
MONOTONE FINITE DIFFERENCE DOMAIN
DECOMPOSITION ALGORITHMS AND
APPLICATIONS TO NONLINEAR SINGULARLY
PERTURBED REACTION-DIFFUSION PROBLEMS

IGOR BOGLAEV AND MATTHEW HARDY

Received 16 September 2004; Revised 21 December 2004; Accepted 11 January 2005

This paper deals with monotone finite difference iterative algorithms for solving non-
linear singularly perturbed reaction-diffusion problems of elliptic and parabolic types.
Monotone domain decomposition algorithms based on a Schwarz alternating method
and on box-domain decomposition are constructed. These monotone algorithms solve
only linear discrete systems at each iterative step and converge monotonically to the ex-
act solution of the nonlinear discrete problems. The rate of convergence of the mono-
tone domain decomposition algorithms are estimated. Numerical experiments are pre-
sented.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

We are interested in monotone discrete Schwarz alternating algorithms for solving non-
linear singularly perturbed reaction-diffusion problems.

The first problem considered corresponds to the singularly perturbed reaction-diffu-
sion problem of elliptic type

−μ2(uxx +uyy
)

+ f (x, y,u)= 0, (x, y)∈ ω,

u= g on ∂ω, ω= ωx ×ωy = {0 < x < 1}×{0 < y < 1},
fu ≥ c∗, (x, y,u)∈ ω× (−∞,∞), fu ≡ ∂ f /∂u,

(1.1)

where μ is a small positive parameter, c∗ > 0 is a constant, ∂ω is the boundary of ω. If
f and g are sufficiently smooth, then under suitable continuity and compatibility condi-
tions on the data, a unique solution u of (1.1) exists (see [6] for details). Furthermore,
for μ� 1, problem (1.1) is singularly perturbed and characterized by boundary layers
(i.e., regions with rapid change of the solution) of width O(μ| lnμ|) near ∂ω (see [1] for
details).

Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2006, Article ID 70325, Pages 1–38
DOI 10.1155/ADE/2006/70325

http://dx.doi.org/10.1155/S1687183906703259

2 Monotone domain decomposition algorithms

The second problem considered corresponds to the singularly perturbed reaction-
diffusion problem of parabolic type

−μ2(uxx +uyy
)

+ f (x, y, t,u) +ut = 0, (x, y)∈ ω, t ∈ (0,T],

fu ≥ 0, (x, y, t,u)∈ ω× [0,T]× (−∞,∞),
(1.2)

where ω = {0 < x < 1} × {0 < y < 1} and μ is a small positive parameter. The initial-
boundary conditions are defined by

u(x, y,0)= u0(x, y), (x, y)∈ ω,

u(x, y, t)= g(x, y, t), (x, y, t)∈ ∂ω× (0,T].
(1.3)

The functions f , g, and u0 are sufficiently smooth. Under suitable continuity and com-
patibility conditions on the data, a unique solution u of (1.2) exists (see [5] for details).
For μ� 1, problem (1.2) is singularly perturbed and characterized by the boundary lay-
ers of width O(μ| lnμ|) at the boundary ∂ω (see [2] for details). We mention that the
assumption fu ≥ 0 in (1.2) can always be obtained via a change of variables.

In solving such nonlinear singularly perturbed problems by the finite difference
method, the corresponding discrete problem is usually formulated as a system of non-
linear algebraic equations. One then requires a reliable and efficient computational algo-
rithm for computing the solution. A fruitful method for the treatment of these nonlinear
systems is the method of upper and lower solutions and its associated monotone itera-
tions (in the case of unperturbed problems with reaction-diffusion equations see [8, 9]
and the references therein). Since the initial iteration in the monotone iterative method
is either an upper or lower solution constructed directly from the difference equations
without any knowledge of the exact solution (see [3, 4] for details), this method elimi-
nates the search for the initial iteration as is often needed in Newton’s method. This gives
a practical advantage in the computation of numerical solutions.

Iterative domain decomposition algorithms based on Schwarz-type alternating proce-
dures have received much attention for their potential as efficient algorithms for parallel
computing. In [3, 4], for solving the nonlinear problems (1.1) and (1.2), respectively,
we proposed discrete iterative algorithms which combine the monotone approach and
an iterative domain decomposition method based on the Schwarz alternating procedure.
The spatial computational domain is partitioned into many nonoverlapping subdomains
(vertical strips) with interface γ. Small interfacial subdomains are introduced near the
interface γ, and approximate boundary values computed on γ are used for solving prob-
lems on nonoverlapping subdomains. Thus, this approach may be considered as a vari-
ant of a block Gauss-Seidel iteration (or in the parallel context as a multicoloured al-
gorithm) for the subdomains with a Dirichlet-Dirichlet coupling through the interface
variables. In this paper, we generalize the monotone domain decomposition algorithms
from [3, 4] and employ a box-domain decomposition of the spatial computational do-
main. This leads to vertical and horizontal interfaces γ and ρ, and corresponding vertical
and horizontal interfacial subdomain problems provide Dirichlet data on γ and ρ for the
problems on the nonoverlapping box-subdomains.

I. Boglaev and M. Hardy 3

In Section 2, we introduce the classical nonlinear finite difference schemes for the nu-
merical solution of (1.1) and (1.2). Iterative methods by which each of these schemes
may be solved are presented in [3, 4]. From an arbitrary initial mesh function, one may
construct a sequence of functions which converges monotonically to the exact solution
of the nonlinear difference scheme. Each function in the sequence is generated as the so-
lution of a linear difference problem. In Section 3, we consider the elliptic problem and
extend the monotone method to a box-decomposition of the computational domain.
We show that monotonic convergence is maintained under the proposed decomposition
and associated algorithm. Further, we develop estimates of the rate of convergence. The
box-decomposition of the spatial domain is applied to the parabolic nonlinear difference
scheme in Section 4. Numerical experiments are presented in Section 5. These confirm
the theoretical estimates of the earlier sections. Suggestions are made regarding future
parallel implementation.

2. Difference schemes for solving (1.1) and (1.2)

On ω and [0,T] introduce nonuniform meshes ωh = ωhx ×ωhy and ωτ :

ωhx = {xi, 0≤ i≤Nx; x0 = 0, xNx = 1; hxi = xi+1− xi
}

,

ωhy = {yj , 0≤ j ≤Ny ; y0 = 0, yNy = 1; hy j = yj+1− yj
}

,

ωτ = {tk = kτ, 0≤ k ≤Nτ , Nττ = T
}
.

(2.1)

For approximation of the elliptic problem (1.1), we use the classical difference scheme
on nonuniform meshes

�hU + f (P,U)= 0, P ∈ ωh, U = g on ∂ωh, (2.2)

where �hU is defined by

�hU =−μ2(�2
x + �2

y

)
U , (2.3)

and �2
xU(P), �2

yU(P) are the central difference approximations to the second derivatives

�2
xUi j =

(
�xi
)−1

[(
Ui+1, j −Uij

)(
hxi
)−1− (Uij −Ui−1, j

)(
hx,i−1

)−1
]

,

�2
yUi j =

(
�y j
)−1

[(
Ui, j+1−Uij

)(
hy j
)−1− (Uij −Ui, j−1

)(
hy, j−1

)−1
]

,

�xi = 2−1(hx,i−1 +hxi
)
, �y j = 2−1(hy, j−1 +hy j

)
,

(2.4)

where P = (xi, yj)∈ ωh and Uij =U(xi, yj).

4 Monotone domain decomposition algorithms

To approximate the parabolic problem (1.2), we use the implicit difference scheme

�hτU(P, t) + f (P, t,U)= τ−1U(P, t− τ), (P, t)∈ ωh×ωτ ,

�hτU(P, t)≡�hU(P, t) + τ−1U(P, t),

U(P,0)= u0(P), P ∈ ωh, U(P, t)= g(P, t), (P, t)∈ ∂ωh×ωτ ,

(2.5)

where �h is defined in (2.3).
Consider the linear versions of problems (2.2) and (2.5)

�W + c(P)W(P)= F(P), P ∈ ωh,

W(P)=W0(P), P ∈ ∂ωh, c(P)≥ c0 > 0, P ∈ ωh, c0 = const,
(2.6)

where �=�h for (2.2) and �=�hτ for (2.5). Now we formulate the maximum principle
for the difference operator � + c and give an estimate of the solution to (2.6).

Lemma 2.1. (i) If W(P) satisfies the conditions

�W + c(P)W(P)≥ 0(≤ 0), P ∈ ωh, W(P)≥ 0(≤ 0), P ∈ ∂ωh, (2.7)

then W(P)≥ 0(≤ 0), P ∈ ωh.
(ii) The following estimate of the solution to (2.6) holds true

‖W‖ωh ≤max
[∥∥W0

∥
∥
∂ωh , ‖F‖ωh/

(
c0 +βτ−1)],

∥
∥W0

∥
∥
∂ωh ≡ max

P∈∂ωh

∣
∣W0(P)

∣
∣, ‖F‖ωh ≡max

P∈ωh

∣
∣F(P)

∣
∣,

(2.8)

where β = 0 for (2.2) and β = 1 for (2.5).

The proof of the lemma can be found in [11].

3. Monotone domain decomposition algorithm for the elliptic problem (1.1)

We consider a rectangular decomposition of the spatial domain ω̄ into (M×L) nonover-
lapping subdomains ωml, m= 1, . . . ,M, l = 1, . . . ,L:

ωml =
(
xm−1,xm

)× (yl−1, yl
)
, x0 = 0, xM = 1, y0 = 0, yL = 1. (3.1)

Additionally, we introduce (M− 1) interfacial subdomains θm, m= 1, . . . ,M− 1 (ver-
tical strips):

θm = θxm×ωy = {xbm < x < xem
}×{0 < y < 1}, θm−1∩ θm =∅,

γbm =
{
x = xbm, 0≤ y ≤ 1

}
, γem =

{
x = xem, 0≤ y ≤ 1

}
,

xbm < xm < xem, γ0
m = ∂ω∩ ∂θm,

(3.2)

I. Boglaev and M. Hardy 5

θm−1

xm−1

ωm,l−1

xm

ϑl−1

ybl−1

yl−1

yel−1

ωmlωm−1,l ωm+1,l

ybl

yl

yel
ϑl θm

xbm−1 xem−1 xbm xem
ωm,l+l

Figure 3.1. Fragment of the domain decomposition.

and (L− 1) interfacial subdomains ϑl, l = 1, . . . ,L− 1 (horizontal strips):

ϑl = ωx × ϑ
y
l = {0 < x < 1}× {ybl < y < yel

}
, ϑl−1∩ ϑl =∅,

ρbl =
{

0≤ x ≤ 1, y = ybl
}

, ρel =
{

0≤ x ≤ 1, y = yel
}

,

ybl < yl < yel , ρ0
l = ∂ω∩ ∂ϑl.

(3.3)

Figure 3.1 illustrates a fragment of the domain decomposition.
On ωml, m = 1, . . . ,M, l = 1, . . . ,L; θm, m = 1, . . . ,M − 1 and ϑl, l = 1, . . . ,L− 1, intro-

duce meshes:

ωh
ml = ωml ∩ωh, θ

h
m = θm∩ωh, ϑ

h
l = ϑl ∩ωh,

{
xbm,xm,xem

}M−1
m=1 ∈ ωhx,

{
ybl , yl, yel

}L−1
l=1 ∈ ωhy ,

(3.4)

with ωhx, ωhy from (2.1).

3.1. Statement of domain decomposition algorithm. We consider the following domain
decomposition approach for solving (2.2). On each iterative step, we first solve problems
on the nonoverlapping subdomains ωh

ml, m= 1, . . . ,M, l = 1, . . . ,L with Dirichlet bound-
ary conditions passed from the previous iterate. Then Dirichlet data are passed from these

subdomains to the vertical and horizontal interfacial subdomains θ
h
m, m = 1, . . . ,M − 1

and ϑ
h
l , l = 1, . . . ,L− 1, respectively. Problems on the vertical interfacial subdomains are

computed. Then Dirichlet data from these subdomains are passed to the horizontal inter-
facial subdomains before the corresponding linear problems are solved. Finally, we piece
together the solutions on the subdomains.

Step 1. Initialization: On the whole mesh ωh, choose an initial mesh function V (0)(P),
P ∈ ωh satisfying the boundary conditions V (0)(P)= g(P) on ∂ωh.

6 Monotone domain decomposition algorithms

Step 2. On subdomains ωh
ml, m= 1, . . . ,M, l = 1, . . . ,L, compute mesh functions V (n+1)

ml (P)
(here the index n stands for a number of iterative steps) satisfying the following difference
problems

(
�h + c∗

)
Z(n+1)
ml =−G(n)(P), P ∈ ωh

ml,

G(n)(P)≡�hV (n) + f
(
P,V (n)), Z(n+1)

ml (P)= 0, P ∈ ∂ωh
ml,

V (n+1)
ml (P)=V (n)(P) +Z(n+1)

ml (P), P ∈ ωh
ml.

(3.5)

Step 3. On the vertical interfacial subdomains θ
h
m, m= 1, . . . ,M− 1, compute the differ-

ence problems

(
�h + c∗

)
Z(n+1)
m =−G(n)(P), P ∈ θhm,

Z(n+1)
m (P)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, P ∈ γh0
m ;

Z(n+1)
ml (P), P ∈ γhbm ∩ωh

ml, l = 1, . . . ,L;

Z(n+1)
m+1,l(P), P ∈ γhem ∩ωh

m+1,l, l = 1, . . . ,L,

V (n+1)
m (P)=V (n)(P) +Z(n+1)

m (P), P ∈ θ
h
m,

(3.6)

where we use the notation

γh0
m = γ0

m∩ ∂ωh, γhbm = γbm∩ θ
h
m, γhem = γem∩ θ

h
m. (3.7)

Step 4. On the horizontal interfacial subdomains ϑ
h
l , l = 1, . . . ,L− 1, compute the follow-

ing difference problems

(
�h + c∗

)
Z̃(n+1)
l =−G(n)(P), P ∈ ϑhl ,

Z̃(n+1)
l (P)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, P ∈ ρh0
l ;

Z(n+1)
ml (P), P ∈ (ρhbl \ θh

)∩ωh
ml, m= 1, . . . ,M;

Z(n+1)
m,l+1(P), P ∈ (ρhel \ θh

)∩ωh
m,l+1, m= 1, . . . ,M;

Z(n+1)
m (P), P ∈ ∂ϑhl ∩ θhm, m= 1, . . . ,M− 1,

Ṽ (n+1)
l (P)=V (n)(P) + Z̃(n+1)

l (P), P ∈ ϑ
h
l ,

(3.8)

where we use the notation

θ
h =

M−1⋃

m=1

θ
h
m, ϑ

h =
L−1⋃

l=1

ϑ
h
l ,

ρh0
l = ρ0

l ∩ ∂ωh, ρhbl = ρbl ∩ ϑ
h
l , ρhel = ρel ∩ ϑ

h
l .

(3.9)

I. Boglaev and M. Hardy 7

Step 5. Compute the mesh function V (n+1)(P), P ∈ ωh by piecing together the solutions
on the subdomains

V (n+1)(P)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V (n+1)
ml (P), P ∈ ωh

ml \
(
θ
h∪ ϑ

h)
;

V (n+1)
m (P), P ∈ θ

h
m \ ϑ

h
, m= 1, . . . ,M− 1;

Ṽ (n+1)
l (P), P ∈ ϑ

h
l , l = 1, . . . ,L− 1.

(3.10)

Step 6. Stopping criterion: If a prescribed accuracy is reached, then stop; otherwise go to
Step 2.

Algorithm (3.5)–(3.10) can be carried out by parallel processing. Steps 2, 3, and 4
must be performed sequentially, but on each step, the independent subproblems may be
assigned to different computational nodes.

Remark 3.1. We note that the original Schwarz alternating algorithm with overlapping
subdomains is a purely sequential algorithm. To obtain parallelism, one needs a subdo-
main colouring strategy, so that a set of independent subproblems can be introduced.
The modification of the Schwarz algorithm (3.5)–(3.10) can be considered as an additive
Schwarz algorithm.

3.2. Monotone convergence of algorithm (3.5)–(3.10). Additionally, we assume that f
from (1.1) satisfies the two-sided constraints

0 < c∗ ≤ fu ≤ c∗, c∗,c∗ = const . (3.11)

We say that V(P) is an upper solution of (2.2) if it satisfies the inequalities

�hV + f (P,V)≥ 0, P ∈ ωh, V ≥ g on ∂ωh. (3.12)

Similarly, V(P) is called a lower solution if it satisfies the reversed inequalities. Upper and
lower solutions satisfy the following inequality

V(P)≤V(P), P ∈ ωh, (3.13)

since by the definitions of lower and upper solutions and the mean-value theorem, for
δV =V −V we have

�hδV + fu(P)δV(P)≥ 0, P ∈ ωh,

δV(P)≥ 0, P ∈ ∂ωh,
(3.14)

where fu(P)≡ fu[P,V(P) +Θ(P)δV(P)], 0 <Θ(P) < 1. In view of the maximum princi-
ple in Lemma 2.1, we conclude (3.13).

The following convergence property of algorithm (3.5)–(3.10) holds true.

8 Monotone domain decomposition algorithms

Theorem 3.2. Let V
(0)

and V (0) be upper and lower solutions of (2.2), and let f (x, y,u) sat-

isfy (3.11). Then the upper sequence {V (n)} generated by (3.5)–(3.10) converges monotoni-
cally from above to the unique solution U of (2.2), and the lower sequence {V (n)} generated
by (3.5)–(3.10) converges monotonically from below to U :

V (0) ≤V (n) ≤V (n+1) ≤U ≤V
(n+1) ≤V

(n) ≤V
(0)

, in ωh. (3.15)

Proof. We consider only the case of the upper sequence. Let V
(n)

be an upper solution.
Then by the maximum principle in Lemma 2.1, from (3.5) we conclude that

Z(n+1)
ml (P)≤ 0, P ∈ ωh

ml, m= 1, . . . ,M, l = 1, . . . ,L. (3.16)

Using the mean-value theorem and the equation for Z(n+1)
ml (P), we obtain the difference

equation for V (n+1)
ml

�hV (n+1)
ml + f

(
P,V (n+1)

ml

)=−(c∗ − f (n)
u,ml(P)

)
Z(n+1)
ml (P)≥ 0, P ∈ ωh

ml,

f (n)
u,ml(P)≡ fu

[
P,V

(n)
(P) +Θ(n)

ml (P)Z(n+1)
ml (P)

]
, 0 <Θ(n)

ml (P) < 1,

V (n+1)
ml (P)=V

(n)
(P), P ∈ ∂ωh

ml,

(3.17)

where nonnegativeness of the right-hand side of the difference equation follows from
(3.11) and (3.16).

Taking into account (3.16) and V
(n)

is an upper solution, by the maximum principle
in Lemma 2.1, from (3.6) and (3.8) it follows that

Z(n+1)
m (P)≤ 0, P ∈ θ

h
m, m= 1, . . . ,M− 1,

Z̃(n+1)
l (P)≤ 0, P ∈ ϑ

h
l , l = 1, . . . ,L− 1.

(3.18)

Similar to (3.17), we obtain the difference problems for V (n+1)
m

�hV (n+1)
m + f

(
P,V (n+1)

m

)=−(c∗ − f (n)
u,m(P)

)
Z(n+1)
m (P)≥ 0, P ∈ θhm,

V (n+1)
m (P)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g(P), P ∈ γh0
m ;

V (n+1)
ml (P), P ∈ γhbm ∩ωh

ml, l = 1, . . . ,L;

V (n+1)
m+1,l (P), P ∈ γhem ∩ωh

m+1,l, l = 1, . . . ,L,

(3.19)

I. Boglaev and M. Hardy 9

and for Ṽ (n+1)
l

�hṼ (n+1)
l + f

(
P,Ṽ (n+1)

l

)=−(c∗ − f (n)
u,l (P)

)
Z̃(n+1)
l (P)≥ 0, P ∈ ϑhl ,

Ṽ (n+1)
l (P)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g(P), P ∈ ρh0
l ;

V (n+1)
ml (P), P ∈ (ρhbl \ θh

)∩ωh
ml, m= 1, . . . ,M;

V (n+1)
m,l+1 (P), P ∈ (ρhel \ θh

)∩ωh
m,l+1, m= 1, . . . ,M;

V (n+1)
m (P), P ∈ ∂ϑhl ∩ θ

h
m, m= 1, . . . ,M− 1,

(3.20)

where nonnegativeness of the right-hand sides of the difference equations follows from

(3.11) and (3.18). Now we verify that the mesh function V
(n+1)

defined by (3.10) is an up-

per solution. From the boundary conditions for V (n+1)
ml , V (n+1)

m and Ṽ (n)
l , it follows that

V
(n+1)

satisfies the boundary condition in (2.2). Now from here, (3.17), (3.19), (3.20)

and the definition of V
(n+1)

in (3.10), we conclude that

G(n+1)(P)=�hV
(n+1)

+ f
(
P,V

(n+1))≥ 0, P ∈ ωh \ (γ̃h∪ ρh
)
,

γ̃hb,e
ml =

{
xi = xb,e

m , yel−1 < yj < ybl
}

, γ̃hb,e
m =

L⋃

l=1

γ̃hb,e
ml , ye0 = 0, ybL = 1,

γ̃h =
M−1⋃

m=1

γ̃hb,e
m , ρh =

L−1⋃

l=1

ρhb,e
l .

(3.21)

To prove that V
(n+1)

is an upper solution of problem (2.2), we have to verify only that
the last inequality holds true on the interfacial boundaries γ̃hb,e

ml and ρhb,e
l ,m= 1, . . . ,M− 1,

l = 1, . . . ,L− 1.
We check this inequality in the case of the left interfacial boundary γ̃hbml, since the case

with γ̃heml is checked in a similar way. From (3.5), (3.6), and (3.18), we conclude that the

mesh function W (n+1)
ml =V (n+1)

ml −V (n+1)
m satisfies the difference problem

(
�h + c∗

)
W (n+1)

ml = 0, P ∈ θhml = ωh
ml ∩ θhm,

W (n+1)
ml (P)=

⎧
⎨

⎩

0, P ∈ γhbml = γhbm ∩ωh
ml;

≥ 0, P ∈ ∂θhml \ γhbml.

(3.22)

In view of the maximum principle in Lemma 2.1,

V (n+1)
ml (P)−V (n+1)

m (P)≥ 0, P ∈ θ
h
ml. (3.23)

By (3.6), V (n+1)
m (P)=V (n+1)

ml (P), P ∈ γhbml, and from (3.10) and (3.23), it follows that

−μ2�2
yV

(n+1)
ml (P)=−μ2�2

yV
(n+1)

(P), P ∈ γ̃hbml,

−μ2�2
xV

(n+1)
ml (P)≤−μ2�2

xV
(n+1)

(P), P ∈ γ̃hbml.
(3.24)

10 Monotone domain decomposition algorithms

Thus, using (3.17), we conclude

G(n+1)(P)≥�hV (n+1)
ml (P) + f

(
P,V (n+1)

ml

)≥ 0, P ∈ γ̃hbml. (3.25)

Now we verify the inequality G(n+1)(P) ≥ 0 on the interfacial boundary ρhbl , and the
case with ρhel is checked in a similar way. From (3.5), (3.8), (3.18), and (3.23), we conclude

that the mesh function W̃ (n+1)
ml =V (n+1)

ml − Ṽ (n+1)
l satisfies the difference problem

(
�h + c∗

)
W̃ (n+1)

ml = 0, P ∈ ϑhml = ωh
ml ∩ ϑhl ,

W̃ (n+1)
ml (P)=

⎧
⎨

⎩
0, P ∈ ρ̃ hb

ml =
{
xem−1 < xi < xbm, yj = ybl

}
;

≥ 0, P ∈ ∂ϑhml \ ρ̃ hb
ml.

(3.26)

By the maximum principle in Lemma 2.1,

V (n+1)
ml (P)− Ṽ (n+1)

l (P)≥ 0, P ∈ ϑ
h
ml. (3.27)

By (3.8), Ṽ (n+1)
l (P) = V (n+1)

ml (P), P ∈ ρ̃ hb
ml ∪ {(xem−1, ybl),(xbm, ybl)}, and from (3.10) and

(3.27), it follows that

−μ2�2
xV

(n+1)
ml (P)=−μ2�2

xV
(n+1)

(P), P ∈ ρ̃ hb
ml,

−μ2�2
yV

(n+1)
ml (P)≤−μ2�2

yV
(n+1)

(P), P ∈ ρ̃ hb
ml.

(3.28)

Thus, using (3.17), we conclude

G(n+1)(P)≥�hV (n+1)
ml + f

(
P,V (n+1)

ml

)≥ 0, P ∈ ρ̃ hb
ml. (3.29)

From (3.6), (3.8), and (3.27), the mesh function Ŵ (n+1)
ml =V (n+1)

m − Ṽ (n+1)
l satisfies the

difference problem

(
�h + c∗

)
Ŵ (n+1)

ml = 0, P ∈ τhml = θhm∩ ϑhl ,

Ŵ (n+1)
ml (P)=

⎧
⎨

⎩

0, P ∈ ρ̂ hb,e
ml =

{
xbm < xi < xem, yj = yb,e

l

}
;

≥ 0, P ∈ ∂τhml \
(
ρ̂ hb
ml ∪ ρ̂ he

ml

)
.

(3.30)

By the maximum principle in Lemma 2.1,

V (n+1)
m (P)− Ṽ (n+1)

l (P)≥ 0, P ∈ τhml. (3.31)

By (3.8), Ṽ (n+1)
l (P)=V (n+1)

m (P), P ∈ ρ̂ hb
ml ∪{(xem, ybl),(xbm, ybl)}, and from (3.10) and (3.31),

it follows that

−μ2�2
xV

(n+1)
m (P)=−μ2�2

xV
(n+1)

(P), P ∈ ρ̂ hb
ml,

−μ2�2
yV

(n+1)
m (P)≤−μ2�2

yV
(n+1)

(P), P ∈ ρ̂ hb
ml.

(3.32)

I. Boglaev and M. Hardy 11

Thus, using (3.19), we conclude

G(n+1)(P)≥�hV (n+1)
m + f

(
P,V (n+1)

m

)≥ 0, P ∈ ρ̂ hb
ml. (3.33)

From here and (3.29), we conclude the required inequality on ρhbl \Pb,e
l , Pb,e

l =∪M−1
m=1 (xb,e

m ,
ybl). At Pb

ml = (xbm, ybl), we have

V (n+1)
ml

(
Pb
ml

)=V (n+1)
m

(
Pb
ml

)= Ṽ (n+1)
l

(
Pb
ml

)
, (3.34)

and from (3.10), it follows that

−μ2�2
xV

(n+1)(
Pb
ml

)=− μ2

�b
xm

[
V (n+1)
m

(
Pbx+
ml

)−V (n+1)
ml

(
Pb
ml

)

hb+
xm

− V (n+1)
ml

(
Pb
ml

)−V (n+1)
ml

(
Pbx−
ml

)

hb−xm

]

,

−μ2�2
yV

(n+1)(
Pb
ml

)=−μ2

�
b
yl

[
Ṽ (n+1)
l

(
P
by+
ml

)−V (n+1)
ml

(
Pb
ml

)

hb+
yl

−V (n+1)
ml

(
Pb
ml

)−V (n+1)
ml

(
P
by−
ml

)

hb−yl

]

,

Pbx±
ml =

(
xbm±hb±xm, ybl

)
, P

by±
ml =

(
xbm, ybl ±hb±yl

)
,

�
b
xm = 2−1(hb−xm +hb+

xm

)
, �

b
yl = 2−1(hb−yl +hb+

yl

)
,

(3.35)

where hb+
xm, hb−xm are the mesh step sizes on the left and right from Pb

ml, and hb+
yl , hb−yl are the

mesh step sizes on the top and bottom from Pb
ml. From here, (3.17), (3.23) and (3.27), we

conclude

G(n+1)(P)≥�hV (n+1)
ml + f

(
P,V (n+1)

ml

)≥ 0, P = Pb
ml. (3.36)

With a similar argument for mesh point Pe
l = (xem, ybl), we prove that V

(n+1)
is an upper

solution of problem (2.2) on the whole computational domain ωh.
For arbitrary P ∈ ωh, it follows from (3.16), (3.18), and (3.13) that the sequence

{V (n)
(P)} is monotonically decreasing and bounded below by V(P), where V is any

lower solution. Therefore, the sequence is convergent and it follows from (3.5)–(3.8) that

limZ(n)
ml = 0, limZ(n)

l = 0 and lim Z̃(n)
l = 0 as n→∞. Now by linearity of the operator �h

and the continuity of f , we have also from (3.5)–(3.8) that the mesh function U defined
by

U(P)= lim
n→∞V

(n)
(P), P ∈ ωh, (3.37)

is an exact solution to (2.2). The uniqueness of the solution to (2.2) follows from esti-
mate (2.8). Indeed, if by contradiction, we assume that there exist two solutions U1 and
U2 to (2.8), then by the mean-value theorem, the difference δU = U1 −U2 satisfies the
following difference problem

�hδU + fuδU = 0, P ∈ ωh, δU = 0, P ∈ ∂ωh. (3.38)

12 Monotone domain decomposition algorithms

By (2.8), δU = 0 which leads to the uniqueness of the solution to (2.2). This proves the
theorem. �

Remark 3.3. Consider the following approach for constructing initial upper and lower

solutions V
(0)

and V (0). Suppose that a mesh function R(P) is defined on ωh and satisfies
the boundary condition R= g on ∂ωh. Introduce the following difference problems

(
�h + c∗

)
Z(0)

ν = ν
∣
∣�hR+ f (P,R)

∣
∣, P ∈ ωh,

Z(0)
ν (P)= 0, P ∈ ∂ωh, ν= 1,−1.

(3.39)

Then the functions V
(0) = R+Z(0)

1 , V (0) = R+Z(0)
−1 are upper and lower solutions, respec-

tively. The proof of this result can be found in [4].

Remark 3.4. Since the initial iteration in algorithm (3.5)–(3.10) is either an upper or a
lower solution, which can be constructed directly from the difference equation without
any knowledge of the solution as we have suggested in the previous remark, this algorithm
eliminates the search for the initial iteration as is often needed in Newton’s method. This
gives a practical advantage in the computation of numerical solutions.

3.3. Convergence analysis of algorithm (3.5)–(3.10). We now establish convergence
properties of algorithm (3.5)–(3.10).

If we denote

Z(n+1)(P)=V (n+1)(P)−V (n)(P), P ∈ ωh, (3.40)

then from (3.5)–(3.10), Z(n+1) can be written in the form

Z(n+1)(P)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z(n+1)
ml (P), P ∈ ωh

ml \
(
θ
h∪ ϑ

h)
;

Z(n+1)
m (P), P ∈ θ

h
m \ ϑ

h
, m= 1, . . . ,M− 1;

Z̃(n+1)
l (P), P ∈ ϑ

h
l , l = 1, . . . ,L− 1.

(3.41)

Introduce the following notation

�
b,e
xm = 2−1(hb−,e−

xm +hb+,e+
xm

)
, �

b,e
yl = 2−1(hb−,e−

yl +hb+,e+
yl

)
, (3.42)

where hb±,e±
xm are the mesh step sizes on the left and right from points xb,e

m and hb±,e±
yl are

the mesh step sizes on the top and bottom from points yb,e
l , and

κbxm ≡
μ2

c∗�b
xmhb+

xm
, κexm ≡

μ2

c∗�e
xmhe−xm

, qI = max
1≤m≤M−1

{
κbxm;κexm

}
,

κbyl ≡
μ2

c∗�
b
ylh

b+
yl

, κeyl ≡
μ2

c∗�
e
ylh

e−
yl

, qII = max
1≤l≤L−1

{
κbyl;κ

e
yl

}
.

(3.43)

I. Boglaev and M. Hardy 13

Theorem 3.5. For algorithm (3.5)–(3.10), the following estimate holds true

∥
∥Z(n+1)

∥
∥
ωh ≤ q̃

∥
∥Z(n)

∥
∥
ωh , q̃ = q+

(
qI + qII

)
, (3.44)

where q = 1− c∗/c∗.

Proof. Suppose that the sequence {V (n)} is generated by algorithm (3.5)–(3.10). Using

(2.8), from (3.5) we get the following estimate on Z(n+1)
ml

∥
∥Z(n+1)

ml

∥
∥
ωh
ml
≤ 1

c∗
∥
∥G(n)

∥
∥
ωh . (3.45)

From here and (3.6) by (2.8), we conclude that

∥
∥Z(n+1)

m

∥
∥
θ
h
m
≤max

{
1
c∗
∥
∥G(n)

∥
∥
ωh ; max

1≤l≤L

[∥
∥Z(n+1)

ml

∥
∥
γhbml

;
∥
∥Z(n+1)

m+1,l

∥
∥
γheml

]}

≤ 1
c∗
∥
∥G(n)

∥
∥
ωh ,

γhbml = γhbm ∩ωh
ml, γheml = γhem ∩ωh

m+1,l .

(3.46)

Similarly, from here and (3.8), we can obtain the estimate

∥
∥Z̃(n+1)

l

∥
∥
ϑ
h
l
≤ 1

c∗
∥
∥G(n)

∥
∥
ωh . (3.47)

Thus, by the definition of Z(n+1), we have

∥
∥Z(n+1)

∥
∥
ωh ≤ 1

c∗
∥
∥G(n)

∥
∥
ωh . (3.48)

From (3.17), (3.19) and (3.20) at the iterative step n, and using the definition of Z(n),
we estimate G(n) as follows

G(n)(P)=−(c∗ − f (n)
u (P)

)
Z(n)(P), P ∈ ω̃h, ω̃h = ωh \ (γ̃h∪ ρh

)
, (3.49)

where γ̃h and ρh are defined in (3.21). By (3.11),

1
c∗
∥
∥G(n)

∥
∥
ω̃h ≤ q

∥
∥Z(n)

∥
∥
ωh . (3.50)

Now we estimate G(n) on γ̃h. On γ̃hbml = {xi = xbm, yel−1 < yj < ybl }, we represent G(n) in
the form

G(n)(P̃b
m

)=�hV (n)
ml + f

(
P̃b
m,V (n)

ml

)− μ2

�b
xmhb+

xm

(
V (n)
m

(
P̃b+
m

)−V (n)
ml

(
P̃b+
m

))
,

P̃b
m =

(
xbm, yj

)∈ γ̃hbml, P̃b+
m = (xbm +hb+

xm, yj
)
.

(3.51)

From (3.16) at the iterative step n and the definition of V (n), we have

V (n)
ml

(
P̃b+
m

)−V (n)
m

(
P̃b+
m

)≤V (n−1)(P̃b+
m

)−V (n)(P̃b+
m

)=−Z(n)(P̃b+
m

)
. (3.52)

14 Monotone domain decomposition algorithms

From here, (3.17) and taking into account that Z(n)
ml (P) = Z(n)(P), P ∈ γ̃hbml, we get the

estimate

1
c∗
∥
∥G(n)

∥
∥
γ̃hbml
≤ (q+ κbxm

)∥∥Z(n)
∥
∥
ωh . (3.53)

Similarly, we can prove the estimate

1
c∗
∥
∥G(n)

∥
∥
γ̃heml
≤ (q+ κexm

)∥∥Z(n)
∥
∥
ωh . (3.54)

Thus, on γ̃h, we conclude the estimate

1
c∗
∥
∥G(n)

∥
∥
γ̃h ≤

(
q+ qI

)∥∥Z(n)
∥
∥
ωh . (3.55)

On ρ̃ hb
ml = {xem−1 < xi < xbm, yj = ybl }, we represent G(n) in the form

G(n)(Pb
l

)=�hV (n)
ml + f

(
Pb
l ,V (n)

ml

)− μ2

�
b
ylh

b+
yl

(
Ṽ (n)
l

(
Pb+
l

)−V (n)
ml

(
Pb+
l

))
,

Pb
l =

(
xi, ybl

)∈ ρ̃ hb
ml, Pb+

l = (xi, ybl +hb+
yl

)
.

(3.56)

From (3.16) at the iterative step n and the definition of V (n), we have

V (n)
ml

(
Pb+
l

)− Ṽ (n)
l

(
Pb+
l

)≤V (n−1)(Pb+
l

)−V (n)(Pb+
l

)=−Z(n)(Pb+
l

)
. (3.57)

From here and (3.17), and taking into account that Z(n)
ml (P)= Z(n)(P), P ∈ ρ̃ hb

ml, we get the
estimate

1
c∗
∥
∥G(n)

∥
∥
ρ̃ hb
ml
≤ (q+ κbyl

)∥∥Z(n)
∥
∥
ωh . (3.58)

Similarly, we can prove the estimate

1
c∗
∥
∥G(n)

∥
∥
ρ̃ he
ml
≤ (q+ κeyl

)∥∥Z(n)
∥
∥
ωh . (3.59)

On ρ̂ hb
ml = {xbm < xi < xem, yj = ybl }, we represent G(n) in the form

G(n)(Pb
l

)=�hV (n)
m + f

(
Pb
l ,V (n)

m

)− μ2

�
b
ylh

b+
yl

(
Ṽ (n)
l

(
Pb+
l

)−V (n)
m

(
Pb+
l

))
,

Pb
l =

(
xi, ybl

)∈ ρ̂ hb
ml, Pb+

l = (xi, ybl +hb+
yl

)
.

(3.60)

From (3.18) at the iterative step n and the definition of V (n), we have

V (n)
m

(
Pb+
l

)− Ṽ (n)
l

(
Pb+
l

)≤V (n−1)(Pb+
l

)−V (n)(Pb+
l

)=−Z(n)(Pb+
l

)
. (3.61)

I. Boglaev and M. Hardy 15

From here and (3.19), and taking into account that Z(n)
m (P)= Z(n)(P), P ∈ ρ̂ hb

ml, we get the
estimate

1
c∗
∥
∥G(n)

∥
∥
ρ̂ hb
ml
≤ (q+ κbyl

)∥∥Z(n)
∥
∥
ωh . (3.62)

Similarly, we can prove the estimate

1
c∗
∥
∥G(n)

∥
∥
ρ̂ he
ml
≤ (q+ κeyl

)∥∥Z(n)
∥
∥
ωh . (3.63)

At Pb
ml = (xbm, ybl), we represent G(n) in the form

G(n)(Pb
ml

)=�hV (n)
ml + f

(
Pb
ml,V

(n)
ml

)

− μ2

�b
xmhb+

xm

(
V (n)
m

(
Pbx+
ml

)−V (n)
ml

(
Pbx+
ml

))

− μ2

�
b
ylh

b+
yl

(
Ṽ (n)
l

(
P
by+
ml

)−V (n)
ml

(
P
by+
ml

))
,

Pbx+
ml =

(
xbm +hb+

xm, ybl
)
, P

by+
ml =

(
xbm, ybl +hb+

yl

)
.

(3.64)

From (3.16) at the iterative step n and the definition of V (n), we have

V (n)
ml

(
Pbx+
ml

)−V (n)
m

(
Pbx+
ml

)≤V (n−1)(Pbx+
ml

)−V (n)(Pbx+
ml

)

=−Z(n)(Pbx+
ml

)
,

V (n)
ml

(
P
by+
ml

)− Ṽ (n)
l

(
P
by+
ml

)≤V (n−1)(P
by+
ml

)−V (n)(P
by+
ml

)

=−Z(n)(P
by+
ml

)
.

(3.65)

From here and (3.17), and taking into account that Z(n)
ml (Pb

ml)= Z(n)(Pb
ml), we get the esti-

mate

1
c∗
∣
∣G(n)(Pb

ml

)∣∣≤ (q+ κbxm + κbyl
)∥∥Z(n)

∥
∥
ωh . (3.66)

By the same reasonings, the following estimate holds true

1
c∗
∣
∣G(n)(Pe

m−1,l

)∣∣≤ (q+ κex,m−1 + κbyl
)∥∥Z(n)

∥
∥
ωh , Pe

m−1,l =
(
xem−1, ybl

)
. (3.67)

On ρhbl , we conclude the estimate

1
c∗
∥
∥G(n)

∥
∥
ρhbl
≤ (q+ qI + qII

)∥∥Z(n)
∥
∥
ωh . (3.68)

The same estimate holds true on ρhel , and on ρh we get the estimate

1
c∗
∥
∥G(n)

∥
∥
ρh ≤

(
q+ qI + qII

)∥∥Z(n)
∥
∥
ωh . (3.69)

16 Monotone domain decomposition algorithms

From here, (3.50) and (3.55), we conclude the estimate

1
c∗
∥
∥G(n)

∥
∥
ωh ≤

(
q+ qI + qII

)∥∥Z(n)
∥
∥
ωh . (3.70)

and, using (3.48), we prove the theorem. �

Remark 3.6. For the undecomposed algorithm, with M = 1 and L = 1, one has ω̃h = ωh

in (3.50) which together with (3.48) gives estimate (3.44) with q̃ = q.

Without loss of generality, we assume that the boundary condition in (1.1) is zero,
that is, g(P) = 0. This assumption can always be obtained via a change of variables. Let
the initial function V (0) be chosen in the form of (3.39) with R(P)= 0, that is, V (0) is the
solution of the following difference problem

(
�h + c∗

)
V (0) = ν

∣
∣ f (P,0)

∣
∣, P ∈ ωh,

V (0)(P)= 0, P ∈ ∂ωh, ν= 1,−1.
(3.71)

Then the functions V
(0)

(P), V (0)(P) corresponding to ν = 1 and ν = −1 are upper and
lower solutions, respectively.

Theorem 3.7. Let the factor q̃ in (3.44) satisfy the condition q̃ < 1. Suppose that the initial
upper or lower solution V (0) is chosen in the form of (3.71). Then for algorithm (3.5)–(3.10),
the following estimate holds true

∥
∥V (n)−U

∥
∥
ωh ≤ c0(q̃)n

(1− q̃)

∥
∥ f (P,0)

∥
∥
ωh , c0 = 3c∗ + c∗

c∗c∗
, (3.72)

where U is the solution to (2.2).

Proof. Using (3.44), we have

∥
∥V (n+k)−V (n)

∥
∥
ωh ≤

n+k−1∑

i=n

∥
∥V (i+1)−V (i)

∥
∥
ωh =

n+k−1∑

i=n

∥
∥Z(i+1)

∥
∥
ωh

≤ q̃

1− q̃

∥
∥Z(n)

∥
∥
ωh ≤ (q̃)n

1− q̃

∥
∥Z(1)

∥
∥
ωh .

(3.73)

Taking into account that limV (n+k) = U as k →∞, where U is the solution to (2.2), we
conclude the estimate

∥
∥V (n)−U

∥
∥
ωh ≤ (q̃)n

1− q̃

∥
∥Z(1)

∥
∥
ωh . (3.74)

From (3.48), (3.71) and the mean-value theorem

∥
∥Z(1)

∥
∥
ωh ≤ 1

c∗
∥
∥G(0)

∥
∥
ωh ≤ 1

c∗
∥
∥�hV (0)

∥
∥
ωh +

1
c∗
∥
∥ f
(
P,V (0))∥∥

ωh

≤ 1
c∗
(
c∗
∥
∥V (0)

∥
∥
ωh +

∥
∥ f (P,0)

∥
∥
ωh

)
+

1
c∗
∥
∥ f (P,0)

∥
∥
ωh +

∥
∥V (0)

∥
∥
ωh .

(3.75)

I. Boglaev and M. Hardy 17

From here and estimating V (0) from (3.71) with (2.8),

∥
∥V (0)

∥
∥
ωh ≤ 1

c∗

∥
∥ f (P,0)

∥
∥
ωh , (3.76)

we conclude the estimate on Z(1) in the form

∥
∥Z(1)

∥
∥
ωh ≤ c0

∥
∥ f (P,0)

∥
∥
ωh , (3.77)

where c0 is defined in (3.72). Thus, from here and (3.74), we prove (3.72). �

Remark 3.8. In the next section, we present sufficient conditions to guarantee the in-
equality q̃ < 1 required in Theorem 3.7.

3.4. Uniform convergence of the monotone domain decomposition algorithm (3.5)–
(3.10). Here we analyze a convergence rate of algorithm (3.5)–(3.10) applied to the dif-
ference scheme (2.2) defined on the piecewise uniform mesh introduced in [7]. On this
mesh, the difference scheme (2.2) converges μ-uniformly to the solution of (1.1).

The piecewise uniform mesh is formed in the following manner. We divide each of the
intervals ωx = [0,1] and ωy = [0,1] into three parts each [0,σx], [σx,1− σx], [1− σx,1],
and [0,σy], [σy ,1− σy], [1− σy ,1], respectively. Assuming that Nx, Ny are divisible by 4,
in the parts [0,σx], [1− σx,1] and [0,σy], [1− σy ,1] we use a uniform mesh with Nx/4 + 1
and Ny/4 + 1 mesh points, respectively, and in the parts [σx,1− σx], [σy ,1− σy] with
Nx/2 + 1 and Ny/2 + 1 mesh points, respectively. This defines the piecewise equidistant
mesh in the x- and y-directions condensed in the boundary layers at x = 0,1 and y = 0,1:

xi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ihxμ, i= 0,1, . . . ,Nx/4;

σx +
(
i−Nx/4

)
hx, i=Nx/4 + 1, . . . ,3Nx/4;

1− σx +
(
i− 3Nx/4

)
hxμ, i= 3Nx/4 + 1, . . . ,Nx,

yj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

jhyμ, j = 0,1, . . . ,Ny/4;

σy +
(
j−Ny/4

)
hy , j =Ny/4 + 1, . . . ,3Ny/4;

1− σy +
(
j− 3Ny/4

)
hyμ, j = 3Ny/4 + 1, . . . ,Ny ,

(3.78)

where hxμ, hyμ and hx, hy are the step sizes inside and outside the boundary layers, respec-
tively. The transition points σx, (1− σx) and σy , (1− σy) are determined by

σx =min
{

4−1,μc−(1/2)
∗ lnNx

}
, σy =min

{
4−1,μc−(1/2)

∗ lnNy
}
. (3.79)

If σx,y = 1/4, then N−1
x,y are very small relative to μ. This is unlikely in practice, and in this

case the difference scheme (2.2) can be analysed using standard techniques. We therefore

18 Monotone domain decomposition algorithms

assume that

σx = μc−(1/2)
∗ lnNx, hxμ = 4μc−(1/2)

∗ N−1
x lnNx, N−1

x < hx < 2N−1
x ,

σy = μc−(1/2)
∗ lnNy , hyμ = 4μc−(1/2)

∗ N−1
y lnNy , N−1

y < hy < 2N−1
y .

(3.80)

The difference scheme (2.2) on the piecewise uniform mesh (3.80) converges μ-uni-
formly to the solution of (1.1):

max
P∈ωh

∣
∣U(P)−u(P)

∣
∣≤ C

(
N−1 lnN

)2
, N =min

{
Nx,Ny

}
, (3.81)

where constant C is independent of μ and N . The proof of this result can be found in [7].

Theorem 3.9. Let the interfacial subdomains θ
h
m, m= 1, . . . ,M− 1 and ϑ

h
l , l = 1, . . . ,L− 1

be located in the x- and y-directions, respectively, outside the boundary layers. Assume μ≤
μ0 � 1, and the following condition

N ≤ α
√
c∗/2
μ0

, N =max
{
Nx,Ny

}
, 0 < α < 1, α= const . (3.82)

If the initial upper or lower solution V (0) is chosen in the form of (3.71), then the mono-
tone domain decomposition algorithm (3.5)–(3.10) on the piecewise uniform mesh (3.80)
converges μ-uniformly to the solution of the problem (1.1):

∥
∥V (n)−u

∥
∥
ωh ≤ C

(
N−1 lnN

)2
+

c0(Q̃)n

(1− Q̃)

∥
∥ f (P,0)

∥
∥
ωh ,

Q̃ = 1− (1−α2) c∗
c∗

< 1, c0 = 3c∗ + c∗

c∗c∗
,

(3.83)

where constant C and the factor Q̃ are independent of μ and N .

Proof. Under the above assumption on N , the factor q̃ in (3.44) satisfies the condition
q̃ < 1. Indeed, since the interfacial subdomains are located outside the boundary layers,
where the step sizes hx and hy are in use, then using (3.80), qI and qII from (3.44) are
estimated as follows

qI = μ2

c∗h2
x
<

(
μ0N

)2

c∗
, qII = μ2

c∗h2
y
<

(
μ0N

)2

c∗
. (3.84)

Thus, q̃ < Q̃ < 1, and we can apply Theorem 3.7. From here, (3.72) and (3.81), we con-
clude the theorem. �

I. Boglaev and M. Hardy 19

Remark 3.10. Such domain decompositions, in which the interfacial subdomains are out-
side the boundary layers, are said to be unbalanced, since the distribution of mesh points
among the nonoverlapping main subdomains is uneven. By contrast, a balanced domain
decomposition is one in which the mesh points are equally distributed among the main
subdomains. For balanced decompositions, the first and last interfacial subdomains each
overlap the boundary layer.

4. Monotone domain decomposition algorithm for the parabolic problem (1.2)

For solving the nonlinear difference scheme (2.5), we construct and investigate a paral-
lel domain decomposition algorithm based on the domain decomposition of the spatial
domain ω introduced in Section 3.

4.1. Statement of domain decomposition algorithm for solving (2.5). On each time
level t ∈ ωτ , we calculate n∗ iterates V (n)(P, t), P ∈ ωh, n= 1, . . . ,n∗ as follows.

Step 1. Initialization: on the mesh ωh, choose V (0)(P, t), P ∈ ωh satisfying the boundary
condition V (0)(P, t)= g(P, t) on ∂ωh.

For n= 0 to n∗ − 1 do Steps 2–5

Step 2. On subdomains ωh
ml, m= 1, . . . ,M, l = 1, . . . ,L, compute mesh functions V (n+1)

ml (P,
t), m= 1, . . . ,M, l = 1, . . . ,L satisfying the following difference problems

(
�hτ + c∗

)
Z(n+1)
ml =−G(n)(P, t), P ∈ ωh

ml,

G(n)(P, t)≡�hτV (n)(P, t) + f
(
P, t,V (n))− τ−1V(P, t− τ),

Z(n+1)
ml (P, t)= 0, P ∈ ∂ωh

ml,

V (n+1)
ml (P, t)=V (n)(P, t) +Z(n+1)

ml (P, t), P ∈ ωh
ml.

(4.1)

Step 3. On the vertical interfacial subdomains θ
h
m, m= 1, . . . ,M− 1, compute the differ-

ence problems

(
�hτ + c∗

)
Z(n+1)
m =−G(n)(P, t), P ∈ θhm,

Z(n+1)
m (P, t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, P ∈ γh0
m ;

Z(n+1)
ml (P, t), P ∈ γhbm ∩ωh

ml, l = 1, . . . ,L;

Z(n+1)
m+1,l(P, t), P ∈ γhem ∩ωh

m+1,l, l = 1, . . . ,L,

V (n+1)
m (P, t)=V (n)(P, t) +Z(n+1)

m (P, t), P ∈ θ
h
m,

(4.2)

where we use the notation from (3.6).

20 Monotone domain decomposition algorithms

Step 4. On the horizontal interfacial subdomains ϑ
h
l , l = 1, . . . ,L− 1, compute the follow-

ing difference problems

(
�hτ + c∗

)
Z̃(n+1)
l =−G(n)(P, t), P ∈ ϑhl ,

Z̃(n+1)
l (P, t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, P ∈ ρh0
l ;

Z(n+1)
ml (P, t), P ∈ (ρhbl \ θh

)∩ωh
ml, m= 1, . . . ,M;

Z(n+1)
m,l+1(P, t), P ∈ (ρhel \ θh

)∩ωh
m,l+1, m= 1, . . . ,M;

Z(n+1)
m (P, t), P ∈ ∂ϑhl ∩ θhm, m= 1, . . . ,M− 1,

Ṽ (n+1)
l (P, t)=V (n)(P, t) + Z̃(n+1)

l (P, t), P ∈ ϑ
h
l ,

(4.3)

where we use the notation from (3.8).

Step 5. Compute the mesh function V (n+1)(P, t), P ∈ ωh by piecing together the solutions
on the subdomains

V (n+1)(P, t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V (n+1)
ml (P, t), P ∈ ωh

ml \
(
θ
h∪ ϑ

h)
;

V (n+1)
m (P, t), P ∈ θ

h
m \ ϑ

h
, m= 1, . . . ,M− 1;

Ṽ (n+1)
l (P, t), P ∈ ϑ

h
l , l = 1, . . . ,L− 1.

(4.4)

Step 6. Set up

V(P, t)=V (n∗)(P, t), P ∈ ωh. (4.5)

4.2. Monotone convergence of algorithm (4.1)–(4.5). Additionally, we assume that f
from (1.2) satisfies the two-sided constraints

0≤ fu ≤ c∗, c∗ = const . (4.6)

On a time level t ∈ ωτ , we say that V(P, t) is an upper solution with respect to a given
function V(P, t− τ) if it satisfies

�hτV(P, t) + f
(
P, t,V

)− τ−1V(P, t− τ)≥ 0, P ∈ ωh,

V(P, t)≥ g(P, t), P ∈ ∂ωh.
(4.7)

Similarly, V(P, t) is called a lower solution with respect to V(P, t − τ) if it satisfies the
reversed inequalities. On each time level, upper and lower solutions satisfy the following
inequality

V(P, t)≤V(P, t), P ∈ ωh. (4.8)

The proof of this result is similar to that of (3.13).
On each time level t ∈ ωτ , we have the following convergence property of algorithm

(4.1)–(4.5).

I. Boglaev and M. Hardy 21

Theorem 4.1. Let V(P, t− τ) be given and V
(0)

(P, t), V (0)(P, t) be upper and lower solu-
tions corresponding to V(P, t− τ). Suppose that f satisfies (4.6). Then the upper sequence

{V (n)
(P, t)} generated by (4.1)–(4.5) converges monotonically from above to the unique so-

lution �(P, t) of the problem

�hτV(P, t) + f (P, t,V)− τ−1V(P, t− τ)= 0, P ∈ ωh,

V(P, t)= g(P, t), P ∈ ∂ωh,
(4.9)

and the lower sequence {V (n)(P, t)} generated by (4.1)–(4.5) converges monotonically from
below to �(P, t):

�(P, t)≤V
(n+1)

(P, t)≤V
(n)

(P, t)≤V
(0)

(P, t), P ∈ ωh,

V (0)(P, t)≤V (n)(P, t)≤V (n+1)(P, t)≤�(P, t), P ∈ ωh.
(4.10)

Proof. The proof of the theorem is similar to the proof of Theorem 3.2 and based on the
maximum principle in Lemma 2.1 and the estimate (2.8) with β = 1 for the difference
operator �hτ . �

Remark 4.2. In the case of algorithm (4.1)–(4.5), Remarks 3.1–3.4 hold still true at each
time step t ∈ ωτ . We only mention that the difference problem in (3.39) becomes

�hτZ(0)
ν = ν

∣
∣�hτR(P, t) + f (P, t,R)− τ−1V(P, t− τ)

∣
∣, P ∈ ωh,

Z(0)
ν (P, t)= 0, P ∈ ∂ωh, ν= 1,−1.

(4.11)

4.3. Convergence analysis of algorithm (4.1)–(4.5). We now establish convergence
properties of algorithm (4.1)–(4.5).

Introduce the following notation

υbxm ≡
μ2

(
c∗ + τ−1

)
�b
xmhb+

xm
, υexm ≡

μ2
(
c∗ + τ−1

)
�e
xmhe−xm

,

υbyl ≡
μ2

(
c∗ + τ−1

)
�
b
ylh

b+
yl

, υeyl ≡
μ2

(
c∗ + τ−1

)
�
e
ylh

e−
yl

,

rI = max
1≤m≤M−1

{
υbxm;υexm

}
, rII = max

1≤l≤L−1

{
υbyl;υ

e
yl

}
,

(4.12)

where all the step sizes are defined in (3.42).
Similar to Theorem 3.5, on each time level t ∈ ωτ , we have the following convergence

property of algorithm (4.1)–(4.5).

Theorem 4.3. For algorithm (4.1)–(4.5), the following estimate holds true

∥
∥Z(n+1)(t)

∥
∥
ωh ≤ r̃

∥
∥Z(n)(t)

∥
∥
ωh , r̃ = r +

(
rI + rII

)
, t ∈ ωτ , (4.13)

where Z(n)(P, t)=V (n)(P, t)−V (n−1)(P, t) and r = c∗/(c∗ + τ−1).

22 Monotone domain decomposition algorithms

Proof. The proof of the theorem is similar to the proof of Theorem 3.5 and based on the
maximum principle in Lemma 2.1 and the estimate (2.8) with β = 1 for the difference
operator �hτ . �

Remark 4.4. In similar fashion to the proof of Theorem 3.5, the proof of Theorem 4.3
includes the result r̃ = r for the undecomposed algorithm.

Without loss of generality, we assume that for the parabolic problem (1.2), the bound-
ary condition g(P, t) = 0. This assumption can always be obtained via a change of vari-
ables. Let on each time level the initial function V (0)(P, t) be chosen in the form of (4.11)
with R(P, t)= 0, that is, V (0)(P, t) is the solution of the following difference problem

�hτV (0)(P, t)= ν
∣
∣ f (P, t,0)− τ−1V(P, t− τ)

∣
∣, P ∈ ωh,

V (0)(P, t)= 0, P ∈ ∂ωh, ν= 1,−1.
(4.14)

Then the functions V
(0)

(P, t), V (0)(P, t) corresponding to ν= 1 and ν=−1 are upper and
lower solutions, respectively.

Theorem 4.5. In the domain decomposition algorithm (4.1)–(4.5), let V (0)(P, t) be chosen
in the form of (4.14), and let f satisfy (4.6). Suppose that on each time level, the number of
iterates n∗ satisfies n∗ ≥ 2. Then the following estimate on convergence rate holds

max
tk∈ωτ

∥
∥V
(
tk
)−U

(
tk
)∥∥≤D

(
c∗ +η

)
(r̃)n∗−1,

η = (c∗ + τ−1)(rI + rII
)
,

(4.15)

where r̃, rI and rII are defined in Theorem 4.3, U(P, t) is the solution to (2.5) and con-
stant D is independent of μ and τ. Furthermore, on each time level the sequence {V (n)(P, t)}
converges monotonically.

Proof. The difference problem for V(P, tk)=V (n∗)(P, tk) can be represented in the form

�hτV
(
P, tk

)
+ f

(
P, tk,V

)− τ−1V
(
P, tk−1

)=G(n∗)(P, tk
)
, P ∈ ωh,

V
(
P, tk

)= g
(
P, tk

)
, P ∈ ∂ωh.

(4.16)

From here, (2.5) and using the mean-value theorem, we get the difference problem for
W(P, tk)=V(P, tk)−U(P, tk)

(
�hτ + f (n∗)

u

)
W
(
P, tk

)=G(n∗)(P, tk
)

+ τ−1W
(
P, tk−1

)
, P ∈ ωh,

W
(
P, tk

)= 0, P ∈ ∂ωh.
(4.17)

I. Boglaev and M. Hardy 23

Using the same reasonings as in proving the estimate (3.70), we can obtain the follow-
ing estimate on G(n∗):

∥
∥G(n∗)(tk

)∥∥
ωh ≤

(
c∗ +η

)∥∥Z(n∗)(tk
)∥∥

ωh . (4.18)

By (2.8) and (4.13), we estimate the solution of (4.17) in the form

∥
∥W

(
tk
)∥∥

ωh ≤ τ
(
c∗ +η

)
r̃n∗−1

∥
∥Z(1)(tk

)∥∥
ωh +

∥
∥W

(
tk−1

)∥∥
ωh . (4.19)

By (2.8), from (4.1)–(4.5), we have

∥
∥Z(1)(tk

)∥∥
ωh ≤ τ

∥
∥�hτV (0)(tk

)
+ f

(
V (0)(tk

))− τ−1V
(
tk−1

)∥∥
ωh . (4.20)

By the mean-value theorem,

f
(
P, tk,V (0))= f (P, tk,0) + f (0)

u V (0)(P, tk
)
, (4.21)

and from (4.20), it follows that

∥
∥Z(1)(tk

)∥∥
ωh ≤ τ

∥
∥�hτV (0)(tk

)∥∥
ωh + τ

∥
∥ f (0)

u V (0)(tk
)∥∥

ωh + τ
∥
∥ f
(
P, tk,0

)− τ−1V
(
tk−1

)∥∥
ωh .

(4.22)

From here, (4.14) and (4.6), and estimating V (0) from (4.14) by (2.8) with β = 1, we get

∥
∥Z(1)(tk

)∥∥
ωh ≤ (2τ + c∗τ2)∥∥ f

(
P, tk,0

)− τ−1V
(
tk−1

)∥∥
ωh

≤ (2τ + c∗τ2)(∥∥ f
(
P, tk,0

)∥∥
ωh + τ−1

∥
∥V
(
tk−1

)∥∥
ωh

)≤Dk,
(4.23)

where for sufficiently small τ, constant Dk is independent of τ. From here and (4.19), by
induction we prove the estimate

∥
∥W

(
tk
)∥∥

ωh ≤
(k∑

l=1

Dl

)

τ
(
c∗ +η

)
(r̃)n∗−1, k = 1, . . . ,Nτ. (4.24)

Since Nττ = T , we prove the estimate (4.15) with D = TD0, where D0 =max1≤k≤Nτ Dk,
and, hence, D is independent of τ.

To prove that all constants Dk are independent of the small parameter μ, we have to
prove that ‖V(tk−1)‖ωh in (4.23) is μ-uniformly bounded. For k = 1, V(P,0) = u0(P),
where u0 is the initial condition in the differential problem (1.2), and, hence, D1 is inde-
pendent of μ and τ. For k = 2, we have

∥
∥Z(1)(t2

)∥∥
ωh ≤ (2τ + c∗τ2)∥∥ f

(
P, t2,0

)∥∥
ωh +

(
2 + c∗τ

)∥∥V
(
t1
)∥∥

ωh ≤D2, (4.25)

24 Monotone domain decomposition algorithms

where V(P, t1) = V (n∗)(P, t1). As follows from Theorem 4.1, the monotone sequences

{V (n)
(P, t1)} and {V (n)(P, t1)} are μ-uniformly bounded from above by V

(0)
(P, t1) and

from below by V (0)(P, t1). Applying (2.8) with β = 1 to the problem (4.14) at t = t1, we
have

∥
∥V (0)(t1)

∥
∥
ωh ≤ τ

∥
∥ f
(
P, t1,0

)− τ−1u0(P)
∥
∥
ωh ≤ K1, (4.26)

where constant K1 is independent of μ and τ. Thus, we obtain that D2 is independent of μ
and τ. Now by induction on k, we prove that all constants Dk are independent of μ, and,
hence, constant D = Tmax1≤k≤Nτ Dk in (4.15) is independent of μ and τ. Thus, we prove
the theorem. �

Remark 4.6. In the next section, we present sufficient conditions to guarantee the in-
equality r̃ < 1 required in Theorem 4.5.

4.4. Uniform convergence of the monotone domain decomposition algorithm (4.1)–
(4.5). Here we analyze a convergence rate of algorithm (4.1)–(4.5) applied to the differ-
ence scheme (2.5) defined on the piecewise uniform mesh (3.80).

The difference scheme (2.5) on the piecewise uniform mesh (3.80) converges μ-uni-
formly to the solution of (1.2):

max
tk∈ωτ

∥
∥U

(
tk
)−u

(
tk
)∥∥

ωh ≤ C
((
N−1 lnN

)2
+ τ
)
, N =min

{
Nx,Ny

}
, (4.27)

where constant C is independent of μ, τ and N . The proof of this result can be found in
[7].

Similar to Theorem 3.9, we have the following uniform convergence property of algo-
rithm (4.1)–(4.5).

Theorem 4.7. Let the interfacial subdomains θ
h
m, m= 1, . . . ,M− 1 and ϑ

h
l , l = 1, . . . ,L− 1

be located in the x- and y-directions, respectively, outside the boundary layers (unbalanced
decomposition). Suppose that μ≤ μ0 � 1, and that the following conditions are satisfied

N ≤ 1
μ0

, N =max
{
Nx,Ny

}
, τ <

1
2 + c∗

. (4.28)

If the initial upper or lower solution V (0) is chosen in the form of (4.14), then the mono-
tone domain decomposition algorithm (4.1)–(4.5) on the piecewise uniform mesh (3.80)
converges μ-uniformly to the solution of the problem (1.2).

Proof. Since the interfacial subdomains are located outside the boundary layers, where
the step sizes hx and hy are in use, then under the above assumption on N , the coefficients
η and r̃ in (4.15), with the notation from (4.13), satisfy the following inequalities

η ≤ 2, r̃ = r + rI + rII ≤ c∗τ + 2τ. (4.29)

I. Boglaev and M. Hardy 25

Thus, if τ < (2 + c∗)−1, as assumed in the theorem, then r̃ < 1. From here, (4.15) and
(4.27), we conclude

max
tk∈ωτ

∥
∥V (n)(tk

)−u
(
tk
)∥∥

ωh ≤ C
((
N−1 lnN

)2
+ τ
)

+ D̃(Q̃)n∗−1,

D̃ = (2 + c∗
)
D, Q̃ = (2 + c∗

)
τ,

(4.30)

where constants C and D̃ are independent of μ, τ and N . We prove the theorem. �

Remark 4.8. The implicit two-level difference scheme (2.5) is of first order with respect
to τ. Since Q̃ = �(τ), one may choose n∗ = 2 to keep the global error of algorithm (4.1)–
(4.5) consistent with the global error of the difference scheme (2.5).

5. Numerical experiments

Now the monotone domain decomposition algorithms (3.5)–(3.10) and (4.1)–(4.5) are
respectively applied to reaction-diffusion problems of elliptic and parabolic types. All ex-
periments are performed on a serial computer equipped with a 2.8 GHz Pentium 4 pro-
cessor. Some consequences for parallel implementation are also discussed. We consider
in turn the elliptic problem

−μ2(uxx +uyy
)

+
u− 4
5−u

= 0, (x, y)∈ ω = {0 < x < 1}×{0 < y < 1},

u(x, y)= 1, (x, y)∈ ∂ω,
(5.1)

and its parabolic analogue

−μ2(uxx +uyy
)

+
u− 4
5−u

+ut = 0, (x, y)∈ ω, t ∈ (0,1],

u(x, y,0)=
⎧
⎨

⎩
0, (x, y)∈ ω,

1, (x, y)∈ ∂ω,

u(x, y, t)= 1, (x, y)∈ ∂ω, t ∈ (0,1].

(5.2)

The solution to the reduced elliptic problem (μ= 0) is ur = 4. For μ� 1 the problem
is singularly perturbed and the solution increases sharply from u= 1 on ∂ω to u= 4 on
the interior. The solution to the parabolic problem approaches this steady state with time.

For the continuous problems (5.1) and (5.2), we solve the corresponding nonlinear
difference schemes (2.2) and (2.5) with the monotone domain decomposition algorithms
(3.5)–(3.10) and (4.1)–(4.5), respectively. We employ a piecewise uniform mesh (3.80)
and suppose that Nx = Ny = N . Because the mesh is only piecewise uniform, the linear
system arising from the difference problem on a given subdomain may be nonsymmetric.
Therefore, we solve all linear systems with the restarted GMRES algorithm from [10],
suitable for nonsymmetric systems.

5.1. The elliptic problem. Define upper and lower solutions V
(0)

and V (0) by V
(0)

(ωh)=
4, V

(0)
(∂ωh) = 1 and V (0)(ωh) = 0, V (0)(∂ωh) = 1. We initiate the algorithm with the

26 Monotone domain decomposition algorithms

Table 5.1. The parameter q̃ from the convergence estimate (3.44), for balanced and unbalanced do-
main decomposition. The undecomposed convergence rate is q = 0.96.

q̃(balanced); q̃(unbalanced)

N\μ 10−1 10−2 10−3 10−4

26 83; 83 2.14; 1.56 2.1; 0.962 2.14; 0.960

27 329; 329 4.44; 4.05 4.44; 0.969 4.44; 0.960

28 1312; 1312 14.1; 14.1 11.6; 0.997 11.6; 0.960

29 5244; 5244 53.4; 53.4 34.6; 1.11 34.6; 0.961

lower solution V (0) and it follows from Theorem 3.2 that our computed sequence satis-
fies 0≤ V (n) ≤ 4. Therefore, we may consider that fu = 1/(5−u)2 is bounded above and
below by c∗ = 1 and c∗ = 1/25, respectively. In all experiments of this section we use the
convergence criterion ‖V (n)−V (n−1)‖ωh < δ, with δ = 10−5.

The undecomposed monotone iterative algorithm converges monotonically to the ex-
act solution of (2.2) at the rate q = 1− c∗/c∗ = 0.96. From Theorem 3.2, the monotone
domain decomposition algorithm (3.5)–(3.10) also converges monotonically to the ex-
act solution. The decomposed convergence parameter q̃ from estimate (3.44) comprises
the undecomposed parameter q, augmented by two terms deriving from the decomposi-
tion in each of the x- and y-directions. If q̃ > 1 then estimate (3.44) is of no formal use.
Nevertheless, we expect that the trends in q̃ with respect to μ and N are reflected in the
convergence behaviour of the algorithm. For reference, we list in Table 5.1 the value of
q̃, for balanced and unbalanced domain decomposition. We mention that for μ = 10−1,
the boundary layer thicknesses σx and σy are each 0.25 and the mesh is uniform in each
direction. Hence, we do not consider unbalanced domain decomposition when μ= 10−1.

5.1.1. Balanced domain decomposition. We first consider balanced domain decomposi-
tions. For μ = 10−1, the convergence iteration counts and execution times are shown in
Table 5.2. All execution times of this section have been rounded up to the nearest second.
Each major cell corresponds to a certain nonlinear system (2.2) to be solved by algo-
rithm (3.5)–(3.10). Within each major cell, results corresponding to 25 main subdomain
decompositions are presented, including the undecomposed algorithm (M = 1, L = 1).
Where there is some choice for the interfacial subdomain widths, the results correspond-
ing to minimal and maximal choices are written above and below the line, respectively.
The convergence iteration count for each undecomposed problem is 23. This increases
rapidly with decomposition and mesh size N . This reflects a value of q̃ that is signifi-
cantly larger than q = 0.96, and which increases with N .

For μ ≤ 10−2 we expect more reasonable iteration counts. This is demonstrated in
Table 5.3. If maximal interfacial subdomain widths are chosen, the iteration count in-
creases only slightly with decomposition. Consider now the corresponding execution
times. In each of the nine major cells the execution time of the undecomposed mono-
tone algorithm appears in the top left corner. It is interesting to note that, for each value
of μ and N , there are certain decompositions which reduce the execution time. For N = 29

and μ= 10−2, the decomposition M = 32, L= 1 requires 90 seconds to execute if maximal
interfacial subdomains are used. This is a significant reduction from the 130 seconds for

I. Boglaev and M. Hardy 27

Table 5.2. Convergence iteration counts and execution times for μ= 10−1. Where there is some choice
for the widths of the interfacial subdomains, the results corresponding to minimal and maximal in-
terfacial subdomains are given above and below the line, respectively.

N 26 27 28

L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

Convergence iteration count

1 23
133
32

212
68

374
205

683 23
241
32

387
68

688
204

1257
681

23
443
32

714
68

1269
204

2312
681

4
133
32

212
31

283
46

425
85

702
213

241
32

399
31

536
45

813
84

1346
206

443
32

746
31

1006
45

1528
83

2525
205

8
212
68

283
46

347
68

474
120

721
241

387
68

536
46

668
68

928
117

1430
220

714
68

1006
46

1260
68

1762
117

2722
215

16
374
205

425
85

474
120

570
213

757
425

688
204

813
84

928
118

1156
206

1597
384

1269
204

1528
83

1762
117

2224
204

3115
375

32 683
702
213

721
241

757
425

831
1257
681

1346
206

1430
220

1597
384

1925
712

2312
681

2525
204

2722
215

3115
375

3880
688

Execution time (s)

1 2
3
2

2
2

2
2

1 18
68
18

33
11

22
12

14
12

421
1807
281

1001
222

468
139

260
140

4
3
2

4
2

4
2

4
3

3
5

68
18

73
20

66
29

54
27

44
51

1805
281

1878
303

1231
277

910
366

709
766

8
2
2

4
2

3
2

3
3

3
3

33
11

66
26

52
19

46
22

40
29

1005
222

1239
278

984
238

881
283

752
365

16
2
2

3
3

3
3

2
2

3
3

22
12

55
27

46
22

32
21

32
26

465
138

921
372

880
263

663
258

595
286

32 1
3
5

3
3

3
3

3
14
13

44
50

40
28

32
26

22
25

259
141

697
758

731
355

585
283

404
270

the undecomposed monotone method. For N = 29 and μ≤ 10−3, the domain decompo-
sition M = 4, L= 32 with minimal interfacial subdomains executes fastest.

Consider a parallel implementation of algorithm (3.5)–(3.10) in which each main sub-
domain is wholly assigned to one of several processors in a cluster. During Step 2 of the
algorithm, each of the main subdomains can be solved in serial fashion; no data transfer
is necessary once the Dirichlet data have been passed. For a balanced M,L decomposition
in which the number of processors divides ML, the computational cost for Step 2 of the
algorithm is shared equally among the processors. During Steps 3 and 4, the idle time
of those processors not assigned an interfacial subdomain will be minimized if minimal
interfacial subdomains are chosen.

5.1.2. Unbalanced domain decomposition. We now consider unbalanced domain decom-
positions, with the interfacial subdomains located outside the boundary layers. All unbal-
anced domain decomposition experiments employed minimal interfacial subdomains.
For μ ≤ 10−2, convergence iteration counts are shown in Table 5.4. For μ = 10−2, the

28 Monotone domain decomposition algorithms

Table 5.3. Iteration counts and execution times for balanced domain decompositions.

μ 10−2 10−3 10−4

N L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

Convergence iteration count

1 21
28
21

29
21

30
22

37
27

21
22
21

29
21

30
22

37
27

21
21
21

29
21

30
22

37
27

4
28
21

28
21

29
21

30
22

38
27

22
21

22
21

29
21

30
22

37
27

21
21

21
21

29
21

30
22

37
27

27 8
29
21

29
21

29
21

31
22

38
26

29
21

29
21

29
21

30
22

38
26

29
21

29
21

29
21

30
22

38
26

16
30
22

30
22

31
22

32
22

40
25

30
22

30
22

31
22

32
22

40
25

30
22

30
22

31
22

32
22

40
25

32
37
27

38
27

38
26

40
25

46
27

37
27

37
27

38
26

40
25

46
27

37
27

37
27

38
26

40
25

46
27

1 21
43
21

43
21

44
22

55
26

21
26
21

40
21

41
22

49
24

21
21
21

40
21

41
22

49
24

4
43
21

46
21

46
21

48
22

62
26

26
21

26
21

40
21

41
22

49
24

21
21

21
21

40
21

41
22

49
24

28 8
43
21

46
21

46
21

48
22

63
25

40
21

40
21

41
21

43
22

55
24

40
21

40
21

41
21

43
22

55
24

16
44
22

48
22

48
22

50
22

65
25

41
22

41
22

43
22

44
22

57
24

41
22

41
22

43
22

44
22

57
24

32
55
26

62
26

63
25

65
25

78
25

49
24

49
24

55
24

57
24

67
24

49
24

49
24

55
24

57
24

67
24

1 21
74
21

74
21

76
22

94
25

21
36
21

62
21

62
21

72
23

21
24
21

62
21

62
21

72
23

4
74
21

89
21

89
21

92
22

116
25

36
21

36
21

62
21

62
21

72
23

24
21

24
21

62
21

62
21

72
23

29 8
74
21

89
21

89
21

92
22

116
25

62
21

62
21

72
21

72
21

86
23

62
21

62
21

72
21

72
21

86
23

16
76
22

92
22

92
22

95
22

121
24

62
21

62
21

72
21

73
21

88
23

62
21

62
21

72
21

73
21

88
23

32
94
25

116
25

116
25

121
24

144
25

72
23

72
23

86
23

88
23

103
23

72
23

72
23

86
23

88
23

103
23

Execution time (s)

1 2
2
2

2
2

1
2

1
1

2
1
2

1
2

1
2

1
1

2
1
2

1
2

1
2

1
1

4
2
2

2
3

2
3

1
2

1
2

1
2

1
2

1
3

1
2

1
2

1
2

1
2

1
3

1
2

1
2

27 8
2
2

2
3

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
3

1
2

1
2

1
2

16
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

32
1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

I. Boglaev and M. Hardy 29

Table 5.3. Continued.

Execution time (s)

1 15
19
17

16
16

12
13

10
9

13
9

12
10
12

9
10

8
8

13
7

12
10
12

9
10

7
8

4
19
17

17
22

14
21

13
21

13
19

9
12

6
15

7
14

6
14

5
13

7
12

5
15

7
14

5
14

5
13

28 8
16
16

14
21

14
20

13
18

13
17

11
12

7
15

7
14

7
13

7
13

11
12

7
14

7
14

6
13

6
12

16
12
13

13
19

13
18

9
16

10
15

9
10

6
14

7
13

6
12

6
11

9
10

5
14

6
13

5
12

5
11

32
9
9

13
18

13
17

10
15

7
11

8
9

5
13

7
13

6
12

6
10

7
8

5
13

6
12

5
11

5
10

1 130
429
251

378
231

236
144

157
90

95
140
152

177
145

114
96

93
81

99
101
153

166
145

107
95

91
79

4
429
251

303
293

271
280

234
238

196
210

142
155

65
171

89
166

72
139

57
132

100
154

44
169

81
163

64
135

44
129

29 8
380
231

271
280

240
267

199
224

193
207

179
146

89
166

99
160

79
132

77
128

167
145

81
163

98
159

77
129

70
126

16
235
143

234
239

200
227

177
177

183
153

111
96

72
138

79
132

71
108

75
103

107
95

64
135

76
129

69
104

63
100

32
156
91

194
209

190
208

177
152

123
117

93
78

56
133

76
130

72
105

69
89

91
79

44
130

70
128

63
101

51
86

results are similar to those of the corresponding balanced decomposition with minimal
interfacial subdomains. This reflects similar values of q̃ in Table 5.1. On the other hand,
for μ≤ 10−3 the parameter q̃ is close to the undecomposed parameter q and we observe a
convergence iteration count that is independent of M and L.

A comparison between the execution times of Table 5.4 and those of Table 5.3 shows
that, for μ≤ 10−3, algorithm (3.5)–(3.10) executes more quickly with unbalanced domain
decomposition. For a parallel implementation of algorithm (3.5)–(3.10) with unbalanced
domain decomposition, load balancing at the main subdomain stage could be partially
restored by solving the larger linear problems in parallel (the second level of paralleliza-
tion).

5.1.3. The nature of the convergence. We expect from Theorem 3.2 that each mesh func-
tion in the sequence {V (n)} is a lower solution to (2.2) and that the convergence at each
mesh point is monotonic. On the other hand, for all numerical experiments of this pa-
per, we solve the linear problems (3.5)–(3.8) iteratively, terminating the solution process
when the system residual has decreased by order five. With this approximation, the se-
quence {V (n)} violates Theorem 3.2 slightly but the effect on convergence behaviour is
not catastrophic. Indeed, if one requests an order ten reduction in the system residual of
each problem (3.5)–(3.8) then the computed results accord with Theorem 3.2 (to within
machine accuracy).

30 Monotone domain decomposition algorithms

Table 5.4. Iteration counts and execution times for unbalanced domain decompositions.

μ 10−2 10−3 10−4

N L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

Convergence iteration count

1 21 28 28 33 46 21 21 21 21 21 21 21 21 21 21

4 28 28 28 33 46 21 21 21 21 21 21 21 21 21 21

27 8 28 28 28 33 46 21 21 21 21 21 21 21 21 21 21

16 33 33 33 33 46 21 21 21 21 21 21 21 21 21 21

32 46 46 46 46 46 21 21 21 21 21 21 21 21 21 21

1 21 43 43 51 77 21 21 21 21 21 21 21 21 21 21

4 43 46 46 52 77 21 21 21 21 21 21 21 21 21 21

28 8 43 46 46 53 77 21 21 21 21 21 21 21 21 21 21

16 51 52 53 59 77 21 21 21 21 21 21 21 21 21 21

32 77 77 77 77 91 21 21 21 21 21 21 21 21 21 21

1 21 74 75 86 135 21 21 21 21 21 21 21 21 21 21

4 74 89 89 99 135 21 21 21 21 21 21 21 21 21 21

29 8 75 89 89 99 136 21 21 21 21 21 21 21 21 21 21

16 86 99 99 110 148 21 21 21 21 21 21 21 21 21 21

32 135 135 136 148 184 21 21 21 21 21 21 21 21 21 21

Execution time (s)

1 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1

4 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

27 8 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1

16 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1

32 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

1 15 19 16 16 20 13 7 7 7 7 13 7 7 7 7

4 18 16 15 15 19 8 5 5 5 5 7 5 5 5 5

28 8 16 15 14 14 17 7 5 5 5 5 7 5 4 5 5

16 16 15 14 13 15 7 5 5 5 5 7 5 5 5 5

32 20 19 17 15 15 7 5 5 5 5 7 5 5 5 5

1 130 432 375 336 445 101 89 82 75 72 100 89 82 74 72

4 431 309 276 264 307 89 41 39 38 38 89 41 40 38 38

29 8 374 278 249 242 284 82 39 37 36 36 82 39 37 36 36

16 335 263 241 226 260 74 38 36 35 35 75 38 36 35 35

32 444 306 283 260 275 72 38 36 35 35 72 38 36 35 35

In Figure 5.1 we show the convergence behaviour of algorithm (3.5)–(3.10) for the
problem with μ= 10−3 and N = 512. The first graph corresponds to the balanced decom-
position with M = 8, L= 8 and maximal interfacial subdomains while the second graph
corresponds to the balanced decomposition with M = 8, L = 8 and minimal interfacial

I. Boglaev and M. Hardy 31

n = 1
n = 4

n = 7
n = 21

M = 8, L = 8, maximal interfacial subdomains
ε1 = 2.0e − 07, ε2 = 2.4e − 09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Distance from (0, 0) along the line y = x

0

0.5

1

1.5

2

2.5

3

3.5

4

V
(n

)

(a)

n = 1
n = 10

n = 19
n = 72

M = 8, L = 8, minimal interfacial subdomains
ε1 = 9.0e − 06, ε2 = 3.9e − 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Distance from (0, 0) along the line y = x

0

0.5

1

1.5

2

2.5

3

3.5

4

V
(n

)

(b)

Figure 5.1. Profiles of V (n) for various iteration numbers n and two different balanced domain de-
compositions. The problem has μ= 10−3 and N = 512.

subdomains. Also indicated in each graph is the degree to which the computed iterates
violate Theorem 3.2. We define ε1 as the maximum difference scheme residual

ε1 =max
{
�hV (n)(P) + f

(
P,V (n)(P)

)
: P ∈ ωh, n= 0,1, . . .

}
, (5.3)

32 Monotone domain decomposition algorithms

while ε2 measures the nonmonotonicity between successive iterates

ε2 =
∣
∣min

{
V (n)(P)−V (n−1)(P) : P ∈ ωh, n= 1,2, . . .

}∣∣. (5.4)

As mentioned above, one can reduce ε1 and ε2 to the order of machine accuracy by solv-
ing the linear problems (3.5)–(3.8) with sufficient accuracy.

With maximal interfacial subdomains, each iterate exhibits a smooth profile. With
minimal interfacial subdomains on the other hand, each early iterate oscillates in the
vicinity of the main subdomain interfaces, particularly inside the boundary layers. Al-
though the iterates reach the interior value of 4 just as quickly as for maximal interfacial
subdomains, further iterations are required to smooth the oscillation in the boundary
layer. It is interesting to observe that, in spite of the oscillatory nature of each iterate, the
convergence of the sequence at each mesh point is monotonic to within ε2 = 3.9× 10−10.

Finally, we explain the relatively rapid convergence of the algorithm on unbalanced de-
compositions. Although the interfacial subdomains are minimal, they are located wholly
outside the boundary layers. Therefore, the osccillation at each interface is quite small
and eliminated after only a few iterations.

5.2. The parabolic problem. The numerical solution at t = 0 is given by the initial con-
dition; V(ωh,0)= 0, V(∂ωh,0)= 1. If we define V (0)(ωh, t1)=V(ωh,0) then V (0)(P, t1) is
clearly a lower solution with respect to V(P,0). We initiate the algorithm with V (0)(P, t1)
and thus generate a sequence of mesh functions {V (n)(P, t1)} that are each lower solu-

tions with respect to V(P,0). Consider also the mesh function V
(0)

(P, t1), defined by

V
(0)

(ωh, t1) = 4, V
(0)

(∂ωh, t1) = 1. Since V
(0)

(P, t1) is an upper solution with respect to
V(P,0), it follows from Theorem 3.2 that 0 ≤ V (n)(P, t1) ≤ 4, P ∈ ωh, n ≥ 0. Now for
k ≥ 2, let V(P, tk−1)=V (n∗)(P, tk−1) with n∗ minimal subject to

∥
∥V (n∗)(tk−1

)−V (n∗−1)(tk−1
)∥∥

ωh < δ, (5.5)

where the specified tolerance δ throughout this section is 10−5. Since the boundary condi-
tion g and the function f in (5.2) are independent of time, the mesh functions V (0)(P, tk),

V
(0)

(P, tk) defined by V (0)(P, tk) = V(P, tk−1), V
(0)

(P, tk) = V
(0)

(P, t1) are respectively
lower and upper solutions with respect to V(P, tk−1). Applying Theorem 3.2, one has by
induction on k that

0≤V (n)(P, tk
)≤ 4, P ∈ ωh, 0≤ n≤ n∗, 0≤ k ≤Nτ. (5.6)

Since each of our computed mesh functions satisfies the above inequalities, we may sup-
pose that fu is bounded above and below by c∗ = 1 and c∗ = 1/25, respectively.

At each time step tk, the undecomposed monotone iterative algorithm with M = 1
and L = 1 converges monotonically to the exact solution U(P, tk) of (2.5). The conver-
gence rate is r = c∗/(c∗ + τ−1). From Theorem 4.5, algorithm (4.1)–(4.5) also converges
monotonically to U(P, tk). The convergence parameter r̃ from estimate (4.13) comprises
the undecomposed parameter r, augmented by terms arising from each of the x- and y-
decompositions. The values of r̃ are listed in Table 5.5 for balanced and unbalanced do-
main decomposition. Throughout this section, we take as our time step τ = 0.1. Similar

I. Boglaev and M. Hardy 33

Table 5.5. The parameter r̃ from the convergence estimate (4.13), for balanced and unbalanced do-
main decomposition. The time step is τ = 0.1 and the undecomposed parameter r is 0.091.

r̃(balanced); r̃(unbalanced)

N\μ 10−1 10−2 10−3 10−4

26 7.54; 7.54 0.199; 0.145 0.199; 0.091 0.199; 0.091

27 29.9; 29.9 0.407; 0.372 0.407; 0.092 0.407; 0.091

28 119; 119 1.28; 1.28 1.06; 0.094 1.06; 0.091

29 477; 477 4.86; 4.86 3.15; 0.104 3.15; 0.091

Table 5.6. Average convergence iteration counts for simulations of ten time steps, with μ= 10−1.

N 26 27 28

L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

1 5.0
16.0
5.1

17.0
7.0

21.7
13.0

35.2 5.0
30.1
5.1

31.3
7.0

39.0
13.0

61.3
34.6

5.0
55.8
5.1

57.8
7.0

71.3
13.0

109.9
34.5

4
16.0
5.1

20.6
5.2

21.5
6.4

25.7
11.4

36.5
29.1

30.1
5.1

40.1
5.1

42.0
6.3

49.4
11.3

68.5
28.5

55.8
5.1

77.7
5.1

80.9
6.3

94.1
11.2

128.6
28.2

8
17.0
7.0

21.6
6.4

22.7
7.0

26.7
10.1

37.2
22.5

31.3
7.0

42.0
6.3

43.8
7.0

51.5
10.0

70.4
21.5

57.8
7.0

80.9
6.3

83.9
7.0

97.7
10.0

132.4
21.2

16
21.7
13.0

25.7
11.3

26.7
10.1

30.3
13.8

38.7
24.9

39.0
13.0

49.4
11.2

51.5
10.0

59.0
13.0

76.7
22.3

71.3
13.0

94.1
11.2

97.7
10.0

112.3
13.0

146.0
22.0

32 35.2
36.6
29.1

37.2
22.3

38.7
24.7

42.4
61.3
34.6

68.5
28.3

70.5
21.3

76.8
22.2

90.4
36.3

109.9
34.5

128.6
28.2

132.4
20.9

146.0
22.0

176.0
35.2

to the elliptic problem, we expect that the values of r̃ will be reflected in the convergence
behaviour of algorithm (4.1)–(4.5).

5.2.1. Balanced domain decomposition. Shown in Table 5.6 are average convergence itera-
tion counts for μ= 10−1. The average is taken over the first ten time steps. The large values
of r̃ are reflected in the algorithm’s convergence behaviour under domain decomposition.

For μ ≤ 10−2, the average convergence iteration counts are shown in Table 5.7. For
N = 26, r̃ exceeds r by a factor of approximately two. Thus the iteration count increases
slightly with decomposition. For N ≥ 27, r̃ exceeds r by a factor of at least four and,
for minimal interfacial subdomains, the increase in iteration count with decomposition
is more marked. For N ≥ 28 it is interesting to note that, in contrast to the results for
N = 27, the iteration count is independent of decomposition if maximal interfacial sub-
domains are employed. Nevertheless, the execution times of Table 5.7 demonstrate that
for almost all balanced domain decompositions, algorithm (4.1)–(4.5) executes more
quickly when minimal interfacial subdomains are used. Consider now the results for
N = 29. For μ= 10−2, the undecomposed monotone algorithm executes fastest while for
μ ≤ 10−3, there are certain decompositions under which algorithm (4.1)–(4.5) executes
more quickly than the undecomposed algorithm.

34 Monotone domain decomposition algorithms

Table 5.7. Average convergence iteration counts and total execution times for simulations of ten time
steps with balanced domain decompositions.

μ 10−2 10−3 10−4

N L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

Convergence iteration count

1 5.0
6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.2

5.0
6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.2

5.0
6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.2

4
6.0
5.0

6.7
5.0

7.0
5.0

7.0
5.0

7.0
5.2

6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.2

6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.2

27 8
6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.0

7.0
5.2

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.2

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.2

16
6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.0

7.0
5.2

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.2

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.2

32
6.0
5.2

7.0
5.2

7.0
5.2

7.0
5.2

7.0
6.0

6.0
5.2

6.0
5.2

7.0
5.2

7.0
5.2

7.0
6.0

6.0
5.2

6.0
5.2

7.0
5.2

7.0
5.2

7.0
6.0

1 5.0
8.0
5.0

8.0
5.0

8.0
5.0

8.0
5.0

5.0
6.0
5.0

7.6
5.0

7.6
5.0

7.7
5.0

5.0
6.0
5.0

7.6
5.0

7.6
5.0

7.7
5.0

4
8.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

6.0
5.0

6.0
5.0

7.6
5.0

7.6
5.0

8.0
5.0

6.0
5.0

6.0
5.0

7.6
5.0

7.6
5.0

7.7
5.0

28 8
8.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

7.6
5.0

7.6
5.0

9.0
5.0

9.0
5.0

9.0
5.0

7.6
5.0

7.6
5.0

9.0
5.0

9.0
5.0

9.0
5.0

16
8.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

7.6
5.0

7.6
5.0

9.0
5.0

9.0
5.0

9.0
5.0

7.6
5.0

7.6
5.0

9.0
5.0

9.0
5.0

9.0
5.0

32
8.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

7.7
5.0

7.7
5.0

9.0
5.0

9.0
5.0

9.0
5.0

7.7
5.0

7.7
5.0

9.0
5.0

9.0
5.0

9.0
5.0

1 5.0
13.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

5.0
7.0
5.0

11.0
5.0

11.0
5.0

11.0
5.0

5.0
6.0
5.0

11.0
5.0

11.0
5.0

11.0
5.0

4
13.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

7.0
5.0

7.0
5.0

11.0
5.0

11.0
5.0

11.0
5.0

6.0
5.0

6.0
5.0

11.0
5.0

11.0
5.0

11.0
5.0

29 8
13.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

16
13.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

32
13.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

Execution time (s)

1 1
1
1

1
1

1
1

1
1

1
1
1

1
1

1
1

1
1

1
1
1

1
1

1
1

1
1

4
1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

27 8
1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

16
1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

32
1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
2

1
2

1
2

I. Boglaev and M. Hardy 35

Table 5.7. Continued.

Execution time (s)

1 7
10
10

9
10

7
8

6
7

9
6
9

7
8

6
7

6
6

8
6
8

7
8

6
7

5
6

4
10
10

10
13

9
14

9
13

8
12

6
9

4
10

5
10

5
10

5
9

6
8

4
10

4
10

4
9

4
8

28 8
9

10
9

13
9

14
9

13
8

12
7
8

5
10

6
10

6
10

5
9

7
8

4
10

5
10

5
9

5
9

16
7
8

9
13

9
13

10
12

8
11

6
7

5
10

6
10

6
9

5
8

6
7

4
9

5
9

5
9

5
8

32
6
6

8
11

8
12

8
11

6
10

5
6

4
9

5
9

5
9

5
8

5
6

4
9

5
9

5
8

4
7

1 60
220
147

196
142

131
96

92
74

67
84

101
110
98

76
69

63
59

66
72

103
110
97

78
75

63
59

4
221
147

176
184

160
181

141
158

118
146

84
101

41
114

57
113

51
99

39
89

73
104

35
117

53
116

48
101

36
92

29 8
196
142

159
182

142
181

123
156

115
145

110
98

57
113

61
115

54
101

49
92

110
98

53
116

61
115

53
100

47
91

16
130
96

140
156

125
155

126
132

114
125

74
69

51
98

54
99

53
86

49
79

75
69

47
101

53
99

52
86

46
78

32
91
74

116
143

115
145

113
123

97
109

62
58

38
89

47
93

48
79

44
72

62
58

35
94

46
92

46
78

40
71

5.2.2. Unbalanced domain decomposition. Average convergence iteration counts for un-
balanced domain decomposition are shown in Table 5.8. For μ ≤ 10−3, r̃ is sufficiently
close to r and the convergence is independent of M and L. The corresponding execution
times are shown in Table 5.8. As with the elliptic problem, for μ ≤ 10−3 the algorithm
executes more quickly when the domain decomposition is unbalanced.

5.2.3. The nature of the convergence. For all experiments of this paper, on each time step
tk, Theorem 4.1 holds true to within machine accuracy. That is, each mesh function of the
sequence {V (n)(P, tk)} is a lower solution with respect to V(tk−1) and the convergence of
{V (n)(P, tk)} is monotonic at each mesh point P ∈ ωh. In Figure 5.2 we show the bound-
ary layer profile at four different times. At t = 0.6 the boundary layer has developed a
parabolic profile. (The steady state for this problem is reached at approximately t = 12,
beyond our considered range.)

5.3. Discussion. We draw the following conclusions with regard to each of the monotone
domain decomposition algorithms (3.5)–(3.10) and (4.1)–(4.5).

(i) For all values of μ and N , and all domain decompositions, the convergence to the
exact solution of the nonlinear difference scheme is monotonic.

(ii) The convergence iteration count reflects the corresponding convergence param-
eter q̃ or r̃ from (3.44) or (4.13), respectively.

(iii) When the decomposed convergence parameter q̃ (or r̃) is sufficiently close to
the undecomposed convergence parameter q (or r), the convergence rate is in-
dependent of M and L. This is observed for μ ≤ 10−3 with unbalanced domain
decomposition.

36 Monotone domain decomposition algorithms

Table 5.8. Average convergence iteration counts and total execution times for simulations of ten time
steps with unbalanced domain decompositions.

μ 10−2 10−3 10−4

N L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

Convergence iteration count

1 5.0 6.0 6.0 6.0 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

4 6.0 6.0 6.0 6.0 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

27 8 6.0 6.0 6.0 6.0 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

16 6.0 6.0 6.0 6.0 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

32 7.0 7.0 7.0 7.0 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

1 5.0 8.0 8.0 8.0 8.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

4 8.0 9.0 9.0 9.0 9.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

28 8 8.0 9.0 9.0 9.0 9.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

16 8.0 9.0 9.0 9.0 9.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

32 8.0 9.0 9.0 9.2 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

1 5.0 13.0 13.0 13.0 13.3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

4 13.0 16.0 16.0 16.0 17.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

29 8 13.0 16.0 16.0 16.0 17.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

16 13.0 16.0 16.0 16.0 17.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

32 13.3 17.0 17.0 17.0 17.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

Execution time (s)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

27 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 7 10 9 8 7 9 5 5 5 5 9 6 5 5 5

4 10 10 9 9 8 5 4 4 4 4 5 4 4 4 4

28 8 9 9 9 9 8 5 4 4 4 4 5 4 4 4 4

16 8 9 9 8 8 5 4 4 4 4 5 4 4 4 4

32 7 8 8 8 8 5 4 4 4 4 5 4 4 4 4

1 60 221 198 158 145 67 61 56 53 51 67 61 57 53 51

4 221 178 162 150 150 61 30 29 28 29 61 31 29 28 28

29 8 197 162 149 141 141 60 28 28 26 27 56 29 28 27 27

16 158 150 140 131 129 52 28 26 26 26 52 28 27 26 26

32 144 149 140 129 116 50 28 26 26 26 50 28 27 26 26

I. Boglaev and M. Hardy 37

t = 0.2
t = 0.4

t = 0.6
t = 1

0 0.005 0.01 0.015 0.02

Distance from (0, 0) along the line y = x

0

0.2

0.4

0.6

0.8

1

1.2

V
(n

)

Figure 5.2. The boundary layer profile as a function of time for the problem with μ= 10−3 and N =
512. The domain decomposition is balanced with M = 8, L= 8 and minimal interfacial subdomains.

(iv) For μ≤ 10−3, the convergence iteration count is uniform with respect to μ.
(v) For μ ≤ 10−3, there are certain domain decompositions under which the algo-

rithm executes more quickly than the undecomposed algorithm.
(vi) For μ≤ 10−3, the algorithm executes more quickly when the domain decomposi-

tion is unbalanced rather than balanced.

References

[1] I. Boglaev, A numerical method for a quasilinear singular perturbation problem of elliptic type,
USSR Computational Mathematics and Mathematical Physics 28 (1988), 492–502.

[2] , Numerical solution of a quasilinear parabolic equation with a boundary layer, USSR
Computational Mathematics and Mathematical Physics 30 (1990), no. 3, 55–63.

[3] , Monotone iterative algorithms for a nonlinear singularly perturbed parabolic problem,
Journal of Computational and Applied Mathematics 172 (2004), no. 2, 313–335.

[4] , On monotone iterative methods for a nonlinear singularly perturbed reaction-diffusion
problem, Journal of Computational and Applied Mathematics 162 (2004), no. 2, 445–466.

[5] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasilinear Equations
of Parabolic Type, Translations of Mathematical Monographs, vol. 23, Izdat. “Nauka”, Moscow,
1968.

[6] O. A. Ladyženskaja and N. N. Ural’ceva, Linear and Quasi-Linear Elliptic Equations, Academic
Press, New York, 1968.

[7] J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturba-
tion Problems, World Scientific, New Jersey, 1996.

[8] C. V. Pao, Monotone iterative methods for finite difference system of reaction-diffusion equations,
Numerische Mathematik 46 (1985), no. 4, 571–586.

[9] , Finite difference reaction diffusion equations with nonlinear boundary conditions, Nu-
merical Methods for Partial Differential Equations. An International Journal 11 (1995), no. 4,
355–374.

38 Monotone domain decomposition algorithms

[10] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving non-
symmetric linear systems, SIAM Journal on Scientific and Statistical Computing 7 (1986), no. 3,
856–869.

[11] A. A. Samarskii, The Theory of Difference Schemes, Monographs and Textbooks in Pure and
Applied Mathematics, vol. 240, Marcel Dekker, New York, 2001.

Igor Boglaev: Institute of Fundamental Sciences, Massey University, Private Bag 11-222,
Palmerston North, New Zealand
E-mail address: i.boglaev@massey.ac.nz

Matthew Hardy: Institute of Fundamental Sciences, Massey University, Private Bag 11-222,
Palmerston North, New Zealand
E-mail address: m.p.hardy@massey.ac.nz

mailto:i.boglaev@massey.ac.nz
mailto:m.p.hardy@massey.ac.nz

