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J. DIBLÍK AND D. YA. KHUSAINOV

Received 16 January 2006; Accepted 22 January 2006

The purpose of this contribution is to develop a method for construction of solutions
of linear discrete systems with constant coefficients and with pure delay. Solutions are
expressed with the aid of a special function called the discrete matrix delayed exponential
having between every two adjoining knots the form of a polynomial. These polynomials
have increasing degrees in the right direction. Such approach results in a possibility to
express initial Cauchy problem in the closed form.
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1. Introduction

We use following notation: for integers s,q,s ≤ q, we define Z
q
s := {s,s+ 1, . . . ,q}, where

possibility s=−∞ or q =∞ is admitted too. Throughout this paper, using notation Z
q
s or

another one with a couple of integers s, q, we suppose s ≤ q. In this paper we deal with
the discrete system

Δx(k)= Bx(k−m) + f (k), (1.1)

where m≥ 1 is a fixed integer, k ∈ Z∞0 , B = (bi j) is a constant n×n matrix, f : Z∞0 →Rn,
Δx(k) = x(k + 1)− x(k), x : Z∞−m → Rn. Following the terminology (used, e.g., in [1, 3])
we refer to (1.1) as a delayed discrete system if m≥ 1 and as a nondelayed discrete system
if m= 0. Together with (1.1) we consider the initial conditions

x(k)= ϕ(k) (1.2)

with given ϕ : Z0−m→Rn.
The existence and uniqueness of solution of the problem (1.1), (1.2) on Z∞−m is ob-

vious. We recall that solution x : Z∞−m → Rn of the problem (1.1), (1.2) is defined as an
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2 Representation of solutions of linear discrete systems

infinite sequence {ϕ(−m),ϕ(−m + 1), . . . ,ϕ(0),x(1),x(2), . . . ,x(k), . . .} such that, for any
k ∈ Z∞0 , equality (1.1) holds. Throughout the paper we adopt the customary notations
∑k

i=k+s◦(i) = 0 and
∏k

i=k+s◦(i) = 1, where k is an integer, s is a positive integer, and “◦”
denotes the function considered irrespective on the fact if it is for indicated arguments
defined or not.

1.1. Description of the problem considered. The motivation of our investigation goes
back to [10] dealing with the linear system of differential equations with constant coeffi-
cients and constant delay. One of the systems considered has the form

ẋ(t)= Bx(t− τ), (1.3)

where t ∈R+ = [0,∞), τ > 0, x : R+ →Rn, and B is an n×n matrix. For a given matrix B
we define a matrix function expτ(Bt), called delayed exponential of the matrix B:

eBtτ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ if −∞ < t <−τ,

I if − τ ≤ t < 0,

I +
1
1!
Bt if 0≤ t < τ,

I +
1
1!
Bt+

1
2!
B2(t− τ)2 if τ ≤ t < 2τ,

···

I +
1
1!
Bt+

1
2!
B2(t− τ)2 + ···+

1
k!
Bk[t− (k− 1)τ]k if (k− 1)τ ≤ t < kτ,

···
(1.4)

with null n×n matrix Θ and unit n×n matrix I . We consider initial problem

x(t)= ϕ(t), t ∈ [−τ,0], (1.5)

with continuously differentiable initial function ϕ on [−τ,0]. In [10], it is proved that the
solution of the problem (1.3), (1.5) can be expressed on the interval [−τ,∞) in the form

x(t)= eBtτ ϕ(−τ) +
∫ 0

−τ
eB(t−τ−s)
τ ϕ′(s)ds. (1.6)

It is easy to deduce that the delayed exponential is a useful tool for the formalizing of
computation of initial problems for systems of the form (1.3), since the usually used
method of steps (being nevertheless hidden in the notion of delayed exponential) gives
unwieldy formulas. Discrete systems of the form (1.1) containing only one delay are often
called systems with pure delay. The main goal of the present paper is to extend the notion
of the delayed exponential of a matrix relative to discrete delayed equations and give an
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analogue of formula (1.6) for homogeneous and nonhomogeneous problems (1.1), (1.2)
with pure delay.

2. Discrete matrix delayed exponential

Now we give the notion of the so-called discrete matrix delayed exponential as well as of
its main property. Before we consider an example, we make possible understanding better
the ensuing definition of discrete matrix delayed exponential.

2.1. An example. We consider a scalar discrete equation together with an initial problem

Δx(k)= bx(k− 3), (2.1)

x(−3)= x(−2)= x(−1)= x(0)= 1, (2.2)

where b ∈R, b 	= 0. Rewriting (2.1) as

x(k+ 1)= x(k) + bx(k− 3) (2.3)

and solving it by the method of steps, we conclude that the solution of the problem (2.1),
(2.2) can be written in the form

x(k)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if k ∈ Z0
−3,

1 + b ·
(
k

1

)

if k ∈ Z4
1,

1 + b ·
(
k

1

)

+ b2 ·
(
k− 3

2

)

if k ∈ Z8
5,

1 + b ·
(
k

1

)

+ b2 ·
(
k− 3

2

)

+ b3 ·
(
k− 6

3

)

if k ∈ Z12
9 ,

···

1 + b ·
(
k

1

)

+ b2 ·
(
k− 3

2

)

+ ···

+b� ·
(
k− (�− 1) · 3

�

)

if k ∈ Z(�−1)4+4
(�−1)4+1, � = 1,2, . . . .

(2.4)

Such expression of x serves as a motivation for the definition of discrete matrix delayed
exponential.

2.2. Definition of a discrete matrix delayed exponential. We define a discrete matrix
function expm(Bk) called the discrete matrix delayed exponential of an n× n constant
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matrix B:

eBkm :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ if k ∈ Z−m−1−∞ ,

I if k ∈ Z0−m,

I +B ·
(
k

1

)

if k ∈ Zm+1
1 ,

I +B ·
(
k

1

)

+B2 ·
(
k−m

2

)

if k ∈ Z2(m+1)
(m+1)+1,

I +B ·
(
k

1

)

+B2 ·
(
k−m

2

)

+B3 ·
(
k− 2m

3

)

if k ∈ Z3(m+1)
2(m+1)+1,

···

I +B ·
(
k

1

)

+B2 ·
(
k−m

2

)

+ ···

+B� ·
(
k− (�− 1)m

�

)

if k ∈ Z�(m+1)
(�−1)(m+1)+1, � = 0,1,2, . . . .

(2.5)

We underline a parallelism between the delayed exponential expτ(Bt) of the matrix B
and its discrete analogy expm(Bk). Discrete matrix delayed exponential expm(Bk) is a
matrix function having the form of a matrix polynomial. Similarly as values of expτ(Bt)
are pasted at the boundary points t = kτ, k = 0,1, . . ., values of expm(Bk) are in a sense
“pasted” at the boundary knots k = �(m+ 1), � = 0,1, . . . . It becomes clear if we put, by
definition,

s!
(−1)!

:= 0 (2.6)

for any nonnegative integer s. The definition of the discrete matrix delayed exponential
can be shortened as

eBkm := I +
�∑

j=1

Bj ·
(
k− ( j− 1)m

j

)

(2.7)

for k = (�− 1)(m+ 1) + 1, . . . ,�(m+ 1) and � = 0,1, . . . .

2.3. Basic property of the discrete matrix delayed exponential. Main property of
expm(Bk) is given in the following theorem.

Theorem 2.1. Let B be a constant n×n matrix. Then for k ∈ Z∞−m,

ΔeBkm = BeB(k−m)
m . (2.8)
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Proof. Let a matrix B and a positive integer m be fixed. Then for integer k satisfying

(�− 1)(m+ 1) + 1≤ k ≤ �(m+ 1), (2.9)

in accordance with the definition of eBkm relation,

ΔeBkm = Δ

[

I +
�∑

j=1

Bj ·
(
k− ( j− 1)m

j

)]

(2.10)

holds. Since ΔI =Θ we have

ΔeBkm = Δ

[ �∑

j=1

Bj ·
(
k− ( j− 1)m

j

)]

. (2.11)

Considering the increment by its definition, for example,

ΔeBkm = eB(k+1)
m − eBkm , (2.12)

we conclude that it is reasonable to divide the proof into two parts with respect to the
value of the integer k. One case is represented with k such that

(�− 1)(m+ 1) + 1≤ k < k+ 1≤ �(m+ 1), (2.13)

the second one with k = �(m+ 1).

The case (�− 1)(m+ 1) + 1≤ k < k+ 1≤ �(m+ 1). In this case

k−m∈ [(�− 2)(m+ 1) + 1,(�− 1)(m+ 1)
]

(2.14)

and, by definition,

eB(k−m)
m = I +

�−1∑

j=1

Bj ·
(
k−m− ( j− 1)m

j

)

= I +
�−1∑

j=1

Bj ·
(
k− jm

j

)

. (2.15)

We prove that

ΔeBkm = BeB(k−m)
m = B

[

I +
�−1∑

j=1

Bj ·
(
k− jm

j

)]

. (2.16)
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With the aid of (2.11) and (2.12) we get

ΔeBkm = eB(k+1)
m − eBkm

=
�∑

j=1

Bj ·
(
k+ 1− ( j− 1)m

j

)

−
�∑

j=1

Bj ·
(
k− ( j− 1)m

j

)

=
�∑

j=1

Bj

j!

[ (
k+ 1− ( j− 1)m

)
!

(
k+ 1− ( j− 1)m− j

)
!
−

(
k− ( j− 1)m

)
!

(
k− ( j− 1)m− j

)
!

]

=
�∑

j=1

Bj

j!

(
k− ( j− 1)m

)
!

(
k+ 1− ( j− 1)m− j

)
!

[(
k+ 1− ( j− 1)m

)− (k+ 1− ( j− 1)m− j
)]

=
�∑

j=1

Bj

j!

(
k− ( j− 1)m

)
! · j

(
k+ 1− ( j− 1)m− j

)
!

= B
�∑

j=1

Bj−1

( j− 1)!

(
k− ( j− 1)m

)
!

(
k− ( j− 1)m− ( j− 1)

)
!

= B
[

I +
�∑

j=2

Bj−1 ·
(
k− ( j− 1)m

j− 1

)]

.

(2.17)

Now we change the index of summation j by j + 1. Then

ΔeBkm = B
[

I +
�−1∑

j=1

Bj ·
(
k− jm

j

)]

(2.18)

and due to (2.15) we conclude that formula (2.16) is valid.

The case k = �(m+ 1). In this case we have by definition

eBkm = eB�(m+1)
m = I +

�∑

j=1

Bj ·
(
�(m+ 1)− ( j− 1)m

j

)

,

eB(k+1)
m = eB(�(m+1)+1)

m = I +
�+1∑

j=1

Bj ·
(
�(m+ 1) + 1− ( j− 1)m

j

)

.

(2.19)

Since

k−m= �(m+ 1)−m∈ [(�− 1)(m+ 1) + 1,�(m+ 1)
]

(2.20)
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the discrete matrix delayed exponential eB(k−m)
m is expressed by

eB(k−m)
m = I +

�∑

j=1

Bj ·
(
k−m− ( j− 1)m

j

)

. (2.21)

Therefore

ΔeBkm = eB(k+1)
m − eBkm = eB(�(m+1)+1)

m − eB�(m+1)
m

=
�+1∑

j=1

Bj ·
(
�(m+ 1) + 1− ( j− 1)m

j

)

−
�∑

j=1

Bj ·
(
�(m+ 1)− ( j− 1)m

j

)

=
�∑

j=1

Bj

j!

[ (
�(m+ 1) + 1− ( j− 1)m

)
!

(
�(m+ 1) + 1− ( j− 1)m− j

)
!
−

(
�(m+ 1)− ( j− 1)m

)
!

(
�(m+ 1)− ( j− 1)m− j

)
!

]

+
B�+1

(� + 1)!

(
�(m+ 1) + 1− (� + 1− 1)m

)
!

(
�(m+ 1) + 1− (� + 1− 1)m− (� + 1)

)
!

=
�∑

j=1

Bj

j!

[ (
�(m+ 1) + 1− ( j− 1)m

)
!

(
�(m+ 1) + 1− ( j− 1)m− j

)
!
−

(
�(m+ 1)− ( j− 1)m

)
!

(
�(m+ 1)− ( j− 1)m− j

)
!

]

+
B�+1

(� + 1)!

(
�(m+ 1) + 1− �m)!

(
�(m+ 1) + 1− �m− (� + 1)

)
!

=
�∑

j=1

Bj

j!

(
�(m+ 1)− ( j− 1)m

)
!

(
�(m+ 1) + 1− ( j− 1)m− j

)
!

× [(�(m+ 1) + 1− ( j− 1)m
)− (�(m+ 1) + 1− ( j− 1)m− j

)]
+B�+1

=
�∑

j=1

Bj

j!

(
�(m+ 1)− ( j− 1)m

)
!

(
�(m+ 1) + 1− ( j− 1)m− j

)
!
· j +B�+1

= B
�∑

j=1

Bj−1

( j− 1)!

(
�(m+ 1)− ( j− 1)m

)
!

(
�(m+ 1) + 1− ( j− 1)m− j

)
!

+B�+1

= B+B
�∑

j=2

Bj−1 ·
(
�(m+ 1)− ( j− 1)m

j− 1

)

+B�+1.

(2.22)

Now we change the index of summation j by j + 1. Then

ΔeBkm = B
[

I +
�−1∑

j=1

Bj ·
(
�(m+ 1)− jm

j

)

+B�
]

. (2.23)
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With the aid of the relation k = �(m+ 1) we get

ΔeBkm = B
[

I +
�−1∑

j=1

Bj ·
(
k−m− ( j− 1)m

j

)

+B� ·
(
k−m− (�− 1)m

�

)]

. (2.24)

Finally due to (2.21),

ΔeBkm = B
[

I +
�∑

j=1

Bj ·
(
k−m− ( j− 1)m

j

)]

= BeB(k−m)
m (2.25)

and formula (2.16) is proved. �

Remark 2.2. Analyzing the formula (2.8) we conclude that the discrete matrix delayed
exponential is the matrix solution of the initial Cauchy problem

ΔX(k)= BX(k−m), k ∈ Z∞0 ,

X(k)= I , k ∈ Z0
−m.

(2.26)

So we have X(k)= expm(Bk), k ∈ Z∞−m.

3. Representation of the solution of initial problem via
discrete matrix delayed exponential

In this section we prove the main results of the paper. With the aid of discrete matrix
delayed exponential we give formulas for the solution of the homogeneous and nonho-
mogeneous problems (1.1), (1.2).

3.1. Representation of the solution of homogeneous initial problem. Consider at first
homogeneous problem (1.1), (1.2)

Δx(k)= Bx(k−m), k ∈ Z∞0 , (3.1)

x(k)= ϕ(k), k ∈ Z0
−m. (3.2)

Theorem 3.1. Let B be a constant n× n matrix. Then the solution of the problem (3.1),
(3.2) can be expressed as

x(k)= eBkm ϕ(−m) +
0∑

j=−m+1

e
B(k−m− j)
m Δϕ( j− 1), (3.3)

where k ∈ Z∞−m.

Proof. We are going to find the solution of the problem (3.1), (3.2) in the form

x(k)= eBkm C+
0∑

j=−m+1

e
B(k−m− j)
m Δψ( j− 1), k ∈ Z∞−m, (3.4)
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with an unknown constant vector C and a discrete function ψ : Z0−m→Rn. Due to linear-
ity (taking into account that k varies), we have

Δx(k)= Δ

[

eBkm C+
0∑

j=−m+1

e
B(k−m− j)
m Δψ( j− 1)

]

= ΔeBkm C+
0∑

j=−m+1

Δ
[

e
B(k−m− j)
m Δψ( j− 1)

]

= Δ
[
eBkm
]
C+

0∑

j=−m+1

Δ
[
e
B(k−m− j)
m

]
Δψ( j− 1).

(3.5)

We use formula (2.8):

Δx(k)= BeB(k−m)
m C+

0∑

j=−m+1

Be
B(k−2m− j)
m Δψ( j− 1)

= B
[

eB(k−m)
m C+

0∑

j=−m+1

e
B(k−2m− j)
m Δψ( j− 1)

]

.

(3.6)

Now we conclude that for any C and ψ the relation Δx(k)= Bx(k−m) holds. We will try
to satisfy the initial conditions (3.2). Due to (3.1), we have

eB(k−m)
m C+

0∑

j=−m+1

e
B(k−2m− j)
m Δψ( j− 1)= x(k−m). (3.7)

We consider values k such that k−m∈ Z0−m. Simultaneously we change the argument k
by k+m. We get

eBkm C+
0∑

j=−m+1

e
B(k−m− j)
m Δψ( j− 1)= ϕ(k) (3.8)

for k ∈ Z0−m. We rewrite the last formula as

eBkm C+
k∑

j=−m+1

e
B(k−m− j)
m Δψ( j− 1) +

0∑

j=k+1

e
B(k−m− j)
m Δψ( j− 1)= ϕ(k). (3.9)

Due to the definition of the discrete matrix delayed exponential, the first sum becomes

k∑

j=−m+1

e
B(k−m− j)
m Δψ( j− 1)=

k∑

j=−m+1

Δψ( j− 1)= ψ(k)−ψ(−m) (3.10)

and the second one turns into zero vector. Finally, since

eBkm ≡ I , k ∈ Z0
−m, (3.11)
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relation (3.9) becomes

C+ψ(k)−ψ(−m)= ϕ(k) (3.12)

and one can define

ψ(k) := ϕ(k), k ∈ Z0
−m; C := ψ(−m)= ϕ(−m). (3.13)

In order to get formula (3.3) it remains to put C and ψ into (3.4). �

Example 3.2. Let us represent the solution of the problem (2.1), (2.2) with the aid of for-
mula (3.3). In this casem= 3, n= 1, B = b, ϕ(−3)= 1, Δϕ(−3)= Δϕ(−2)= Δϕ(−1)= 0,
and for k ∈ Z∞−3, we get

x(k)= eBkm ϕ(−m) +
0∑

j=−m+1

e
B(k−m− j)
m Δϕ( j− 1)

= ebk3 ϕ(−3) +
0∑

j=−2

e
b(k−3− j)
3 Δϕ( j− 1)= ebk3 .

(3.14)

This formula coincides with corresponding formula given in Section 2.1.

3.2. Representation of the solution of nonhomogeneous initial problem. We consider
the nonhomogeneous problem (1.1), (1.2)

Δx(k)= Bx(k−m) + f (k), k ∈ Z∞0 , (3.15)

x(k)= ϕ(k), k ∈ Z0
−m. (3.16)

We get this solution, in accordance with the theory of linear equations, as the sum of the
solution of adjoint homogeneous problem (3.1), (3.2) (satisfying the same initial data)
and a particular solution of (3.15) being zero on initial interval. Therefore we are going
to find such a particular solution. We give some auxiliary material.

Definition 3.3. Let a function F(k,n) of two discrete variables be given. The operator Δk
acting by the formula

ΔkF(k,n) := F(k+ 1,n)−F(k,n) (3.17)

is said to be a partial difference operator, provided that the right-hand side exists.

In the following formula (which proof is omitted) we suppose that all used expressions
are well defined.

Lemma 3.4. Let a function F(k,n) of two discrete variables be given. Then

Δk

[ k∑

j=1

F(k, j)

]

= F(k+ 1,k+ 1) +
k∑

j=1

ΔkF(k, j). (3.18)
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Now we are ready to find a particular solution xp(k), k ∈ Z∞−m, of the initial Cauchy
problem

Δx(k)= Bx(k−m) + f (k), k ∈ Z∞0 , (3.19)

x(k)= 0, k ∈ Z0
−m. (3.20)

Theorem 3.5. Solution x = xp(k) of the initial Cauchy problem (3.19), (3.20) can be rep-
resented on Z∞−m in the form

xp(k)=
k∑

j=1

e
B(k−m− j)
m f ( j− 1). (3.21)

Proof. We are going to find particular solution xp(k) of the problem (3.19), (3.20) fol-
lowing the idea of the method of variation of arbitrary constants (see, e.g., [1]) in the
form

xp(k)=
k∑

j=1

e
B(k−m− j)
m ω( j), (3.22)

where ω : Z∞1 →Rn is a discrete function. We put (3.22) into (3.19). Then

Δ

[ k∑

j=1

e
B(k−m− j)
m ω( j)

]

= B
[ k−m∑

j=1

e
B(k−2m− j)
m ω( j)

]

+ f (k). (3.23)

With the aid of (3.18) we obtain

eB((k+1)−m−(k+1))
m ω(k+ 1) +

k∑

j=1

Δ
[
e
B(k−m− j)
m ω( j)

]= B
[ k−m∑

j=1

e
B(k−2m− j)
m ω( j)

]

+ f (k).

(3.24)

Using formula (2.8) we get

Δe
B(k−m− j)
m = Be

B(k−2m− j)
m , (3.25)

and the last relation becomes

eB(−m)
m ω(k+ 1) +B

k∑

j=1

[
e
B(k−2m− j)
m ω( j)

]= B
[ k−m∑

j=1

e
B(k−2m− j)
m ω( j)

]

+ f (k). (3.26)

Since eB(−m)
m ≡ I and

k∑

j=1

[
e
B(k−2m− j)
m ω( j)

]=
k−m∑

j=1

[
e
B(k−2m− j)
m ω( j)

]
+

k∑

j=k−m+1

[
e
B(k−2m− j)
m ω( j)

]
, (3.27)
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where due to the definition of the discrete matrix delayed exponential

e
B(k−2m− j)
m ≡Θ, j ∈ Zkk−m+1, (3.28)

the relation (3.26) turns into

ω(k+ 1) +B
k−m∑

j=1

[
e
B(k−2m− j)
m ω( j)

]= B
[ k−m∑

j=1

e
B(k−2m− j)
m ω( j)

]

+ f (k). (3.29)

We define

ω(k) := f (k− 1), k ∈ Z∞0 , (3.30)

and we put this function into (3.22). This ends the proof. �

Collecting the results of Theorems 3.1 and 3.5 we get immediately the following.

Theorem 3.6. Solution x = x(k) of the problem (1.1), (1.2) can be on Z∞−m represented in
the form

x(k)= eBkm ϕ(−m) +
0∑

j=−m+1

e
B(k−m− j)
m Δϕ( j− 1) +

k∑

j=1

e
B(k−m− j)
m f ( j− 1). (3.31)

Example 3.7. Let us represent the solution of the problem

Δx(k)= bx(k− 3) + k+ 1,

x(−3)= x(−2)= x(−1)= x(0)= 1,
(3.32)

b 	= 0, b ∈R, by formula (3.31). Taking into account the representation of the solution of
the problem (2.1), (2.2) given in Example 3.2, we get (in our case f (k) := k+ 1)

x(k)= eBkm ϕ(−m) +
0∑

j=−m+1

e
B(k−m− j)
m Δϕ( j− 1) +

k∑

j=1

e
B(k−m− j)
m f ( j− 1)

= ebk3 ϕ(−3) +
0∑

j=−2

e
b(k−3− j)
3 Δϕ( j− 1) +

k∑

j=1

e
b(k−3− j)
3 f ( j− 1)= ebk3 +

k∑

j=1

je
b(k−3− j)
3 .

(3.33)

4. Concluding remarks

Method of representation of solutions developed in the paper can be used to the inves-
tigation of some boundary value problems for linear discrete systems with constant co-
efficients on finite intervals. Moreover results obtained can be useful in investigation of
such asymptotic problems as describing the asymptotic behavior of solutions and the
investigation concerning boundedness, convergence, or stability of solutions. With the
aid of different methods (Liapunov type technique and retract principle), some of these
problems have been investigated, for example, in the recent papers [2–9, 11–13].
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[2] J. Baštinec and J. Diblı́k, Asymptotic formulae for a particular solution of linear nonhomogeneous

discrete equations, Computers & Mathematics with Applications 45 (2003), no. 6–9, 1163–1169.
[3] , Subdominant positive solutions of the discrete equation Δu(k+n)=−p(k)u(k), Abstract

and Applied Analysis 2004 (2004), no. 6, 461–470.
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