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1. Preliminary notes

Motivated by the old but significant papers by Driver [3] and Driver et al. [5], a number
of relevant papers has recently appeared in the literature. See Frasson and Verduyn Lunel
[10], Graef and Qian [11], Kordonis et al. [16], Kordonis and Philos [19], Kordonis et
al. [21], Philos [26], and Philos and Purnaras [28, 30, 35, 33, 36]. The results in [10, 11,
16, 26, 28, 30, 35, 36] concern the large time behavior of the solutions of several classes of
linear autonomous or periodic delay or neutral delay differential equations, while those
in [19, 21, 33] are dealing with the behavior of solutions of some linear (neutral or non-
neutral) integrodifferential equations with unbounded delay. Note that the method used
in [10] is based on resolvent computations and Dunford calculus, while the technique
applied in the rest of the papers mentioned above is very simple and is essentially based
on elementary calculus. We also notice that the article [10] is very interesting as well as
comprehensive.

Along with the work mentioned above for the continuous case, analogous investiga-
tions have recently been made for the behavior of the solutions of some classes of lin-
ear autonomous or periodic delay or neutral delay difference equations, for the behavior
of the solutions of certain linear delay difference equations with continuous variable as
well as for the behavior of solutions of a linear Volterra difference equation with infi-
nite delay. See Kordonis and Philos [17], Kordonis et al. [20], and Philos and Purnaras
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[29, 31, 32, 34]. For some related results we refer to the papers by de Bruijn [2], Driver et
al. [4], Györi [12], Norris [25], and Pituk [37, 38].

In [21], Kordonis et al. obtained some results on the behavior of solutions of linear
neutral integrodifferential equations with unbounded delay; the results in [21] extend
and improve previous ones given by Kordonis and Philos [19] for the special case of
(non-neutral) integrodifferential equations with unbounded delay. In [33], Philos and
Purnaras continued the study in [19, 21] and established some further results on the
behavior of solutions of linear neutral integrodifferential equations with unbounded de-
lay, and, especially, of linear (non-neutral) integrodifferential equations with unbounded
delay.

Our purpose in this paper is to give the discrete analogues of the results in [19, 21, 33].
Here, we study the behavior of solutions of linear neutral Volterra difference equations
with infinite delay, and, especially, of linear (non-neutral) Volterra difference equations
with infinite delay. Our results will be derived by the use of appropriate positive roots of
the corresponding characteristic equation. Some of the results of the present paper extend
and improve the main results of the authors’ previous paper [32].

Neutral, and especially non-neutral, Volterra difference equations with infinite de-
lay have been widely used as mathematical models in mathematical ecology, particu-
larly in population dynamics. Although the bibliography on Volterra integrodifferential
equations is quite extended, however there has not yet been analogously much work on
the Volterra difference equations. We choose to refer here to the papers by Jaroš and
Stavroulakis [13], Kiventidis [15], Kordonis and Philos [18], Ladas et al. [22], and Philos
[27] for some results concerning the existence and/or the nonexistence of positive solu-
tions of certain linear Volterra difference equations. Also, for some results on the stability
of Volterra difference equations, we typically refer to the papers by Elaydi [6, 8], and
Elaydi and Murakami [9] (see, also, the book [7, pages 239–250]).

For the general background of difference equations, one can refer to the books by
Agarwal [1], Elaydi [7], Kelley and Peterson [14], Lakshmikantham and Trigiante [23],
Mickens [24], and Sharkovsky et al. [39].

The paper is organized as follows. Section 2 contains an introduction and some nota-
tions. Section 3 is devoted to the statement of the main results (and to some comments
on them). The proofs of the main results will be given in Section 4.

2. Introduction and notations

Throughout the paper, N stands for the set of all nonnegative integers and Z stands for the
set of all integers. Also, the set of all nonpositive integers will be denoted by Z−. Moreover,
the forward difference operator Δ will be considered to be defined as usual, that is,

Δsn = sn+1− sn, n∈N (2.1)

for any sequence (sn)n∈N of real numbers.
Consider the linear neutral Volterra difference equation with infinite delay

Δ

(
xn +

n−1∑
j=−∞

Gn− jx j

)
= axn +

n−1∑
j=−∞

Kn− jx j (2.2)



Ch. G. Philos and I. K. Purnaras 3

and, especially, the linear (non-neutral) Volterra difference equation with infinite delay

Δxn = axn +
n−1∑
j=−∞

Kn− jx j , (2.3)

where a is a real number, and (Gn)n∈N−{0} and (Kn)n∈N−{0} are sequences of real numbers.
It will be supposed that (Kn)n∈N−{0} is not eventually identically zero. Note that (2.3) is a
special case of (2.2), that is, the special case where the kernel (Gn)n∈N−{0} is identically
zero.

Equation (2.2) can equivalently be written as follows

Δ

(
xn +

∞∑
j=1

Gjxn− j

)
= axn +

∞∑
j=1

Kjxn− j (2.4)

and, especially, (2.3) can equivalently be written as

Δxn = axn +
∞∑
j=1

Kjxn− j . (2.5)

By a solution of the neutral Volterra difference equation (2.2) (respectively, of the (non-
neutral) Volterra difference equation (2.3)), we mean a sequence (xn)n∈Z of real numbers
which satisfies (2.2) (resp., (2.3)) for all n∈N.

In the sequel, by S we will denote the (nonempty) set of all sequences φ = (φn)n∈Z− of
real numbers such that, for each n∈N,

ΦG
n ≡

−1∑
j=−∞

Gn− jφj =
∞∑

j=n+1

Gjφn− j , ΦK
n ≡

−1∑
j=−∞

Kn− jφj =
∞∑

j=n+1

Kjφn− j (2.6)

exist in R. In the special case of (2.3), the set S consists of all sequences φ = (φn)n∈Z− of
real numbers such that, for each n∈N, ΦK

n exists in R.
It is clear that, for any given initial sequence φ = (φn)n∈Z− in S, there exists a unique

solution (xn)n∈Z of the difference equation (2.2) (resp., of (2.3)) which satisfies the initial
condition

xn = φn for n∈ Z−; (2.7)

this solution (xn)n∈Z is said to be the solution of the initial problem (2.2) and (2.7) (resp.,
of the initial problem (2.3) and (2.7)) or, more briefly, the solution of (2.2) and (2.7)
(resp., of (2.3) and (2.7)).

With the neutral Volterra difference equation (2.2) we associate its characteristic equa-
tion

(λ− 1)

(
1 +

∞∑
j=1

λ− jGj

)
= a+

∞∑
j=1

λ− jKj , (2.8)
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which is obtained by seeking solutions of (2.2) of the form xn = λn for n ∈ Z, where λ
is a positive real number. In particular, the characteristic equation of the (non-neutral)
Volterra difference equation (2.3) is

λ− 1= a+
∞∑
j=1

λ− jKj . (2.9)

The use of a positive root λ0 of the characteristic equation (2.8) with the property

∞∑
j=1

λ
− j
0

(
1 +
∣∣∣∣1− 1

λ0

∣∣∣∣ j
)∣∣Gj

∣∣+
1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣ < 1 (2.10)

plays a crucial role in obtaining the results of this paper. In the special case of the (non-
neutral) Volterra difference equation (2.3), the property (2.10) (of a positive root λ0 of
the characteristic equation (2.9)) takes the form

1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣ < 1. (2.11)

In what follows, if λ0 is a positive root of (2.8) (resp., of (2.9)) with the property (2.10)
(resp., with the property (2.11)), we will denote by S(λ0) the (nonempty) subset of S con-
sisting of all sequences φ = (φn)n∈Z− in S such that (λ−n0 φn)n∈Z− is a bounded sequence.

Now, we introduce certain notations which will be used throughout the paper without
any further mention. We also give some facts concerning these notations that we will keep
in mind in what follows.

Let λ0 be a positive root of the characteristic equation (2.8) with the property (2.10).
We define

γ
(
λ0
)= ∞∑

j=1

λ
− j
0

[
1−

(
1− 1

λ0

)
j
]
Gj +

1
λ0

∞∑
j=1

λ
− j
0 jKj ,

μ
(
λ0
)= ∞∑

j=1

λ
− j
0

(
1 +
∣∣∣∣1− 1

λ0

∣∣∣∣ j
)∣∣Gj

∣∣+
1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣.
(2.12)

Property (2.10) together with the hypothesis that (Kn)n∈N−{0} is not eventually identically
zero guarantee that

0 < μ
(
λ0
)
< 1. (2.13)

Also, because of |γ(λ0)| ≤ μ(λ0), we have −1 < γ(λ0) < 1, that is,

0 < 1 + γ
(
λ0
)
< 2. (2.14)

In the particular case where (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive and λ0 is less
than or equal to 1, because of the fact that (Kn)n∈N−{0} is not eventually identically zero,
the property (2.10) can be written as −1 < γ(λ0) < 0, that is,

0 < 1 + γ(λ0) < 1. (2.15)
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Furthermore, we set

Θ(λ0)=
[
1 +μ

(
λ0
)]2

1 + γ
(
λ0
) +μ(λ0). (2.16)

We can easily see that Θ(λ0) is a real number with

Θ(λ0) > 1. (2.17)

Let us consider the special case of the (non-neutral) Volterra difference equation (2.3)
and let λ0 be a positive root of the characteristic equation (2.9) with the property (2.11).
In this case, we define

γ0
(
λ0
)= 1

λ0

∞∑
j=1

λ
− j
0 jKj ,

μ0
(
λ0
)= 1

λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣.
(2.18)

From the property (2.11) and the hypothesis that (Kn)n∈N−{0} is not eventually identically
zero it follows that

0 < μ0(λ0) < 1. (2.19)

So, since |γ0(λ0)| ≤ μ0(λ0), we have −1 < γ0(λ0) < 1, namely

0 < 1 + γ0(λ0) < 2. (2.20)

If (Kn)n∈N−{0} is assumed to be nonpositive, then, by the fact that (Kn)n∈N−{0} is not
eventually identically zero, the property (2.11) is equivalent to −1 < γ0(λ0) < 0, that is,

0 < 1 + γ0(λ0) < 1. (2.21)

Furthermore, we put

Θ0
(
λ0
)=

[
1 +μ0

(
λ0
)]2

1 + γ0(λ0)
+μ0

(
λ0
)

(2.22)

and we see that Θ0(λ0) is a real number with

Θ0
(
λ0
)
> 1. (2.23)

We notice that, in the special case of (2.3), the constants γ(λ0), μ(λ0), andΘ(λ0), which are
defined in the general case of (2.2), are equal to γ0(λ0), μ0(λ0), and Θ0(λ0), respectively.
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Next, consider again a positive root λ0 of the characteristic equation (2.8) with the
property (2.10), and let φ = (φn)n∈Z− be an initial sequence in S(λ0). We define

L
(
λ0;φ

)= φ0 +
∞∑
j=1

Gj

[
φ− j −

(
1− 1

λ0

)
λ
− j
0

( −1∑
r=− j

λ−r0 φr

)]

+
1
λ0

∞∑
j=1

λ
− j
0 Kj

( −1∑
r=− j

λ−r0 φr

)
,

M
(
λ0;φ

)= sup
n∈Z−

∣∣∣∣∣λ−n0 φn− L
(
λ0;φ

)
1 + γ

(
λ0
)
∣∣∣∣∣.

(2.24)

From the property (2.10) and the definition of S(λ0) it follows that L(λ0;φ) is a real num-
ber. Moreover, by the definition of S(λ0), M(λ0;φ) is a nonnegative constant.

Let us concentrate on the special case of (2.3) and consider a positive root λ0 of
the characteristic equation (2.9) with the property (2.11) and an initial sequence φ =
(φn)n∈Z− in S(λ0). In this special case, we have the constants

L0
(
λ0;φ

)= φ0 +
1
λ0

∞∑
j=1

λ
− j
0 Kj

( −1∑
r=− j

λ−r0 φr

)
,

M0
(
λ0;φ

)= sup
n∈Z−

∣∣∣∣∣λ−n0 φn− L0
(
λ0;φ

)
1 + γ0

(
λ0
)
∣∣∣∣∣

(2.25)

instead of the constants L(λ0;φ) and M(λ0;φ) considered in the general case of (2.2).
Property (2.11) and the definition of S(λ0) guarantee that L0(λ0;φ) is a real number, and
the definition of S(λ0) ensures that M0(λ0;φ) is a nonnegative constant.

Another notation used in the paper is the following one

N
(
λ0;φ

)= sup
n∈Z−

(
λ−n0

∣∣φn∣∣) (2.26)

for each positive root λ0 of the characteristic equation (2.8) (resp., (2.9)) with the prop-
erty (2.10) (resp., (2.11)) and for any initial sequence φ = (φn)n∈Z− in S(λ0). Clearly,
N(λ0;φ) is a nonnegative constant.

Furthermore, let λ0 be a positive root of the characteristic equation (2.8) with the
property (2.10) and λ1 be a positive root of (2.8) with λ1 < λ0. Let also φ = (φn)n∈Z− be an
initial sequence in S(λ0). We set

U
(
λ0,λ1;φ

)= inf
n∈Z−

{
λ−n1

[
φn− L

(
λ0;φ

)
1 + γ

(
λ0
)λn0

]}
,

V
(
λ0,λ1;φ

)= sup
n∈Z−

{
λ−n1

[
φn− L

(
λ0;φ

)
1 + γ

(
λ0
)λn0

]}
.

(2.27)

From the definition of S(λ0) and the hypothesis that λ1 < λ0 it follows that U(λ0,λ1;φ)
and V(λ0,λ1;φ) are real constants.



Ch. G. Philos and I. K. Purnaras 7

In particular, consider the special case of (2.3). Let λ0 be a positive root of the char-
acteristic equation (2.9) with the property (2.11) and λ1 be a positive root of (2.9) with
λ1 < λ0 as well as let φ = (φn)n∈Z− be an initial sequence in S(λ0). In this special case, we
consider the real constants

U0
(
λ0,λ1;φ

)= inf
n∈Z−

{
λ−n1

[
φn− L0

(
λ0;φ

)
1 + γ0(λ0)

λn0

]}
,

V0
(
λ0,λ1;φ

)= sup
n∈Z−

{
λ−n1

[
φn− L0

(
λ0;φ

)
1 + γ0(λ0)

λn0

]} (2.28)

in place of U(λ0,λ1;φ) and V(λ0,λ1;φ) considered in the general case of (2.2).
Before closing this section, we will give three well-known definitions. The trivial so-

lution of (2.2) (resp., of (2.3)) is said to be stable (at 0) if, for each ε > 0, there exists
δ ≡ δ(ε) > 0 such that, for any φ = (φn)n∈Z− in S with ‖φ‖ ≡ supn∈Z− |φn| < δ, the solu-
tion (xn)n∈Z of (2.2) and (2.7) (resp., of (2.3) and (2.7)) satisfies |xn| < ε for all n ∈ Z.
Also, the trivial solution of (2.2) (resp., of (2.3)) is called asymptotically stable (at 0) if it
is stable (at 0) in the above sense and, in addition, there exists δ0 > 0 such that, for any
φ = (φn)n∈Z− in S with ‖φ‖ < δ0, the solution (xn)n∈Z of (2.2) and (2.7) (resp., of (2.3)
and (2.7)) satisfies limn→∞xn = 0. Moreover, the trivial solution of (2.2) (resp., of (2.3))
is called exponentially stable (at 0) if there exist positive constants Λ and η < 1 such that,
for any φ = (φn)n∈Z− in S with ‖φ‖ <∞, the solution (xn)n∈Z of (2.2) and (2.7) (resp., of
(2.3) and (2.7)) satisfies |xn| ≤Ληn‖φ‖ for all n∈N (see Elaydi and Murakami [9]).

3. Statement of the main results

Our first main result is Theorem 3.1 below, which establishes a useful inequality for solu-
tions of the neutral Volterra difference equation (2.2). The application of Theorem 3.1 to
the special case of the (non-neutral) Volterra difference equation (2.3) leads to Theorem
3.2 below.

Theorem 3.1. Let λ0 be a positive root of the characteristic equation (2.8) with the property
(2.10). Then, for any φ= (φn)n∈Z− in S(λ0), the solution (xn)n∈Z of (2.2) and (2.7) satisfies

∣∣∣∣∣λ−n0 xn− L
(
λ0;φ

)
1 + γ

(
λ0
)
∣∣∣∣∣≤ μ

(
λ0
)
M
(
λ0;φ

) ∀n∈N. (3.1)

Theorem 3.2. Let λ0 be a positive root of the characteristic equation (2.9) with the property
(2.11). Then, for any φ= (φn)n∈Z− in S(λ0), the solution (xn)n∈Z of (2.3) and (2.7) satisfies

∣∣∣∣∣λ−n0 xn− L0
(
λ0;φ

)
1 + γ0(λ0)

∣∣∣∣∣≤ μ0
(
λ0
)
M0
(
λ0;φ

) ∀n∈N. (3.2)

Theorem 3.3 below provides an estimate of solutions of the neutral Volterra difference
equation (2.2) that leads to a stability criterion for the trivial solution of (2.2). By applying
Theorem 3.3 to the special case of the (non-neutral) Volterra difference equation (2.3),
one can be led to the subsequent theorem, that is, Theorem 3.4.
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Theorem 3.3. Let λ0 be a positive root of the characteristic equation (2.8) with the property
(2.10). Then, for any φ= (φn)n∈Z− in S(λ0), the solution (xn)n∈Z of (2.2) and (2.7) satisfies∣∣xn∣∣≤Θ

(
λ0
)
N
(
λ0;φ

)
λn0 ∀n∈N. (3.3)

Moreover, the trivial solution of (2.2) is stable (at 0) if λ0 = 1 and it is asymptotically stable
(at 0) if λ0 < 1. In addition, the trivial solution of (2.2) is exponentially stable (at 0) if λ0 < 1.

Theorem 3.4. Let λ0 be a positive root of the characteristic equation (2.9) with the property
(2.11). Then, for any φ= (φn)n∈Z− in S(λ0), the solution (xn)n∈Z of (2.3) and (2.7) satisfies∣∣xn∣∣≤Θ0

(
λ0
)
N
(
λ0;φ

)
λn0 ∀n∈N. (3.4)

Moreover, the trivial solution of (2.3) is stable (at 0) if λ0 = 1 and it is asymptotically stable
(at 0) if λ0 < 1. In addition, the trivial solution of (2.3) is exponentially stable (at 0) if λ0 < 1.

It must be noted that Theorems 3.2 and 3.4 for the (non-neutral) Volterra difference
equation (2.3) can be considered as substiantally improved versions of the main results
of the previous authors’ paper [32]. One can easily see the connection between Theorems
3.2 and 3.4, and the main results in [32].

The following lemma, that is, Lemma 3.5, gives sufficient conditions for the character-
istic equation (2.8) to have a (unique) root λ0 with the property (2.10). The specialization
of Lemma 3.5 to the special case of the characteristic equation (2.9) is formulated be-
low as Lemma 3.6. We notice that Lemma 3.6 has been previously proved in the authors’
paper [32].

Lemma 3.5. Assume that there exists a positive real number γ such that

∞∑
j=1

γ− j
∣∣Gj

∣∣ <∞,
∞∑
j=1

γ− j
∣∣Kj

∣∣ <∞, (3.5)

(1− γ)
∞∑
j=1

γ− jGj +
∞∑
j=1

γ− jKj > γ− 1− a, (3.6)

∞∑
j=1

γ− j

[
1 +

(
1 +

1
γ

)
j

]∣∣Gj

∣∣+
1
γ

∞∑
j=1

γ− j j
∣∣Kj

∣∣≤ 1. (3.7)

Then, in the interval (γ,∞), the characteristic equation (2.8) admits a unique root λ0;
this root has the property (2.10).

Lemma 3.6. Assume that there exists a positive real number γ such that

∞∑
j=1

γ− j
∣∣Kj

∣∣ <∞,

∞∑
j=1

γ− jKj > γ− 1− a,

1
γ

∞∑
j=1

γ− j j
∣∣Kj

∣∣≤ 1.

(3.8)



Ch. G. Philos and I. K. Purnaras 9

Then, in the interval (γ,∞), the characteristic equation (2.9) admits a unique root λ0;
this root has the property (2.11).

Theorem 3.7 and Corollary 3.8 below concern the behavior of solutions of the neutral
Volterra difference equation (2.2), while Theorem 3.9 and Corollary 3.10 below are deal-
ing with the behavior of solutions of the (non-neutral) Volterra difference equation (2.3).

Theorem 3.7. Suppose that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive. Let λ0 be a pos-
itive root of the characteristic equation (2.8) with λ0 ≤ 1 and with the property (2.10). Let
also λ1 be a positive root of (2.8) with λ1 < λ0. Then, for any φ = (φn)n∈Z− in S(λ0), the
solution (xn)n∈Z of (2.2) and (2.7) satisfies

U
(
λ0,λ1;φ

)≤ λ−n1

[
xn− L

(
λ0;φ

)
1 + γ

(
λ0
)λn0

]
≤V

(
λ0,λ1;φ

) ∀n∈N. (3.9)

We immediately observe that the double inequality in the conclusion of Theorem 3.7
can equivalently be written as follows

U
(
λ0,λ1;φ

)(λ1

λ0

)n

≤ λ−n0 xn− L
(
λ0;φ

)
1 + γ

(
λ0
) ≤V

(
λ0,λ1;φ

)(λ1

λ0

)n

for n∈N. (3.10)

Consequently, since λ1 < λ0, we obtain

lim
n→∞

(
λ−n0 xn

)= L
(
λ0;φ

)
1 + γ

(
λ0
) , (3.11)

which establishes the following corollary.

Corollary 3.8. Suppose that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive. Let λ0 be a
positive root of the characteristic equation (2.8) with λ0 ≤ 1 and with the property (2.10).
Assume that (2.8) has another positive root less than λ0. Then, for any φ= (φn)n∈Z− in S(λ0),
the solution (xn)n∈Z of (2.2) and (2.7) satisfies

lim
n→∞

(
λ−n0 xn

)= L
(
λ0;φ

)
1 + γ

(
λ0
) . (3.12)

Theorem 3.9. Suppose that (Kn)n∈N−{0} is nonpositive. Let λ0 be a positive root of the char-
acteristic equation (2.9) with the property (2.11). Let also λ1 be a positive root of (2.9) with
λ1 < λ0. Then, for any φ = (φn)n∈Z− in S(λ0), the solution (xn)n∈Z of (2.3) and (2.7) satisfies

U0
(
λ0,λ1;φ

)≤ λ−n1

[
xn− L0

(
λ0;φ

)
1 + γ0

(
λ0
)λn0

]
≤V0

(
λ0,λ1;φ

) ∀n∈N. (3.13)

We see that the double inequality in the conclusion of Theorem 3.9 is equivalently
written as

U0
(
λ0,λ1;φ

)(λ1

λ0

)n

≤ λ−n0 xn− L0
(
λ0;φ

)
1 + γ0

(
λ0
) ≤V0

(
λ0,λ1;φ

)(λ1

λ0

)n

for n∈N. (3.14)
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So, as λ1 < λ0, we have

lim
n→∞

(
λ−n0 xn

)= L0
(
λ0;φ

)
1 + γ0

(
λ0
) . (3.15)

This proves the following corollary.

Corollary 3.10. Suppose that (Kn)n∈N−{0} is nonpositive. Let λ0 be a positive root of the
characteristic equation (2.9) with the property (2.11). Assume that (2.9) has another positive
root less than λ0. Then, for any φ = (φn)n∈Z− in S(λ0), the solution (xn)n∈Z of (2.3) and (2.7)
satisfies

lim
n→∞

(
λ−n0 xn

)= L0
(
λ0;φ

)
1 + γ0

(
λ0
) . (3.16)

Now, we state two propositions (Propositions 3.11 and 3.12) as well as two lemmas
(Lemmas 3.13 and 3.14). Proposition 3.11 and Lemma 3.13 give some useful information
about the positive roots of the characteristic equation (2.8), while Proposition 3.12 and
Lemma 3.14 are concerned with the special case of the positive roots of the characteristic
equation (2.9).

Proposition 3.11. Suppose that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive. Let λ0 be a
positive root of the characteristic equation (2.8) with λ0 ≤ 1. If there exists another positive
root λ1 of (2.8) with λ1 < λ0 such that

∞∑
j=1

λ
− j
1 j
∣∣Gj

∣∣ <∞,
∞∑
j=1

λ
− j
1 j
∣∣Kj

∣∣ <∞, (3.17)

then λ0 has the property (2.10).

Proposition 3.12. Suppose that (Kn)n∈N−{0} is nonpositive. Let λ0 be a positive root of the
characteristic equation (2.9). If there exists another positive root λ1 of (2.9) with λ1 < λ0

such that

∞∑
j=1

λ
− j
1 j
∣∣Kj

∣∣ <∞, (3.18)

then λ0 has the property (2.11).

Lemma 3.13. Suppose that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive.
(I) If a= 0, then λ= 1 is not a root of the characteristic equation (2.8).
(II) Assume that a= 0 and that

∞∑
j=1

∣∣Gj

∣∣≤ 1. (3.19)

Then, in the interval (1,∞), the characteristic equation (2.8) has no roots.
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(III) Assume that

∞∑
j=1

j
∣∣Gj

∣∣ <∞, (3.20)

∞∑
j=1

∣∣Gj

∣∣+
∞∑
j=1

j
∣∣Kj

∣∣≤ 1, (3.21)

∞∑
j=1

∣∣Kj

∣∣≥ a. (3.22)

Then, in the interval (1,∞), the characteristic equation (2.8) has no roots.
(IV) Assume that (3.22) holds, and let there exist a positive real number γ with γ < 1 and

γ < a+ 1 so that

∞∑
j=1

γ− j j
∣∣Gj

∣∣ <∞,
∞∑
j=1

γ− j j
∣∣Kj

∣∣ <∞, (3.23)

(1− γ)
∞∑
j=1

γ− j
∣∣Gj

∣∣+
∞∑
j=1

γ− j
∣∣Kj

∣∣ > a+ 1− γ. (3.24)

Moreover, assume that there exists a real number δ with δ > 0 and a < δ < a+ 1− γ such
that

(δ− a)
∞∑
j=1

(a+ 1− δ)− j
∣∣Gj

∣∣+
∞∑
j=1

(a+ 1− δ)− j
∣∣Kj

∣∣ < δ. (3.25)

Then: (i) λ = a+ 1− δ is not a root of the characteristic equation (2.8). (ii) λ = γ is not a
root of (2.8). (iii) In the interval (a+ 1− δ,1], (2.8) has a unique root. (iv) In the interval
(γ,a+ 1− δ), (2.8) has a unique root. (Note: We have δ > 0 and γ < a+ 1− δ < 1.)

Lemma 3.14. Suppose that (Kn)n∈N−{0} is nonpositive.
(I) a > −1 is a necessary condition for the characteristic equation (2.9) to have at least

one positive root.
(II) The characteristic equation (2.9) has no positive roots greater than or equal to a+ 1.
(III) Let a >−1 and let there exist a positive real number γ with γ < a+ 1 so that

∞∑
j=1

γ− j j
∣∣Kj

∣∣ <∞, (3.26)

∞∑
j=1

γ− j
∣∣Kj

∣∣ > a+ 1− γ. (3.27)
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Moreover, assume that there exists a real number δ with 0 < δ < a+ 1− γ such that

∞∑
j=1

(a+ 1− δ)− j
∣∣Kj

∣∣ < δ. (3.28)

Then: (i) λ= a+ 1− δ is not a root of the characteristic equation (2.9). (ii) λ= γ is not a root
of (2.9). (iii) In the interval (a+ 1− δ,a+ 1), (2.9) has a unique root. (iv) In the interval
(γ,a+ 1− δ), (2.9) has a unique root. (Note: We have γ < a+ 1− δ < a+ 1).

It is an open problem to examine if Theorem 3.7, Corollary 3.8, and Proposition 3.11
remain valid without the restriction that the root λ0 of the characteristic equation (2.8)
satisfies λ0 ≤ 1. Such a restriction is not a necessity in the non-neutral case (i.e., in
Theorem 3.9, Corollary 3.10, and Proposition 3.12).

The neutral Volterra difference equation with infinite delay (2.2) can be considered as
the discrete version of the neutral Volterra integrodifferential equation with unbounded
delay

[
x(t) +

∫ t

−∞
G(t− s)x(s)ds

]′
= ax(t) +

∫ t

−∞
K(t− s)x(s)ds, (3.29)

where a is a real number, G and K are continuous real-valued functions on the interval
[0,∞), and K is assumed to be not eventually identically zero. In particular, the (non-
neutral) Volterra difference equation with infinite delay (2.3) can be viewed as the discrete
version of the (non-neutral) Volterra integrodifferential equation with unbounded delay

x′(t)= ax(t) +
∫ t

−∞
K(t− s)x(s)ds. (3.30)

The results obtained in this paper should be looked upon as the discrete analogues of the
ones given by Kordonis and Philos [19], Kordonis et al. [21], and Philos and Purnaras
[33], for the neutral Volterra integrodifferential equation with unbounded delay (3.29)
and, especially, for the (non-neutral) Volterra integrodifferential equation with unbound-
ed delay (3.30).

4. Proofs of the main results

Proof of Theorem 3.1. Let φ= (φn)n∈Z− be an initial sequence in S(λ0), and (xn)n∈Z be the
solution of (2.2) and (2.7).

Define

yn = λ−n0 xn for n∈ Z. (4.1)



Ch. G. Philos and I. K. Purnaras 13

Then, for each n∈N, we obtain

Δ

(
xn +

∞∑
j=1

Gjxn− j

)
− axn−

∞∑
j=1

Kjxn− j

= Δ

[
λn0

(
yn +

∞∑
j=1

λ
− j
0 Gj yn− j

)]
− aλn0 yn− λn0

∞∑
j=1

λ
− j
0 Kj yn− j

= λn0

[
λ0Δ

(
yn +

∞∑
j=1

λ
− j
0 Gj yn− j

)
+
(
λ0− 1− a

)
yn

+
(
λ0− 1

) ∞∑
j=1

λ
− j
0 Gj yn− j −

∞∑
j=1

λ
− j
0 Kj yn− j

]

= λn0

[
λ0Δ

(
yn +

∞∑
j=1

λ
− j
0 Gj yn− j

)
− (λ0− 1

)( ∞∑
j=1

λ
− j
0 Gj

)
yn

+

( ∞∑
j=1

λ
− j
0 Kj

)
yn +

(
λ0− 1

) ∞∑
j=1

λ
− j
0 Gj yn− j −

∞∑
j=1

λ
− j
0 Kj yn− j

]

= λn0

[
λ0Δ

(
yn +

∞∑
j=1

λ
− j
0 Gj yn− j

)
− (λ0− 1

) ∞∑
j=1

λ
− j
0 Gj

(
yn− yn− j

)

+
∞∑
j=1

λ
− j
0 Kj

(
yn− yn− j

)]
.

(4.2)

So, (xn)n∈Z satisfies (2.2) for n∈N if and only if (yn)n∈Z satisfies

Δ

(
yn +

∞∑
j=1

λ
− j
0 Gj yn− j

)

=
(

1− 1
λ0

) ∞∑
j=1

λ
− j
0 Gj

(
yn− yn− j

)− 1
λ0

∞∑
j=1

λ
− j
0 Kj

(
yn− yn− j

)
for n∈N.

(4.3)

Moreover, the initial condition (2.7) can equivalently be written as

yn = λ−n0 φn for n∈ Z−. (4.4)

Furthermore, we see that (4.3) becomes

Δ

(
yn +

∞∑
j=1

λ
− j
0 Gj yn− j

)

= Δ

[(
1− 1

λ0

) ∞∑
j=1

λ
− j
0 Gj

( n−1∑
r=n− j

yr

)
− 1
λ0

∞∑
j=1

λ
− j
0 Kj

( n−1∑
r=n− j

yr

)] (4.5)
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for n∈N. Thus, we have

yn +
∞∑
j=1

λ
− j
0 Gj yn− j

=
(

1− 1
λ0

) ∞∑
j=1

λ
− j
0 Gj

( n−1∑
r=n− j

yr

)
− 1
λ0

∞∑
j=1

λ
− j
0 Kj

( n−1∑
r=n− j

yr

)
+Λ

(4.6)

for every n ∈N, where Λ is a real constant. But, by using (4.4) and taking into account
the definition of L(λ0;φ), we can immediately verify that Λ= L(λ0;φ). Hence, (4.3) takes
the following equivalent form

yn +
∞∑
j=1

λ
− j
0 Gj yn− j

=
(

1− 1
λ0

) ∞∑
j=1

λ
− j
0 Gj

( n−1∑
r=n− j

yr

)
− 1
λ0

∞∑
j=1

λ
− j
0 Kj

( n−1∑
r=n− j

yr

)
+L
(
λ0;φ

)
for n∈N.

(4.7)

Next, we set

zn = yn− L
(
λ0;φ

)
1 + γ

(
λ0
) for n∈ Z. (4.8)

Then, we take into account the definition of γ(λ0) to show that (4.7) may equivalently be
written as follows

zn +
∞∑
j=1

λ
− j
0 Gjzn− j

=
(

1− 1
λ0

) ∞∑
j=1

λ
− j
0 Gj

( n−1∑
r=n− j

zr

)
− 1
λ0

∞∑
j=1

λ
− j
0 Kj

( n−1∑
r=n− j

zr

)
for n∈N.

(4.9)

On the other hand, the initial condition (4.4) becomes

zn = λ−n0 φn− L
(
λ0;φ

)
1 + γ

(
λ0
) for n∈ Z−. (4.10)

Now, by taking into account the definitions of (yn)n∈Z and (zn)n∈Z, we conclude that
what we have to prove is that (zn)n∈Z satisfies

∣∣zn∣∣≤ μ
(
λ0
)
M
(
λ0;φ

) ∀n∈N. (4.11)

In the rest of the proof we will establish (4.11). From (4.10) and the definition of M(λ0;φ)
it follows that

∣∣zn∣∣≤M
(
λ0;φ

)
for n∈ Z−. (4.12)
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We will show that ∣∣zn∣∣≤M(λ0;φ) ∀n∈ Z. (4.13)

For this purpose, let us consider an arbitrary real number ε > 0. Then (4.12) guarantees
that ∣∣zn∣∣ <M

(
λ0;φ

)
+ ε for n∈ Z−. (4.14)

We claim that ∣∣zn∣∣ <M
(
λ0;φ

)
+ ε for every n∈ Z. (4.15)

Otherwise, because of (4.14), there exists an integer n0 > 0 so that
∣∣zn∣∣ <M(λ0;φ) + ε for n∈ Z with n≤ n0− 1,

∣∣zn0

∣∣≥M(λ0;φ) + ε. (4.16)

Then, by taking into account the definition of μ(λ0) and the fact that 0 < μ(λ0) < 1, from
(4.9) we obtain

M
(
λ0;φ

)
+ ε

≤ ∣∣zn0

∣∣
≤

∞∑
j=1

λ
− j
0

∣∣Gj

∣∣∣∣zn0− j

∣∣+
∣∣∣∣1− 1

λ0

∣∣∣∣
∞∑
j=1

λ
− j
0

∣∣Gj

∣∣( n0−1∑
r=n0− j

∣∣zr∣∣
)

+
1
λ0

∞∑
j=1

λ
− j
0

∣∣Kj

∣∣( n0−1∑
r=n0− j

∣∣zr∣∣
)

≤
[ ∞∑

j=1

λ
− j
0

(
1 +
∣∣∣∣1− 1

λ0

∣∣∣∣ j
)∣∣Gj

∣∣+
1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣][M(λ0;φ
)

+ ε
]

≡ μ
(
λ0
)[
M
(
λ0;φ

)
+ ε
]
<M

(
λ0;φ

)
+ ε.

(4.17)

This is a contradiction and consequently our claim is true, that is, (4.15) holds true. Since
(4.15) is fulfilled for all numbers ε > 0, we conclude that (4.13) is always satisfied. Finally,
using (4.13) and taking again into account the definition of μ(λ0), from (4.9) we derive,
for every n∈N,

∣∣zn∣∣≤
∞∑
j=1

λ
− j
0

∣∣Gj

∣∣∣∣zn− j

∣∣+
∣∣∣∣1− 1

λ0

∣∣∣∣
∞∑
j=1

λ
− j
0

∣∣Gj

∣∣( n−1∑
r=n− j

∣∣zr∣∣
)

+
1
λ0

∞∑
j=1

λ
− j
0

∣∣Kj

∣∣( n−1∑
r=n− j

∣∣zr∣∣
)

≤
[ ∞∑

j=1

λ
− j
0

(
1 +
∣∣∣∣1− 1

λ0

∣∣∣∣ j
)∣∣Gj

∣∣+
1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣]M(λ0;φ
)

≡ μ
(
λ0
)
M
(
λ0;φ

)
.

(4.18)

Consequently, (4.11) has been proved.
The proof of our theorem is complete. �
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Proof of Theorem 3.3. Consider an arbitrary initial sequence φ = (φn)n∈Z− in S(λ0) and let
(xn)n∈Z be the solution of (2.2) and (2.7). Then, by Theorem 3.1, it holds

∣∣∣∣∣λ−n0 xn− L
(
λ0;φ

)
1 + γ

(
λ0
)
∣∣∣∣∣≤ μ

(
λ0
)
M
(
λ0;φ

) ∀n∈N, (4.19)

which leads to

λ−n0

∣∣xn∣∣≤
∣∣L(λ0;φ

)∣∣
1 + γ

(
λ0
) +μ

(
λ0
)
M
(
λ0;φ

)
for every n∈N. (4.20)

On the other hand, the definitions of M(λ0;φ) and N(λ0;φ) give

M
(
λ0;φ

)≤N
(
λ0;φ

)
+

∣∣L(λ0;φ
)∣∣

1 + γ
(
λ0
) . (4.21)

Thus, we have

λ−n0

∣∣xn∣∣≤ 1 +μ
(
λ0
)

1 + γ
(
λ0
)∣∣L(λ0;φ

)∣∣+μ
(
λ0
)
N
(
λ0;φ

)
for n∈N. (4.22)

But, taking into account the definitions of L(λ0;φ), N(λ0;φ), and μ(λ0), we obtain

∣∣L(λ0;φ
)∣∣≤ ∣∣φ0

∣∣+
∞∑
j=1

λ
− j
0

[
λ
−(− j)
0

∣∣φ− j

∣∣+
∣∣∣∣1− 1

λ0

∣∣∣∣
( −1∑

r=− j

λ−r0

∣∣φr∣∣
)]∣∣Gj

∣∣

+
1
λ0

∞∑
j=1

λ
− j
0

( −1∑
r=− j

λ−r0

∣∣φr∣∣
)∣∣Kj

∣∣

≤
[

1 +
∞∑
j=1

λ
− j
0

(
1 +
∣∣∣∣1− 1

λ0

∣∣∣∣ j
)∣∣Gj

∣∣+
1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣]N(λ0;φ
)

= [1 +μ
(
λ0
)]
N
(
λ0;φ

)
.

(4.23)

This together with (4.22) give

λ−n0

∣∣xn∣∣≤
{[

1 +μ
(
λ0
)]2

1 + γ
(
λ0
) +μ

(
λ0
)}

N
(
λ0;φ

)
for n∈N (4.24)

and hence, by taking into account the definition of Θ(λ0), we have

∣∣xn∣∣≤Θ
(
λ0
)
N
(
λ0;φ

)
λn0 ∀n∈N. (4.25)

We have thus proved the first part of the theorem.
Next, we will establish the stability criterion contained in our theorem. Assume that

λ0 ≤ 1. Consider an arbitrary bounded initial sequence φ= (φn)n∈Z− in S and define

∥∥φ∥∥= sup
n∈Z−

∣∣φn∣∣. (4.26)
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As λ0 ≤ 1, we immediately see that φ= (φn)n∈Z− belongs to S(λ0) and, in addition, that

N
(
λ0;φ

)≤ ‖φ‖. (4.27)

The solution (xn)n∈Z of (2.2) and (2.7) satisfies (4.25). By combining (4.25) and (4.27),
we obtain

∣∣xn∣∣≤Θ
(
λ0
)‖φ‖λn0 for every n∈N. (4.28)

Since λ0 ≤ 1, it follows from (4.28) that
∣∣xn∣∣≤Θ

(
λ0
)‖φ‖ for any n∈N. (4.29)

Thus, as Θ(λ0) > 1, we always have
∣∣xn∣∣≤Θ

(
λ0
)‖φ‖ ∀n∈ Z. (4.30)

We have proved that, for any bounded initial sequence φ = (φn)n∈Z− in S, the solution
(xn)n∈Z of (2.2) and (2.7) satisfies (4.28) and (4.30). From (4.30) it follows that the trivial
solution of (2.2) is stable (at 0), provided that λ0 ≤ 1. Furthermore, if λ0 < 1, then (4.28)
ensures that limn→∞xn = 0 and hence the trivial solution of (2.2) is asymptotically stable
(at 0). Finally, if λ0 < 1, then it follows from (4.28) that the trivial solution of (2.2) is also
exponentially stable (at 0).

The proof of the theorem has been finished. �

Proof of Lemma 3.5. Assumption (3.5) guarantees that

∞∑
j=1

λ− j
∣∣Gj

∣∣ <∞,
∞∑
j=1

λ− j
∣∣Kj

∣∣ <∞, ∀λ≥ γ (4.31)

and hence the formula

F(λ)= (λ− 1)

(
1 +

∞∑
j=1

λ− jGj

)
− a−

∞∑
j=1

λ− jKj for λ≥ γ (4.32)

defines a continuous real-valued function on the interval [γ,∞) . From condition (3.6) it
follows that

F(γ) < 0. (4.33)

Furthermore, for each λ≥ γ, we obtain
∣∣∣∣∣
∞∑
j=1

λ− jGj

∣∣∣∣∣≤ 1
λ

∞∑
j=1

λ− j+1
∣∣Gj

∣∣≤ 1
λ

∞∑
j=1

γ− j+1
∣∣Gj

∣∣= γ

λ

∞∑
j=1

γ− j
∣∣Gj

∣∣ (4.34)

and consequently, by the first assumption of (3.5), we have

lim
λ→∞

∞∑
j=1

λ− jGj = 0. (4.35)
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In a similar way, one can see that

lim
λ→∞

∞∑
j=1

λ− jKj = 0. (4.36)

So, we immediately verify that

F(∞)=∞. (4.37)

Now, by using the hypothesis that (Kn)n∈N−{0} is not eventually identically zero as well as
condition (3.7), we derive for λ > γ

F′(λ)= 1 +
∞∑
j=1

λ− j

[
1−

(
1− 1

λ

)
j

]
Gj +

1
λ

∞∑
j=1

λ− j jKj

≥ 1−
∞∑
j=1

λ− j

[
1 +

(
1 +

1
λ

)
j

]∣∣Gj

∣∣− 1
λ

∞∑
j=1

λ− j j
∣∣Kj

∣∣

> 1−
∞∑
j=1

γ− j

[
1 +

(
1 +

1
γ

)
j

]∣∣Gj

∣∣− 1
γ

∞∑
j=1

γ− j j
∣∣Kj

∣∣≥ 0,

(4.38)

which means that F is strictly increasing on (γ,∞). This fact together with (4.33) and
(4.37) guarantee that, in the interval (γ,∞), the equation F(λ) = 0 (i.e., the character-
istic equation (2.8)) has a unique root λ0. Finally, by using again the hypothesis that
(Kn)n∈N−{0} is not eventually identically zero as well as condition (3.7), we get

∞∑
j=1

λ
− j
0

(
1 +
∣∣∣∣1− 1

λ0

∣∣∣∣ j
)∣∣Gj

∣∣+
1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣

≤
∞∑
j=1

λ
− j
0

[
1 +

(
1 +

1
λ0

)
j

]∣∣Gj

∣∣+
1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣

<
∞∑
j=1

γ− j

[
1 +

(
1 +

1
γ

)
j

]∣∣Gj

∣∣+
1
γ

∞∑
j=1

γ− j j
∣∣Kj

∣∣≤ 1.

(4.39)

So, the root λ0 of the characteristic equation (2.8) has the property (2.10). This completes
the proof of the lemma. �

Proof of Theorem 3.7. Let φ = (φn)n∈Z− be an arbitrary initial sequence in S(λ0) and
(xn)n∈Z be the solution of (2.2) and (2.7). Define (yn)n∈Z and (zn)n∈Z as in the proof
of Theorem 3.1. As it has been shown in the proof of Theorem 3.1, the fact that (xn)n∈Z

satisfies (2.2) for n∈N is equivalent to the fact that (zn)n∈Z satisfies (4.9), while the initial
condition (2.7) becomes (4.10). Furthermore, set

wn =
(
λ0

λ1

)n

zn for n∈ Z. (4.40)
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Then it is easy to see that (4.9) can equivalently be written as follows

wn +
∞∑
j=1

λ
− j
1 Gjwn− j =

(
1− 1

λ0

) ∞∑
j=1

λ
− j
0 Gj

[ n−1∑
r=n− j

(
λ0

λ1

)n−r
wr

]

− 1
λ0

∞∑
j=1

λ
− j
0 Kj

[ n−1∑
r=n− j

(
λ0

λ1

)n−r
wr

]
for n∈N.

(4.41)

Moreover, the initial condition (4.10) is written in the following equivalent form

wn = λ−n1

[
φn− L

(
λ0;φ

)
1 + γ

(
λ0
)λn0

]
for n∈ Z−. (4.42)

In view of the definitions of (yn)n∈Z, (zn)n∈Z, and (wn)n∈Z, we have

wn = λ−n1

[
xn− L

(
λ0;φ

)
1 + γ

(
λ0
)λn0

]
for n∈ Z. (4.43)

From (4.42) and the definitions of U(λ0,λ1;φ) and V(λ0,λ1;φ) it follows that

U
(
λ0,λ1;φ

)= inf
s∈Z−

ws, V
(
λ0,λ1;φ

)= sup
s∈Z−

ws. (4.44)

So, by taking into account (4.43), we immediately conclude that all we have to prove is
that (wn)n∈Z satisfies

inf
s∈Z−

ws ≤wn ≤ sup
s∈Z−

ws ∀n∈N. (4.45)

We restrict ourselves to show that

wn ≥ inf
s∈Z−

ws for every n∈N. (4.46)

In a similar manner, one can prove that

wn ≤ sup
s∈Z−

ws for every n∈N. (4.47)

In the rest of the proof we will establish (4.46). To this end, it suffices to show that, for
any real number D with D < inf s∈Z−ws, it holds

wn > D ∀n∈N. (4.48)

Let us consider an arbitrary real number D with D < inf s∈Z−ws. Then we obviously have

wn > D for n∈ Z−. (4.49)

Assume, for the sake of contradiction, that (4.48) fails. Then, because of (4.49), there
exists an integer n0 > 0 so that

wn > D for n∈ Z with n≤ n0− 1,

wn0 ≤D.
(4.50)
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Hence, by using the hypothesis that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive and that
(Kn)n∈N−{0} is not eventually identically zero and taking into account the assumption that
λ0 ≤ 1, from (4.41) we obtain

D ≥wn0 > D

{
−

∞∑
j=1

λ
− j
1 Gj +

(
1− 1

λ0

) ∞∑
j=1

λ
− j
0 Gj

[ n0−1∑
r=n0− j

(
λ0

λ1

)n0−r]

− 1
λ0

∞∑
j=1

λ
− j
0 Kj

[ n0−1∑
r=n0− j

(
λ0

λ1

)n0−r]}

=D

{
−

∞∑
j=1

λ
− j
1 Gj +

(
1− 1

λ0

) ∞∑
j=1

λ
− j
0 Gj

[ j∑
ν=1

(
λ0

λ1

)ν
]

− 1
λ0

∞∑
j=1

λ
− j
0 Kj

[ j∑
ν=1

(
λ0

λ1

)ν
]}

= D

λ0− λ1

{
− (λ0− λ1

) ∞∑
j=1

λ
− j
1 Gj +

(
λ0− 1

) ∞∑
j=1

λ
− j
0 Gj

[(
λ0

λ1

) j

− 1

]

−
∞∑
j=1

λ
− j
0 Kj

[(
λ0

λ1

) j

− 1

]}

= D

λ0− λ1

{
− [(λ0− 1

)− (λ1− 1
)] ∞∑

j=1

λ
− j
1 Gj +

(
λ0− 1

) ∞∑
j=1

(
λ
− j
1 − λ

− j
0

)
Gj

−
∞∑
j=1

(
λ
− j
1 − λ

− j
0

)
Kj

}

= D

λ0− λ1

{[
− (λ0− 1

) ∞∑
j=1

λ
− j
0 Gj +

∞∑
j=1

λ
− j
0 Kj

]

−
[
− (λ1− 1

) ∞∑
j=1

λ
− j
1 Gj +

∞∑
j=1

λ
− j
1 Kj

]}

= D

λ0− λ1

[(
λ0− 1− a

)− (λ1− 1− a
)]=D.

(4.51)

This contradiction shows that (4.48) holds true.
The proof of the theorem is now complete. �

Proof of Theorem 3.9. First, let us notice that the main difference between the neutral case
and the non-neutral one is the existence (in the neutral case) of the terms

∞∑
j=1

λ
− j
1 Gjwn− j ,

(
1− 1

λ0

) ∞∑
j=1

λ
− j
0 Gj

[ n−1∑
r=n− j

(
λ0

λ1

)n−r
wr

]
(4.52)
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in (4.41), which do not appear in the non-neutral case. In the special case of the
(non-neutral) Volterra difference equation (2.3), (4.41) becomes

wn =− 1
λ0

∞∑
j=1

λ
− j
0 Kj

[ n−1∑
r=n− j

(
λ0

λ1

)n−r
wr

]
for n∈N. (4.53)

The need for assuming, in Theorem 3.7, that the root λ0 of the characteristic equation
(2.8) is such that λ0 ≤ 1 is due only to the existence of the second of the above terms in
(4.41). After the above observations, we omit the proof of the theorem. �

Proof of Proposition 3.11. Assume that there exists another positive root λ1 of the charac-
teristic equation (2.8) with λ1 < λ0 such that (3.17) holds. Clearly,

∞∑
j=1

λ
− j
1 Gj ,

∞∑
j=1

λ
− j
1 Kj exist in R. (4.54)

So, since (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive, we must have

∞∑
j=1

λ
− j
1

∣∣Gj

∣∣ <∞,
∞∑
j=1

λ
− j
1

∣∣Kj

∣∣ <∞. (4.55)

(This fact can also be obtained from (3.17).) This guarantees that

∞∑
j=1

λ− j
∣∣Gj

∣∣ <∞,
∞∑
j=1

λ− j
∣∣Kj

∣∣ <∞, ∀λ≥ λ1 (4.56)

and consequently the formula

F(λ)= (λ− 1)

(
1 +

∞∑
j=1

λ− jGj

)
− a−

∞∑
j=1

λ− jKj for λ≥ λ1 (4.57)

defines a real-valued function F on the interval [λ1,∞). It follows from assumption (3.17)
that

∞∑
j=1

λ− j j
∣∣Gj

∣∣ <∞,
∞∑
j=1

λ− j j
∣∣Kj

∣∣ <∞, ∀λ≥ λ1, (4.58)

which ensures that F is differentiable on [λ1,∞) with

F′(λ)= 1 +
∞∑
j=1

λ− j

[
1−

(
1− 1

λ

)
j

]
Gj +

1
λ

∞∑
j=1

λ− j jKj for λ≥ λ1. (4.59)

Furthermore, by using the hypothesis that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive
and (Kn)n∈N−{0} is not eventually identically zero, it is not difficult to check that F′ is
strictly increasing on the interval [λ1,1]. (We notice that 0 < λ1 < λ0 ≤ 1.)

Now, observe that F(λ1)= F(λ0)= 0, and so an application of Rolle’s theorem ensures
the existence of a real number ξ with λ1 < ξ < λ0 so that F′(ξ) = 0. Since F′ is strictly
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increasing on [ξ,1], it follows that F′ is always positive on (ξ,1]. Hence, as ξ < λ0 ≤ 1, we
conclude, in particular, that F′(λ0) > 0, namely that

1 +
∞∑
j=1

λ
− j
0

[
1−

(
1− 1

λ0

)
j

]
Gj +

1
λ0

∞∑
j=1

λ
− j
0 jKj > 0. (4.60)

By taking into account the fact that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive and that
λ0 ≤ 1, we see that the last inequality can equivalently be written as follows

1−
∞∑
j=1

λ
− j
0

(
1 +
∣∣∣∣1− 1

λ0

∣∣∣∣ j
)∣∣Gj

∣∣− 1
λ0

∞∑
j=1

λ
− j
0 j
∣∣Kj

∣∣ > 0, (4.61)

which means that λ0 has the property (2.10).
The proof of the proposition is complete. �

Proof of Proposition 3.12. The proof will be omitted since it is similar to that of
Proposition 3.11. We restrict ourselves only to noting that here we have the differentiable
real-valued function F0 defined by

F0(λ)= λ− 1− a−
∞∑
j=1

λ− jKj for λ≥ λ1 (4.62)

instead of F. We note that F′0 is strictly increasing on the whole interval [λ1,∞). �

Proof of Lemma 3.13. (I) Let us consider the case where a = 0. Then the characteristic
equation (2.8) takes the form

(λ− 1)

(
1 +

∞∑
j=1

λ− jGj

)
=

∞∑
j=1

λ− jKj . (4.63)

From the hypothesis that (Kn)n∈N−{0} is nonpositive and not eventually identically zero,
it follows that

∞∑
j=1

Kj < 0. (4.64)

Consequently, λ= 1 cannot be a root of (4.63).
(II) Assume that (4.63) has a positive root μ with μ > 1. Then

(μ− 1)

(
1 +

∞∑
j=1

μ− jGj

)
=

∞∑
j=1

μ− jKj . (4.65)

In view of the fact that (Gn)n∈N−{0} is nonpositive and because of the assumption (3.19),
we get

1 +
∞∑
j=1

μ− jGj ≥ 1 +
∞∑
j=1

Gj = 1−
∞∑
j=1

∣∣Gj

∣∣≥ 0. (4.66)
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Thus,

(μ− 1)

(
1 +

∞∑
j=1

μ− jGj

)
≥ 0. (4.67)

On the other hand, since (Kn)n∈N−{0} is nonpositive and not eventually identically zero,
we have

∞∑
j=1

μ− jKj < 0. (4.68)

We have thus arrived at a contradiction.
(III) A particular consequence of assumption (3.21) is that

∞∑
j=1

j
∣∣Kj

∣∣ <∞. (4.69)

Assumption (3.20) and (4.69) imply, in particular, that

∞∑
j=1

∣∣Gj

∣∣ <∞,
∞∑
j=1

∣∣Kj

∣∣ <∞. (4.70)

(Note that the first of these facts can also be obtained from (3.21).) Thus, we can imme-
diately conclude that

∞∑
j=1

λ− j
∣∣Gj

∣∣ <∞,
∞∑
j=1

λ− j
∣∣Kj

∣∣ <∞, ∀λ≥ 1. (4.71)

So, the formula

F(λ)= (λ− 1)

(
1 +

∞∑
j=1

λ− jGj

)
− a−

∞∑
j=1

λ− jKj for λ≥ 1 (4.72)

introduces a real-valued function F on the interval [1,∞). From (3.20) and (4.69), it
follows that

∞∑
j=1

λ− j j
∣∣Gj

∣∣ <∞,
∞∑
j=1

λ− j j
∣∣Kj

∣∣ <∞, ∀λ≥ 1 (4.73)

and consequently the function F is differentiable on [1,∞) with

F′(λ)= 1 +
∞∑
j=1

λ− j

[
1−

(
1− 1

λ

)
j

]
Gj +

1
λ

∞∑
j=1

λ− j jKj for λ≥ 1. (4.74)
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Furthermore, by the hypothesis that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive and
(Kn)n∈N−{0} is not eventually identically zero, we obtain for λ > 1

F′(λ)= 1−
∞∑
j=1

λ− j
∣∣Gj

∣∣+

(
1− 1

λ

) ∞∑
j=1

λ− j j
∣∣Gj

∣∣− 1
λ

∞∑
j=1

λ− j j
∣∣Kj

∣∣

> 1−
∞∑
j=1

∣∣Gj

∣∣− ∞∑
j=1

j
∣∣Kj

∣∣.
(4.75)

Hence, by assumption (3.21), we find

F′(λ) > 0 for every λ > 1. (4.76)

This implies that F is strictly increasing on the interval (1,∞). Since (Kn)n∈N−{0} is non-
positive, assumption (3.22) means that

F(1)≥ 0. (4.77)

Thus, the characteristic equation (2.8) cannot have roots in the interval (1,∞).
(IV) Assumption (3.22) means that (4.77) is true. Furthermore, assumption (3.23)

guarantees, in particular, that

∞∑
j=1

γ− j
∣∣Gj

∣∣ <∞,
∞∑
j=1

γ− j
∣∣Kj

∣∣ <∞ (4.78)

and consequently

∞∑
j=1

λ− j
∣∣Gj

∣∣ <∞,
∞∑
j=1

λ− j
∣∣Kj

∣∣ <∞, ∀λ≥ γ. (4.79)

So, the formula

F(λ)= (λ− 1)

(
1 +

∞∑
j=1

λ− jGj

)
− a−

∞∑
j=1

λ− jKj for λ≥ γ (4.80)

defines a real-valued function F on the interval [γ,∞). From assumption (3.23) it follows
that

∞∑
j=1

λ− j j
∣∣Gj

∣∣ <∞,
∞∑
j=1

λ− j j
∣∣Kj

∣∣ <∞, ∀λ≥ γ, (4.81)

which ensures that the function F is differentiable on [γ,∞) with

F′(λ)= 1 +
∞∑
j=1

λ− j

[
1−

(
1− 1

λ

)
j

]
Gj +

1
λ

∞∑
j=1

λ− j jKj for λ≥ γ. (4.82)
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By using the hypothesis that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpositive and (Kn)n∈N−{0}
is not eventually identically zero, we can easily verify that F′ is strictly increasing on the
interval [γ,1]. Consequently,

F is strictly convex on [γ,1]. (4.83)

Furthermore, we take into account the fact that (Gn)n∈N−{0} and (Kn)n∈N−{0} are nonpos-
itive to conclude that assumption (3.24) means that

F(γ) > 0, (4.84)

while assumption (3.25) means that

F(a+ 1− δ) < 0. (4.85)

A particular consequence of (4.84) is that λ = γ is not a root of (2.8). Similarily, (4.85)
guarantees, in particular, that λ= a+ 1− δ is not a root of (2.8). Moreover, from (4.77),
(4.83), and (4.85) it follows that, in the interval (a+ 1− δ,1], (2.8) has a unique root.
Finally, (4.83), (4.84), and (4.85) ensure that, in the interval (γ,a+ 1− δ), (2.8) has also
a unique root.

The lemma has now been proved. �

Proof of Lemma 3.14. (I) and (II) These parts can easily be established using the hypoth-
esis that (Kn)n∈N−{0} is nonpositive and not eventually identically zero.

(III) By using the assumption (3.26) and following some arguments similar to those
in the proof of Lemma 3.13, we can see that the formula

F0(λ)= λ− 1− a−
∞∑
j=1

λ− jKj for λ≥ γ (4.86)

defines a real-valued function F0, which is differentiable on [γ,∞). Furthermore, the hy-
pothesis that (Kn)n∈N−{0} is nonpositive and not eventually identically zero ensures that
F′0 is strictly increasing on the interval [γ,∞). So,

F0 is strictly convex on [γ,∞). (4.87)

Now, as (Kn)n∈N−{0} is nonpositive, assumption (3.27) means that

F0(γ) > 0, (4.88)

while assumption (3.28) means that

F0(a+ 1− δ) < 0. (4.89)

From (4.88) it follows, in particular, that λ= γ is not a root of (2.9), while (4.89) ensures,
in particular, that λ= a+ 1− δ is not a root of (2.9). Next, by taking into account the fact
that (Kn)n∈N−{0} is nonpositive and not eventually identically zero, we see that

F0(a+ 1) > 0. (4.90)
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Because of (4.87), (4.89), and (4.90), we conclude that, in the interval (a+ 1− δ,a+ 1),
(2.9) has a unique root. Moreover, (4.87), (4.88), and (4.89) guarantee that, in the interval
(γ,a+ 1− δ), (2.9) admits also a unique root.

We have thus completed the proof of our lemma. �
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