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Starting from supersymmetric quantum mechanics and related supermodels within
Schrödinger theory, we review the meaning of self-similar superpotentials which exhibit
the spectrum of a geometric series. We construct special types of discretizations of the
Schrödinger equation on time scales with particular symmetries. This discretization leads
to the same type of point spectrum for the referred Schrödinger difference operator than
in the self-similar superpotential case, hence exploiting an isospectrality situation. A dis-
cussion is opened on the question of how the considered energy sequence and its gener-
alizations serve the understanding of coherent states in quantum optics.
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1. Introduction

Items like “coherent states” or “squeezed states” can nowadays be found in many recent
articles on quantum optics. The fact that the Nobel Prize in Physics 2005 has been awarded
to pioneers on this area, like R. Glauber, gives insight how active this area is.

The kind of physical states behind coherent states or squeezed states are the so-called
nonclassical states. They are minimal uncertainty states. These properties are essential for
an efficient signal transmission in the quantum world. The theory of coherent states in
physics has been developed all over the last decades, among others by Glauber, Klauder,
and Sudarshan.

Coherent states play a major role in laser physics. The mathematical modeling in laser
physics allows three different approaches to coherent states: first by the method of trans-
lation operators, second by the method of ladder operators, and third by the method of
minimal uncertainty. Nonclassical states like squeezed laser fields are very important for
applications: the experimental methods when dealing with squeezed laser fields include
for instance the so-called self-homodyne tomography. The mathematical modeling in self-
homodyne tomography allows a tomographical reconstruction of the Wigner function,
belonging to a set of probability densities of fluctuations in different field amplitudes.
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Squeezed laser states are—like coherent states—states of minimal uncertainty. From
the viewpoint of statistics, semiconductor lasers have a super-Poisson distribution up to
the pumping level, that is, a distribution which goes beyond the non-normalized Pois-
son distribution. But also the so-called sub-Poisson distribution has a particular mean-
ing in multiboson systems: the definition of coherent states is directly related to solu-
tions of Stieltjes moment problems. In [4], Penson and Solomon could show that q-
discretizations of orthogonality measures, solving the moment problems, allow to in-
vestigate multiboson coherent states which could not so far be understood in the con-
ventional quantum setting. The nature of these states is sub-Poissonian. Regarding the
statistical properties of different physical quantum states in quantum optics, one also
refers to super-Poisson states and sub-Poisson states.

Apart from the development in quantum optics, there are also great achievements visi-
ble in mathematical physics which support the theoretical understanding of the described
phenomena. On the one hand, the mathematical frame for coherent states is steadily de-
veloped throughout analysis, on the other hand one can see the development that super-
symmetric quantum mechanics and discrete Schrödinger theory become related to essential
problems in quantum optics.

In this article, we are going to exploit the connections between self-similar supermodels
within supersymmetric quantum mechanics, so-called basic versions of coherent states,
and their relations to discretized Schrödinger equations on time scales. In Sections 2 and 3,
we review some fundamental facts on supersymmetric Schrödinger operators where we
are going to exploit a generalized supermodel definition at the end of Section 4. We are
going to represent generalized supermodels through their creation and annihilation op-
erators and characterize them as solutions to a new type of discretization for Schrödinger
operators in Section 4. Finally, in Section 5, we are going to establish the connection of
the obtained results and representations to basic items of coherent state theory in quan-
tum optics.

2. Schrödinger equations and superpotentials

Supersymmetry is one of the most powerful tools being applied to problems of theoretical
physics. In the last years, there were great achievements especially on the area of super-
symmetry in quantum mechanics. For an excellent contribution to the topic see for in-
stance the articles by Robnik [7] and Robnik and Liu [8]. The stationary one-dimensional
version of Schrödinger’s equation (λ being a fixed value in R) is

−ψ′′(x) +V(x)ψ(x)= λψ(x), x ∈R. (2.1)

It can with some general success be factorized by using the concept of so-called superpo-
tentials.

In Schrödinger theory, the following scenario is of particular interest. Given two
Schrödinger equations with different potentials V1 and V2. Under some circumstances, it
is possible to write them in the form

B+Bϕ= λϕ, BB+ψ = μψ, (2.2)
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where B and B+ are formally adjoint to each other, being defined on some common do-
main in �2(R). Let us shortly review the method of how to address the stated factoriza-
tion problem.

The first step is the construction of a so-called superpotential W such that one can
express the partner potentials V1, V2 as follows:

V1 = 1
2

(
W2−√2W ′), V2 = 1

2

(
W2 +

√
2W ′). (2.3)

The superpotentialW is fixed by assuming that the potentialV1 allows 0 as an eigenvalue,
the corresponding eigenfunction ϕ being positive. This leads to the condition

−ϕ′′(x) +
1
2

(
W2(x)−√2W ′(x)

)
ϕ(x)= 0, x ∈R. (2.4)

A solution to this equation is given by

W(x)=−√2(lnϕ)′(x), x ∈R. (2.5)

The aimed factorization is now achieved by the equalities

H1 = B+B, H2 = BB+, (2.6)

where the differential operators H1, H2 are specified by the supersymmetric ladder opera-
tors

B := 1√
2

(
W +

√
2
d

dx

)
, B+ := 1√

2

(
W −√2

d

dx

)
. (2.7)

To illustrate this formalism, let us consider the two potentials

V1(x)= x2

4
− 1

2
, V2(x)= x2

4
+

1
2

, x ∈R. (2.8)

As for the superpotential W , we obtain just W(x)=√2x, leading to the well-understood
conventional ladder operator formalism

H1 = B+B, H2 = BB+,

B = 1√
2

(
x+
√

2
d

dx

)
, B+ = 1√

2

(
x−√2

d

dx

)
.

(2.9)

The key message is now that one can determine the point spectrum of H1, H2 completely
by using the operators B, B+. Further, more illustrative example is the so-called Rosen-
Morse potential, in which a real parameter y occurs:

V1(x, y)= y2− y(y + 1)

cosh2(x)
, x ∈R. (2.10)

Assuming that the equation

−ϕ′′(x) +V1(x, y)ϕ(x)= 0 (2.11)
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has a solution ϕ∈�2(R), we are first led to the superpotential

W(x)=√2y tanh(x), x ∈R, (2.12)

as well as to the potential

V2(x, y)= y2− y(y− 1)

cosh2(x)
, x ∈R. (2.13)

The difference of the two partner potentials is given by

V2(x, y)−V1(x, y− 1)= 2y− 1
2

, x ∈R. (2.14)

Generalizing the observations made so far, the two potentials V1, V2 are called form-
invariant if the following identity holds for different values of x, y1, y2, the expression
R(y1) being a continuous function of y1:

V2
(
x, y1

)=V1
(
x, y2

)
+R
(
y1
)
. (2.15)

According to the above construction, the pair B, B+ specifies two different Schrödinger
equations, which together are referred to as a supersymmetric model or just as a super-
model.

3. Self-similar supermodels

In many important applications, it follows from the defining equation for form invari-
ance,

V2
(
x, y1

)=V1
(
x, y2

)
+R
(
y1
)
, (3.1)

that y2 = y1 + h, where h is a real constant. A completely new class of form-invariant
potentials has been proposed in [3], where potentials were constructed whose parameters
are related to each other by

y2 = qy1, 0 < q < 1. (3.2)

In order to make apparent what kind of possible point spectrum is generated by the prop-
erty (3.2), we follow the basic outline in [2], where the superpotential is expanded as
follows:

W(x, y)=
∞∑

j=0

gj(x)y j (3.3)

for some suitable parameter, y ∈R. The function R from (3.3) is assumed to be given by
an analytic ansatz

R(y)=
∞∑

j=0

Rj y
j . (3.4)
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Plugging this ansatz into formula (3.1) yields

R(y)=V2(x, y)−V1(x,qy)

=W2(x, y)−W2(x,qy) +
√

2
((
∂xW

)
(x, y) +

(
∂xW

)
(x,qy)

)
.

(3.5)

Inserting now the expansion (3.4) for the function R, one obtains, by comparing the
coefficients,

Rn = 1
2

∞∑

i=1

(
1 + qn−i

)(
1− qi)gign−i +

√
2
(
1 + qn

)
g′n, n∈N, (3.6)

and the value R0 being given by R0 = g′0. With the abbreviations

rn := Rn
1− qn , dn := 1− qn

1 + qn
, n∈N, (3.7)

one is led to nonlinear integral equations, given by

gn(x)= dn√
2

∫ x

a

(

2rn−
n−1∑

i=1

gi(t)gn−i(t)

)

dt, x ∈R, n∈N, (3.8)

where restrictions of the solutions of these equations are put by the conditions

R0 = 0, g0(x)= 0, rn = zδn1, n∈N, (3.9)

δn1 denoting the Kronecker symbol and z being a positive parameter. This nonlinear in-
tegral equation allows now the solutions

R(y)= R1y = R, gn(x)= 1√
2
βnx

2n−1, x ∈R, n∈N, (3.10)

where the coefficients βn are fixed by the recurrence formula

β1 = 2R1

1 + q
, β0 = 0, βn =− dn

2n− 1

n−1∑

i=1

βiβn−i, n∈N \ {1}. (3.11)

The superpotential now reads

W(x, y)=
∞∑

j=1

βj y
j
(
x√
2

)2 j−1

, x ∈R. (3.12)

The formal ground-state, belonging to V1, is given by the formula

ψ0(x, y)= Ce−
∑∞

j=1(βj /2 j)y j (x/
√

2)2 j
, x ∈R. (3.13)

Direct calculation leads to the formula

W
(
x, y2

)= √qW(√qx, y1
)
, x ∈R, (3.14)
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showing some self-similar property. This type of superpotential is therefore also referred
to by the name self-similar superpotential. Applying a generalized version of the ladder
operator formalism, one is led to the energies of the operator H1, being given by

λn = R
n−1∑

j=0

q j = R1− qn
1− q , n∈N0. (3.15)

Let us now arrive at an interesting isospectrality scenario.

4. Isospectral supermodels and strip discretizations

We now address the general question of how to construct discrete Schrödinger oper-
ators, that is, Schrödinger difference operators whose wave functions are defined on a
nonempty closed set Ω⊂ R with Lebesgue measure μ(Ω) > 0, leading to the same point
spectrum (3.15).

We address this question in context of Schrödinger q-difference equations, where we
study piecewise continuous solutions to these equations, having support on some kind of
strip structures which are generated by the symmetries of the lattice {+qn,−qn | n∈ Z}.
This approach seems to fit naturally to the given point spectrum (3.15) and might be of
importance for applications and numerical investigations of the underlying eigenvalue
and spectral problems.

Let us now elucidate in some detail the philosophy of using the framework of q-
difference operators for discretizing the Schrödinger equation. As indicated, we restrict
our investigations to subsets of the real axis which we will call homogeneous q-strip dis-
cretizations or just strip discretizations. To do so, we have to provide the tools that help
us in formulating the special boundary conditions.

Let us refer throughout the sequel to a parameter 0 < q < 1, as it was motivated by the
investigation of self-similar superpotentials in the previous section.

Definition 4.1 (strip discretization). Let Ω ⊆ R \ {0} be a nonempty closed set with
Lebesgue measure μ(Ω) > 0 as well as

∀x ∈Ω, qx ∈Ω, q−1x ∈Ω, −x ∈Ω. (4.1)

We call the time scale Ω a homogeneous strip discretization or just strip discretization of
the configuration space. The Hilbert space of the strip discretization is introduced by the
requirement

�2(Ω) := { f ∈�2(R)| f = f ◦ χΩ
}

, (4.2)

and the scalar product of two functions f ,g ∈�2(Ω) is introduced by

( f ,g)Ω :=
∫∞

−∞
f (x)g(x)χΩ(x)dx =

∫∞

−∞
f (x)g(x)dx, (4.3)

using the characteristic function χΩ of the time scale Ω. By construction, it is clear that
�2(Ω) is a Hilbert space over C, being a proper subspace of the square-integrable func-
tions themselves, that is, of �2(R). In order to proceed, let us first review some facts on
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the Schrödinger equation with quadratic potential, given by

−ψ′′(x) + x2ψ(x)= λψ(x), x ∈R. (4.4)

The following structure is one the most familiar facts within mathematical physics: let
the sequence of functions (ψn)n∈N0 be recursively given by the requirement

ψn+1(x) :=−ψ′n(x) + xψn(x), x ∈R, n∈N0, (4.5)

where ψ0 : R→ R, x �→ ψ0(x) := e−(1/2)x2
. We then have ψn ∈�2(R)∩C2(R) for n ∈ N0

and moreover

−ψ′′n (x) + x2ψn(x)= (2n+ 1)ψn(x), x ∈R, n∈N0. (4.6)

This result reflects the conventional ladder operator formalism. We now develop a result
in discrete Schrödinger theory on strip structures which turns out to be a q-analog of the
just described continuous situation. Let us therefore state in a next step some more useful
tools for the strip discretization approach.

Definition 4.2. Let Ω ⊆ R \ {0} be a nonempty closed set with the property μ(Ω) > 0 as
well as

∀x ∈Ω, qx ∈Ω, q−1x ∈Ω, −x ∈Ω. (4.7)

Let for any f : Ω→R the right-shift, respectively, left-shift operations be defined by

(R f )(x) := f (qx), (L f )(x) := f
(
q−1x

)
, x ∈Ω, (4.8)

respectively. The right-hand, respectively, left-hand q-difference operations will for any
f : Ω→R be given by

(
Dq f

)
(x) := f (qx)− f (x)

qx− x ,
(
Dq−1 f

)
(x) := f

(
q−1x

)− f (x)
q−1x− x , x ∈Ω. (4.9)

Let moreover α > 0 and let

g : Ω−→R+, x �−→ g(x) :=
√
ϕ(qx)−

√
ϕ(x)

√
ϕ(x)(q− 1)x

=
√

1 +α(1− q)x2− 1

qx− x , (4.10)

where the positive even continuous function ϕ : Ω→ R+ is chosen as a solution to the
q-difference equation

ϕ(qx)= (1 +α(1− q)x2)ϕ(x), x ∈Ω. (4.11)

We are now able to define discrete ladder operators on strip structures.
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The creation operation A†q and, respectively, annihilation operation Aq are introduced
by their actions on any ψ : Ω→R as follows:

A†qψ =
(−Dq + g(X)R

)
ψ, Aqψ = q−1(LDq +Lg(X)

)
ψ. (4.12)

We refer to the discrete Schrödinger equation with an oscillator potential on Ω by

q−1(−Dq + g(X)R
)(
LDq +Lg(X)

)
ψ = λψ. (4.13)

The following result reveals that the discrete Schrödinger equation with an oscillator
potential on Ω shows similar properties than its classical analog does.

Theorem 4.3. Let the time scale Ω be a strip discretization in the sense of Definition 4.1
and let the function ϕ be specified like in Definition 4.2, satisfying the q-difference equation
(4.11) on Ω,

ϕ(qx)= (1 +α(1− q)x2)ϕ(x), ϕ(x)= ϕ(−x) > 0, x ∈Ω. (4.14)

For n ∈ N0, the functions ψn : Ω→ R, given by ψn(x) := ((A†q)n√ϕ)(x), x ∈ Ω, are well
defined in �2(Ω) and solve the q-Schrödinger equation (4.13) in the following sense:

q−1(−Dq + g(X)R
)(
LDq +Lg(X)

)
ψn = α

q

qn− 1
q− 1

ψn. (4.15)

Moreover, the linear maps Aq, A†q act as ladder operators on the functions (ψn)n∈N0 in the
following sense (n∈N0, ψ−1 := 0):

A†qψn = ψn+1, Aqψn = α

q

qn− 1
q− 1

ψn−1, ψn(x)=Hq
n(x)ψ0(x), x ∈Ω, (4.16)

where for n∈N0, the functions H
q
n : Ω→R are given by

H
q
n+1(x)−αqnxHq

n(x) +α
qn− 1
q− 1

H
q
n−1(x)= 0, H

q
0 (x)= 1, H

q
1 (x)= αx.

(4.17)

These recurrence relations apply for x ∈ Ω and n ∈ N0, where ψ−1 := 0, H
q
−1 := 0 is set.

There exists the general observation

(
A†qψm,ψn

)
Ω =

(
ψm,Aqψn

)
Ω, m,n∈N0, (4.18)

and the functions (ψn)n∈N0 constitute an orthonormal system in �2(Ω).

Proof. Let us for ϕ∈ C(R) first consider the equation

ϕ(qx)xn = (1 +α(1− q)x2)ϕ(x)xn, x ∈Ω, n∈N0, (4.19)

which directly follows from (4.11). Using standard arguments, one can show that the
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function ϕ fulfiling (4.11) is in �1(R). This implies

∫∞

−∞
ϕ(qx)xnχΩ(x)dx =

∫∞

−∞

(
1 +α(1− q)x2)ϕ(x)xnχΩ(x)dx, n∈N0. (4.20)

Using the substitution rule to the left-hand side, this directly implies

∫∞

−∞
ϕ(t)tnq−nχΩ(q−1t)q−1dt =

∫∞

−∞

(
1 +α(1− q)x2)ϕ(x)xnχΩ(x)dx, n∈N0.

(4.21)

Because of (4.7) we have χΩ(q−1t)= χΩ(t) for any t ∈R and, therefore, (4.21) is equiva-
lent to

∫∞

−∞
ϕ(t)tnq−nχΩ(t)q−1dt =

∫∞

−∞

(
1 +α(1− q)x2)ϕ(x)xnχΩ(x)dx, n∈N0. (4.22)

Using the abbreviation μn(Ω) := ∫Ω xnϕ(x)dx for n∈N0 we obtain the following result:

μ2n+2(Ω)= q−2n−1− 1
α(1− q)

μ2n(Ω), μ2n+1(Ω)= 0, n∈N0. (4.23)

We have shown earlier [1] that any probability density ψ which generates moments of
type (4.23) yields an orthogonality measure to the polynomials (H

q
n)n∈N0 which are for

k ∈N fixed through the recurrence relation

H
q
k+1(x)−αqkxHq

k (x) +α
qk − 1
q− 1

H
q
k−1(x)= 0, H

q
0 (x)= 1, H

q
1 (x)= αx,

(4.24)

the variable x being chosen in a suitable integration support. As a consequence of this
general result, we obtain the following orthogonality relation:

∫∞

−∞
H
q
m(x)H

q
n(x)ϕ(x)χΩ(x)dx = vn(Ω)δmn, m,n∈N0, (4.25)

with a sequence of positive numbers (vn(Ω))n∈N0 . Direct calculations and induction show

ψn(x) := ((A†q
)n√

ϕ◦ χΩ
)
(x)= (Hq

n(X)
√
ϕ◦ χΩ

)
(x), x ∈R, n∈N0. (4.26)

Let us from now on—without any restriction—refer to the special parameter choice α=
1. The functions (ψn)n∈N0 constitute an orthonormal system in �2(Ω). Let us show next
that the ladder property (4.16) is fulfiled. The first equation in (4.16) is trivial due to the
definition of the functions (ψn)n∈N0 . We remember that the function g is specified like in
Definition 4.2. We obtain in the sense of the multiplication operator notation

(
LDq +Lg(X)

)(
Xnψ0

)= LDqX
nψ0 +Lg(X)Xnψ0, n∈N0, (4.27)
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which yields

(
LDq +Lg(X)

)(
Xnψ0

)= L
(
qn− 1
q− 1

Xn−1Rψ0 +XnDqψ0

)
+Lg(X)Xnψ0, n∈N0.

(4.28)

This may be rewritten as

(
LDq +Lg(X)

)(
Xnψ0

)= qn− 1
q− 1

q−n+1Xn−1ψ0 +LXn
(
Dqψ0 + gψ0

)
, n∈N0. (4.29)

Using now however the formulas in (4.10) for the function g, we obtain (Dqψ0 + gψ0)= 0
and therefore

(
LDq +Lg(X)

)(
Xnψ0

)= qn− 1
q− 1

q−n+1Xn−1ψ0, n∈N. (4.30)

For m ∈ N0, the first m+ 1 polynomials of the sequence (H
q
n(X))n∈N0 can uniquely be

generated by linear combinations of the first m+ 1 monomials of the sequence (Xn)n∈N0 .
We therefore conclude as

Aqψn =
n−1∑

j=0

cnj ψj , n∈N, (4.31)

with uniquely defined real numbers cnj , where j = 0, . . . ,n− 1 with n∈N. Applying again
standard substitution techniques to the scalar product integral (4.3), we can derive for any
functions f ,g ∈�2(Ω) which are both in the algebraic span of the functions (ψn)n∈N0 the
following relation:

(
A†q f ,g

)
Ω =

(
f ,Aqg

)
Ω. (4.32)

In particular, this result implies
(
A†qψm,ψn

)
Ω =

(
ψm,Aqψn

)
Ω, m,n∈N0. (4.33)

Using the first equation in (4.16) and because of the fact that the functions (ψn)n∈N0

constitute an orthogonal system in �2(Ω), the second relation in (4.16) follows from
standard methods of calculating the norms of the functions (ψn)n∈N0 .

Equation (4.15) now follows immediately from the first two relations in (4.16). Taking
all the steps of the proof together, this finally confirms the statements of Theorem 4.3.

Let us interpret the obtained results in context of quantum mechanical supermodels.
First, we have obtained the desired isospectrality result, that is, we have found a rich

class of discrete Schrödinger operators showing in (4.15) the same point spectrum that
we obtain from the self-similar superpotentials in (3.15). This gives us an important tool
at hand to extend the definition of a supermodel for purposes of quantum optics.

As the discrete ladder operator formalism that we have revealed and orthogonal eigen-
systems for self-similar superpotentials lead to the same point spectrum, fixed by (4.15),
both type of solutions may be considered as two different representations of one and the
same formal orthogonal system. �
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This is the reason why we introduce the following general definition for a self-similar
supermodel.

Definition 4.4. Let for 0 < q < 1 the bounded sequence λ= (λn)n∈N0 of eigenvalues

λn := qn− 1
q− 1

, n∈N0, (4.34)

be given, and let moreover the subspace l2(λ)⊆ l2(N0) be canonically introduced as fol-
lows:

{
ψ =

∞∑

n=0

cnen ∈ l2
(
N0
) |

∞∑

n=1

λnλn−1
∣
∣cn
∣
∣2
<∞

}
. (4.35)

Let the pair of adjoint operators

A† :Dmax
(
A†
)⊆ l2(λ)−→ l2

(
N0
)
, A :Dmax(A)⊆ l2(λ)−→ l2

(
N0
)

(4.36)

be given, being fixed by their actions on the standard orthogonal basis vectors of l2(λ)⊆
l2(N0) as follows:

A†en :=
√
λn+1en+1, Aen :=

√
λnen, n∈N0. (4.37)

Then the triple (A,A†, l2(λ)) is called self-similar supermodel in Fock space.
As a direct consequence, we see that A and A† fulfil on a common maximum domain

of l2(λ)⊆ l2(N0) the commutation relation

AA† − qA†A= E, (4.38)

the operator E denoting the identity map on the maximal common domain of A, A†.

By Definition 4.4, we give an abstract formulation of the ladder operator formalism for
which the self-similar supermodels from Section 3 and the discrete Schrödinger models
from Section 4 so far are two different realizations. Therefore, an eigenvalue distribution
of type (4.34) has indeed a physical interpretation in Schrödinger theory. We now may
ask what is the impact of this type of spectrum for coherent state theory within quantum
optics. A discussion on this topic will be started by the next section.

5. Discussion of applications to coherent state theory

In the introduction, we have mentioned the role of super-Poisson states respectively,
sub-Poisson states in quantum optics. A mathematical model for distinguishing between
super-Poisson states and sub-Poisson states is given by the Mandel functional, see for
instance [5, 6]. The characterization of Mandel’s functional is associated with Jacobi op-
erators in l2(N0). The physical states of the quantum system are modelled by the elements
of l2(N0).

One first considers theC-linear subspace l1 ⊆ l2(N0) which is described by all elements
ψ =∑∞

n=0 cnen ∈ l2(N0) with the property
∑∞

n=1n|cn|2 <∞. Let in this context (en)n∈N0 be
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a standard orthonormal basis of l2(N0). Moreover, let

l2 ⊆ l1 ⊆ l2
(
N0
)

(5.1)

denote the particular C-linear subspace which is defined by all the elements ψ =
∑∞

n=0 cnen ∈ l2(N0) with the property
∑∞

n=1n(n− 1)|cn|2 <∞. For an arbitrary element

ψ =
∞∑

n=1

cnen ∈ l2, (5.2)

the nonlinear Mandel functional f : l2 →R is defined by

f (ψ) := 1
∑∞

n=1n
∣
∣cn
∣
∣2

∞∑

n=1

n(n− 1)
∣
∣cn
∣
∣2−

∞∑

n=1

n
∣
∣cn
∣
∣2
. (5.3)

Mandel’s functional now allows to distinguish between super-Poisson states and sub-
Poisson states of the quantum system. On super-Poisson states ψ ∈ l2, we have f (ψ) > 0,
and on sub-Poisson states ψ ∈ l2, we have f (ψ) < 0. States which are associated with the
Poisson distribution itself, are characterized by a vanishing Mandel functional.

Let now U ⊆ C be a connected set and let

ΨU := {ψz ∈ l2
(
N0
) | z ∈U}. (5.4)

ΨU is modeling quantum states on which a continuous label z from U has been fixed.
The elements of ΨU are referred to by the name coherent states if

zn −→ z =⇒ ∥∥ψzn −ψz
∥
∥
l2
(
N0

) −→ 0 (5.5)

for any convergent sequence (zn)n∈N in U and if they allow a decomposition of the iden-
tity map in the following sense:

∀ϕ∈ l2(N0
)

:
∫

U
w
(|z|2)ψ∗z (ϕ)ψzdz = ϕ. (5.6)

In this context, w : R+
0 → R+ is a suitable weight function and ψ∗z denotes a canonically

constructed dual form on l2(N0), its construction being inherited from the structure of
ΨU . Physical states which arise in the simplest quantum systems, for instance, are mod-
eled by

ψz = e−(1/2)|z|2
∞∑

n=0

zn

n!
en, z ∈U = C. (5.7)

In the sense of the above-given definition, these functions indeed are coherent states.
They are states which are eigenvectors of the linear map being fixed by

A :Dmax(A)⊆ l2(N0
)−→ l2

(
N0
)
, Aen :=√nen−1, n∈N, (5.8)
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on the maximal possible definition range for the C-linear map A. The map A is modeling
the transition from a particular energy level of the quantum system to its lower neigh-
bor. In this way, the coherent states which are fixed by (4.26) are stable towards energy
perturbations. This is one of their most important properties, being fundamental for the
respective applications in quantum optics. This stability is mathematically modeled by
the following eigenvalue equation:

Aϕz = zϕz, z ∈ C. (5.9)

The definition of a so-called squeezed state is given by the variance vQ(ψ) of a linear op-
erator Q in ψ ∈ l2(N0). Let Q and Q2 be defined on a common dense domain Δ⊆ l2(N0).
The nonlinear variance functional vQ : Δ→ C is expressed in terms of the canonical scalar
product as follows:

vQ(ψ) := (ψ,Q2ψ
)− (ψ,Qψ)2, ψ ∈ Δ. (5.10)

Let nowA∗ be the adjoint of the operatorA in (5.8). Let moreover the following operators
be given, sharing the joint definition ranges of A, respectively, A∗ in l2(N0):

P := −i√
2

(
A−A∗), X := 1√

2

(
A+A∗

)
. (5.11)

One has then for all elements ψ of a common definition range Δ:

Heisenberg uncertainty relation vP(ψ)vX(ψ)≥ 1
4

, ψ ∈ Δ. (5.12)

In this situation, one calls

ψ ∈ Δ squeezed state:⇐⇒ vX(ψ) <
1
2
. (5.13)

Thus it is a state which has only a small freedom of variation in the spatial sense.
Starting from a suitable sequence λ= (λn)n∈N0 of positive numbers modeling the en-

ergies of a given quantum system, on can investigate generalizations of the Mandel func-
tional fλ : l2(λ)→R and study their properties:

fλ(ψ) := 1
∑∞

n=1 λn
∣
∣cn
∣
∣2

∞∑

n=1

λnλn−1
∣
∣cn
∣
∣2−

∞∑

n=1

λn
∣
∣cn
∣
∣2

, ψ ∈ l2(λ). (5.14)

The subspace l2(λ)⊆ l2(N0) is canonically given as a generalization of the situation (5.1),

{
ψ =

∞∑

n=0

cnen ∈ l2
(
N0
) |

∞∑

n=1

λnλn−1
∣
∣cn
∣
∣2
<∞

}
. (5.15)

The following question is of particular interest, given a special energy sequence (λn)n∈N0 .
How often do the super-Poisson distribution, respectively, the sub-Poisson distribution oc-
cur? Discussing this question for the energy sequence of the self-similar supermodel will
therefore be the detailed subject of a different article.
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