∗
)|
(
A− 1

2

)
(2.10)≤ ∣

∣x
(
t∗
)∣∣(1− 2p).

(2.33)

Case 3. Assume that 1/4 ≤ p ≤ 1/2 and
∫ T
σ(t2) q(s)Δs + ξμ(t2)q(t2) ≤ B for t ∈ T. Then,

starting as in Case 1,

y(T)≤ ∣∣x(t∗)∣∣
{∫ T

σ(t2)
q(s)

(∫ σ(t2)

�(s)
q(z)Δz− ξμ

(
t2
)
q
(
t2
)
)

Δs

+ ξμ
(
t2
)
q
(
t2
)
(∫ σ(t2)

�(t2)
q(s)Δs− ξμ

(
t2
)
q
(
t2
)
)}

(2.10)≤ ∣
∣x
(
t∗
)∣∣
{

B
∫ T

σ(t2)
q(s)Δs− 1

2

(∫ T

σ(t2)
q(s)Δs

)2

− 1
2

∫ T

σ(t2)
μ(s)q2(s)Δs

+ ξμ
(
t2
)
q
(
t2
)
(

B−
∫ T

σ(t2)
q(s)Δs− ξμ

(
t2
)
q
(
t2
)
)}

≤ ∣∣x(t∗)∣∣
(

B

[∫ T

σ(t2)
q(s)Δs+ ξμ

(
t2
)
q
(
t2
)
]

− 1
2

[∫ T

σ(t2)
q(s)Δs+ ξμ

(
t2
)
q
(
t2
)
]2)

≤ ∣∣x(t∗)∣∣B
2

2
= (1− 2p)

∣
∣x
(
t∗
)∣∣.

(2.34)
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As all three cases lead to the same contradiction, solutions x ∈ Ω of (1.1) must be
bounded. �

Theorem 2.3. Suppose there exists a constant p ∈ [0,1/2) such that |p(t)| ≤ p for all t ∈ T,
and

∫∞

t0
q(s)Δs=∞. (2.35)

If

0≤ p <
1
4

, limsup
t→∞

∫ σ(t)

�(t)
q(s)Δs≤ 3

2
− 2p (2.36)

or

1
4
≤ p <

1
2

, limsup
t→∞

∫ σ(t)

�(t)
q(s)Δs≤

√
2(1− 2p), (2.37)

then every solution x ∈Ω of (1.1) goes to zero as t→∞.

Proof. Let x ∈Ω be a solution of (1.1). If x is nonoscillatory, assume that x is eventually
positive. Again select z as in (2.11); then z is eventually nonincreasing using (1.1). If
z := limt→∞ z(t), then z is bounded by Theorem 2.2 and

limsup
t→∞

x(t)= z+ limsup
t→∞

p(t)x
(
k(t)

)≤ z+ p limsup
t→∞

x(t), (2.38)

so that

0≤ limsup
t→∞

x(t)≤ z

1− p
=⇒z ≥ 0. (2.39)

But from (1.1), we have

∫∞

t0
q(t)x

(
�(t)

)
Δt = z

(
t0
)− z <∞, (2.40)

which in view of (2.35) means that

0= liminf
t→∞ x(t)= z+ liminf

t→∞
(
p(t)x

(
k(t)

))≥ z− p limsup
t→∞

x(t)≥ 1− 2p
1− p

z ≥ 0. (2.41)

Thus z = 0 and limt→∞ x(t)= 0.
If x is oscillatory, by Theorem 2.2 x is also bounded. Set x := limsupt→∞ |x(t)|. Then

0≤ x <∞ and z = limsupt→∞ |z(t)| ≥ (1− p)x; without loss of generality, assume that

z := limsup
t→∞

z(t)≥ (1− p)x. (2.42)
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If x > 0, then for any ε ∈ (0,(1− 2p)x), there exist constants A ∈ (0,3/2− 2p) and B ∈
(0,
√

2(1− 2p)) and T ∈ T such that |x(t)| < x+ ε for t ∈ (k−1(�−1(T)),∞)T and

∫ σ(t)

�(t)
q(s)Δs≤

⎧
⎪⎪⎨

⎪⎪⎩

A : 0 < p <
1
4

,

B :
1
4
≤ p <

1
2

,
t ∈ [T ,∞)T. (2.43)

If

y(t) := z(t)− (x+ ε)p for t ≥ �(T), (2.44)

then

−x(�(t)
)=−z(�(t)

)− p
(
�(t)

)
x
(
k
(
�(t)

))≤−z(�(t)
)

+ (x+ ε)p =−y(�(t)
)
, t ≥ T.

(2.45)

Using (1.1) and (2.44), we have

yΔ(t)= zΔ(t)=−q(t)x
(
�(t)

)≤−q(t)y
(
�(t)

)
, t ≥ T. (2.46)

Since zΔ is oscillatory, yΔ is too, so there exists an increasing sequence {tn ∈ T} such
that tn > k−1(�−2(T)), limn→∞ tn =∞, y(σ(tn))→ z− (x+ ε)p > 0 as n→∞ by (2.42) and
(2.46), and yΔ(tn)≥ 0. Consequently, 0≤ yΔ(tn)≤−q(tn)y(�(tn)) so that

y
(
�
(
tn
))≤ 0, yσ(tn) > 0, n∈N. (2.47)

Hence there exists t† ∈ [�(tn), tn]T such that either y(t†) < 0 < yσ(t†) or y(t†)= 0. Either
way, y(t†)yσ(t†)≤ 0, and there exists a real number ξ ∈ (0,1] such that

yσ
(
t†
)− ξ

[
yσ
(
t†
)− y

(
t†
)]= y

(
t†
)

+ (1− ξ)
[
yσ
(
t†
)− y

(
t†
)]= 0. (2.48)

From (2.46), we have

yΔ(t)≤−q(t)y
(
�(t)

)≤ q(t)(x+ ε), t ∈ [T , tn
]
T, (2.49)

which combined with the fundamental theorem and (2.48) yields for t ∈ [t†, tn]T that

−y(�(t)
)=

∫ t†

�(t)
yΔ(s)Δs+ (1− ξ)μ

(
t†
)
yΔ
(
t†
)

≤ (x+ ε)

(∫ σ(t†)

�(t)
q(s)Δs− ξμ

(
t†
)
q
(
t†
)
)

.

(2.50)

Put this into (2.46) to obtain

yΔ(t)≤ (x+ ε)q(t)

(∫ σ(t†)

�(t)
q(s)Δs− ξμ

(
t†
)
q
(
t†
)
)

, t ∈ [t†, tn
]
T. (2.51)
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Set

λ=

⎧
⎪⎪⎨

⎪⎪⎩

max
{
A− 1

2
,
1
2

}
: 0≤ p <

1
4

,

B2

2
:

1
4
≤ p <

1
2

;
(2.52)

then λ < 1− 2p. Notice that by replacing |x(t∗)| by x+ ε in the proof of Theorem 2.2, we
arrive at y(tn) ≤ λ(x + ε). But then by (2.44), z(tn) ≤ (x + ε)(λ+ p). Letting n→∞ and
ε→ 0 results in

z = limsup
n→∞

z(tn)≤ (λ+ p)x < (1− p)x, (2.53)

a contradiction of (2.42). Therefore x = limsupt→∞ |x(t)| = 0, so that any solution x ∈Ω
of (1.1) goes to zero. �

Appendix

A. Time scales

The definitions below merely serve as a preliminary introduction to the time-scale calcu-
lus; they can be found in the context of a much more robust treatment than is allowed
here in the texts [2, 3] and the references therein.

Definition A.1. Define the forward (backward) jump operator σ(t) at t for t < supT (resp.,
ρ(t) at t for t > inf T) by

σ(t)= inf{τ > t : τ ∈ T}, (
ρ(t)= sup{τ < t : τ ∈ T}), ∀t ∈ T. (A.1)

Also define σ(supT)= supT if supT <∞, and ρ(inf T)= inf T if inf T >−∞. Define the
graininess function μ : T→R by μ(t)= σ(t)− t.

Throughout this work, the assumption is made that T is unbounded above and has the
topology that it inherits from the standard topology on the real numbers R. Also assume
throughout that a < b are points in T and define the time scale interval [a,b]T = {t ∈
T : a ≤ t ≤ b}. The jump operators σ and ρ allow the classification of points in a time
scale in the following way. If σ(t) > t, the point t is right-scattered, while if ρ(t) < t then
t is left-scattered. If σ(t)= t, the point t is right-dense; if t > inf T and ρ(t)= t, then t is
left-dense.

Definition A.2. Fix t ∈ T and let y : T→ R. Define yΔ(t) to be the number (if it exists)
with the property that given that ε > 0, there is a neighbourhood U of t such that for all
s∈U ,

∣
∣[y

(
σ(t)

)− y(s)
]− yΔ(t)

[
σ(t)− s

]∣∣≤ ε∣∣σ(t)− s
∣
∣. (A.2)

Call yΔ(t) the (delta) derivative of y at t.
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Definition A.3. If FΔ(t)= f (t), then define the (Cauchy) delta integral by

∫ t

a
f (s)Δs= F(t)−F(a). (A.3)

The following theorem is due to Hilger [6].

Theorem A.4. Assume that f : T→R and let t ∈ T.
(1) If f is differentiable at t, then f is continuous at t.
(2) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f Δ(t)= f
(
σ(t)

)− f (t)
σ(t)− t

. (A.4)

(3) If f is differentiable and t is right-dense, then

f Δ(t)= lim
s→t

f (t)− f (s)
t− s

. (A.5)

(4) If f is differentiable at t, then f (σ(t))= f (t) +μ(t) f Δ(t).

Definition A.5. A function f : T→R is right-dense continuous (denoted by f∈Crd(T;R))
provided that f is continuous at every right-dense point t ∈ T, and lims→t− f (s) exists and
is finite at every left-dense point t ∈ T.

According to [2, Theorem 1.74], every right-dense continuous function has a delta
antiderivative. This implies that the delta definite integral of any right-dense continuous
function exists.
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Massachusetts, 2003.

[5] L. H. Erbe, H. Xia, and J. S. Yu, Global stability of a linear nonautonomous delay difference equa-
tion, Journal of Difference Equations and Applications 1 (1995), no. 2, 151–161.

[6] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus,
Results in Mathematics 18 (1990), no. 1-2, 18–56.

Douglas R. Anderson: Department of Mathematics and Computer Science, Concordia College,
Moorhead, MN 56562, USA
E-mail address: andersod@cord.edu

mailto:andersod@cord.edu

	1. Neutral delay dynamic equation
	2. Vanishing of solutions at infinity
	Appendix
	A. Time scales
	References

