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Received 10 January 2006; Revised 7 March 2006; Accepted 17 March 2006

We present criteria of Hille-Nehari-type for the linear dynamic equation (r(t)yΔ)Δ +
p(t)yσ = 0, that is, the criteria in terms of the limit behavior of (

∫ t
a 1/r(s)Δs)

∫∞
t p(s)Δs

as t→∞. As a particular important case, we get that there is a (sharp) critical constant in
those criteria which belongs to the interval [0,1/4], and its value depends on the grain-
iness μ and the coefficient r. Also we offer some applications, for example, criteria for
strong (non-) oscillation and Kneser-type criteria, comparison with existing results (our
theorems turn out to be new even in the discrete case as well as in many other situations),
and comments with examples.

Copyright © 2006 Pavel Řehák. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the linear dynamic equation

(
r(t)yΔ

)Δ
+ p(t)yσ = 0, (1.1)

where r(t) > 0 and p(t) are rd-continuous functions defined on a time-scale interval
[a,∞], a ∈ T, and a time scale T is assumed to be unbounded from above. As a special
case of (1.1), when T=R, we get the well-studied Sturm-Liouville differential equation

(
r
(
t
)
y′
)′

+ p
(
t
)
y = 0, (1.2)

with continuous coefficients r(t) > 0 and p(t). There is very extensive literature concern-
ing qualitative theory of (1.2), where large and important part is comprised by oscilla-
tion theory originated in [25] by Sturm in 1836. See, for example, Hartman [11], Reid
[24], and Swanson [26] for some survey works. Many effective conditions that guar-
antee oscillation or nonoscillation of (1.2) have been established. The following Hille-
Nehari criteria, see, for example, Nehari [18], Swanson [26], Willett [27], belong to the
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2 Hille-Nehari theorems on time scales

most famous ones: if liminf t→∞(
∫ t
a 1/r(s)ds)

∫∞
t p(s)ds > 1/4, then (1.2) is oscillatory; if

limsupt→∞(
∫ t
a 1/r(s)ds)

∫∞
t p(s) ds < 1/4, then (1.2) is nonoscillatory. In these criteria we

assume that
∫∞
a 1/r(s)ds=∞ and

∫∞
t p(s)ds≥ 0 ( �≡ 0) for large t, in particular,

∫∞
a p(s)ds

converges. Various techniques have been used to prove Hille-Nehari theorems with
sundry additional conditions, like those related to the sign of p(t). The study of a discrete
counterpart to (1.2), namely, the difference equation Δ(r(t)Δy(t)) + p(t)y(t + 1) = 0,
which is nothing but (1.1) with T= Z, has also a long history. The discrete Hille-Nehari
criteria, however with r(t) ≡ 1 or with some additional assumptions on r(t), may be
found, for example, in [7, 8, 14, 16, 17, 19]. Very early after the concept of time scales
was introduced, equations of type (1.1) have started to be studied, see Erbe and Hilger
[9]. Among others, some effort has been devoted to extensions of Hille-Nehari criteria
and other related topics to time scales, like Kneser’s criteria and oscillatory properties of
Euler’s equation, see Bohner and Saker [4], Bohner and Ünal [5], Erbe et al. [10], Hilscher
[13], and Řehák [22, 23]. The results in quoted papers which are related to our subject are
interesting and valuable (the claims come as consequences of various techniques and they
may serve as a good inspiration) but the problem is that they contain restrictions that dis-
able examination of many remaining important cases. Those additive conditions mainly
concern two following facts: constants on the right-hand sides that may be improved or
strict requirements to the choice of time scales.

What we offer in our present paper is the result that enables to handle with a wide
class of new situations that could have not been examined before; it is new even in
general discrete case. Moreover, we describe how the constants on the right-hand sides
of Hille-Nehari-type criteria depend on time scales. As a special case, when the limit
M := limt→∞μ(t)/(r(t)(

∫ t
a 1/r(s)Δs)) exists, we get that the above mentioned (sharp) con-

stant 1/4 is replaced by the (sharp) constant γ(M) = limx→M(
√
x+ 1 + 1)−2, we use the

word “sharp” since such a constant forms a “sharp borderline” between oscillation and
nonoscillation area. This value, which belongs to the interval [0,1/4] and is the same
for both sufficient condition for oscillation and nonoscillation, will be called the critical
constant. Our new result leads to many interesting conclusions: for example, the critical
constant is equal to 1/4 in all situations where M = 0; the critical constant in the discrete
case, when r(t) �≡ 1, may be different from 1/4; if μ(t)= (q− 1)t with q > 1 and r(t)≡ 1,
then M = q− 1 and γ(q− 1)= (

√
q+ 1)−2 ∈ (0,1/4); or even the critical constant may be

equal to 0, this happens when M =∞. Finally note that the proof of the main results is
based on the so-called function sequence technique which exploits the Riccati technique,
and the transformation of dependent variable.

The paper is organized as follows. In Section 2 we recall some important concepts
and state preliminary results that are crucial to prove the main results. Generalized Hille-
Nehari theorems are presented in Section 3. Both cases are examined,

∫∞
a 1/r(s)Δs =∞

and
∫∞
a 1/r(s)Δs <∞. Section 4 is the most extensive. To be more precise, there we discuss

the concept of critical constant and oscillation constant. Further we apply the main result
to obtain criteria for strong (non-) oscillation. Then we discuss conditionally oscillatory
equations. We also examine Euler-type and generalized Euler-type equations with show-
ing how they may be used to derive Kneser’s and Hille-Nehari theorems. Section 4 also
contains examples from h-calculus and q-calculus. Finally we make a comparison with
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existing results from the papers that have already been mentioned in the first part of this
introductory section.

2. Important concepts and preliminary results

We assume that the reader is familiar with the notion of time scales. Thus note just that T,

σ , f σ , μ, f Δ, and
∫ b
a f Δ(s)Δs stand for time scale, forward jump operator, f ◦ σ , graininess,

delta derivative of f , and delta integral of f from a to b, respectively. See [12], which is
the initiating paper of the time-scale theory written by Hilger, and the monographs [2, 3]
by Bohner and Peterson containing a lot of information on time-scale calculus.

We will proceed with some essentials of oscillation theory of (1.1). First note that we
are interested only in nontrivial solutions of (1.1). We say that a solution y of (1.1) has
a generalized zero at t in case y(t) = 0. If μ(t) > 0, then we say that y has a generalized
zero in (t,σ(t)) in case y(t)yσ(t) < 0. A nontrivial solution y of (1.1) is called oscillatory
if it has infinitely many generalized zeros; note that the uniqueness of IVP excludes the
existence of a cluster point which is less than ∞. Otherwise it is said to be nonoscillatory.
In view of the fact that the Sturm-type separation theorem extends to (1.1) (see, e.g.,
[20]), we have the following equivalence: one solution of (1.1) is oscillatory if and only
if every solution of (1.1) is oscillatory. Hence we may speak about oscillation or nonoscil-
lation of (1.1). Recall that the principal statements, like the Sturmian theory (Reid-type
roundabout theorem, Sturm-type separation, and comparison theorems) for (1.1), can
be established under the mere assumption r(t) �= 0 and the basic concepts, especially gen-
eralized zero, have to be adjusted, see, for example, [1] or [20]. However, our approach
requires the positivity of r(t); (1.1) is viewed as a perturbation of the nonoscillatory equa-
tion (r(t)yΔ)Δ = 0. Note that we do not require the positivity of p(t) even though many
approaches in special cases need this assumption.

Next we recall the Sturm-type comparison theorem for (1.1).

Theorem 2.1 [20]. Let r̃(t) and p̃(t) be subject to the same conditions as r(t) and p(t),
respectively. If r̃(t)≤ r(t), p̃(t)≥ p(t) for large t, and (1.1) is oscillatory, then the equation
(r̃(t)xΔ)Δ + p̃(t)xσ = 0 is oscillatory.

In the above theorem, the comparison of the coefficients is pointwise. In the following
Hille-Wintner-type theorem, we compare the coefficients “on average.”

Theorem 2.2 [10, 23]. Let
∫∞
a 1/r(s)Δs =∞. Assume that 0 ≤ ∫∞t p(s)Δs ≤ ∫∞t p̃(s)Δs for

large t (in particular, these integrals converge and are eventually nontrivial). If (r(t)xΔ)Δ +
p̃(t)xσ = 0 is nonoscillatory, then (1.1) is nonoscillatory.

The next lemma, called the function sequence technique, plays a crucial role in prov-
ing the main results. Its proof, as well as that of the previous theorem, is based on the
equivalence between nonoscillation of (1.1) and solvability of the Riccati-type integral
inequality w(t)≥ ∫∞t p(s)Δs+

∫∞
t w2(s)/(r(s) +μ(s)w(s))Δs.

Lemma 2.3 [23]. Assume that
∫∞
a 1/r(s)Δs=∞ and

∫∞
t p(s)Δs≥ 0 ( �≡ 0) for large t. Define

the function sequence {ϕk(t)} by

ϕ0(t)=
∫∞

t
p(s)Δs, ϕk(t)= ϕ0(t) +

∫∞

t

ϕ2
k−1(s)

r(s) +μ(s)ϕk−1(s)
Δs, k = 1,2, . . . . (2.1)
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Then (1.1) is nonoscillatory if and only if there exists t0 ∈ [a,∞) such that limk→∞ϕk(t) =
ϕ(t) for t ≥ t0, that is, the sequence {ϕk(t)} is well defined and pointwise convergent.

The following lemma will be useful in the case when
∫∞
a 1/r(s)Δs converges.

Lemma 2.4 [10]. Assume that h is an rd-continuously delta differentiable function with
h(t) �= 0. Then y = hu transforms (1.1) into the equation (r̃(t)uΔ)Δ + p̃(t)uσ = 0 with r̃ =
rhhσ and p̃ = hσ[(rhΔ)Δ + phσ]. This transformation preserves oscillatory properties.

We conclude this section with oscillatory criterion which may apply in the case when
the value of liminf t→∞(

∫ t
a 1/r(s)Δs)

∫∞
t p(s)Δs is less than the critical constant. We empha-

size that the constant in the next theorem, in contrast to that in Theorem 3.1, does not
depend on time scales.

Theorem 2.5 [23]. Assume that
∫∞
a 1/r(s)Δs =∞ and

∫∞
a p(s)Δs converges with p(t) ≥ 0

for large t. If limsupt→∞(
∫ t
a 1/r(s)Δs)

∫∞
t p(s)Δs > 1, then (1.1) is oscillatory. The following

improvement of the criterion is possible: the integral
∫∞
t p(s)Δs can be replaced by ϕk(t) and

inequality has to hold for some k ∈N∪{0}.

3. Main results

In this section we prove the main results: Hille-Nehari-type criteria for (1.1). First we
recall that

∫∞
a 1/r(s)Δs =∞= ∫∞a p(s)Δs implies (1.1) to be oscillatory, see, for example,

[20] for a time-scale extension of the well-known Leighton-Wintner-type criterion. Thus
it is reasonable to assume that

∫∞
a p(s)Δs is convergent.

Theorem 3.1. Let

∫∞

a

1
r(s)

Δs=∞. (3.1)

Assume that

∫∞

t
p(s)Δs≥ 0 and nontrivial for large t. (3.2)

Denote

M∗ := liminf
t→∞

μ(t)

r(t)
∫ t
a 1/r(s)Δs

, M∗ := limsup
t→∞

μ(t)

r(t)
∫ t
a 1/r(s)Δs

,

γ(x) := lim
t→x

1
(√

t+ 1 + 1
)2 , �(t) :=

(∫ t

a

1
r(s)

Δs

)∫∞

t
p(s)Δs.

(3.3)

If

liminf
t→∞ �(t) > γ

(
M∗

)
, (3.4)



Pavel Řehák 5

then (1.1) is oscillatory. If

limsup
t→∞

�(t) < γ
(
M∗), (3.5)

then (1.1) is nonoscillatory.

Proof. Oscillatory part. We will apply Lemma 2.3 and use its notation. Denote R(t) :=
∫ t
a 1/r(s)Δs. Condition (3.4) can be rewritten as ϕ0(t)≥ γ0/R(t) for large t, say t ≥ t0 > a,

where γ0 > γ(M∗). Then, since x �→ x2/(y + zx) is increasing for x > 0, y > 0, z > 0, using
the equalities (1/R(t))Δ =−1/(r(t)R(t)Rσ(t)) and

Rσ(t)
R(t)

= R(t) +
∫ σ(t)
t 1/r(s)Δs
R(t)

= 1 +
μ(t)

r(t)R(t)
(3.6)

we have

ϕ1(t)= ϕ0(t) +
∫∞

t

ϕ2
0(s)

r(s) +μ(s)ϕ0(s)
Δs≥ γ0

R(t)
+
∫∞

t

γ2
0/R

2(s)
r(s) + γ0μ(s)/R(s)

Δs

= γ0

R(t)
+ γ2

0

∫∞

t

1
r(s)R(s)Rσ(s)

· Rσ(s)
R(s)

· 1
1 + γ0μ(s)/

(
r(s)R(s)

)Δs

= γ0

R(t)
+ γ2

0

∫∞

t

1
r(s)R(s)Rσ(s)

· r(s)R(s) +μ(s)
r(s)R(s) + γ0μ(s)

Δs≥ γ1

R(t)
,

(3.7)

where

γ1 = γ0 + γ2
0Γ∗

(
t0,γ0

)
with Γ∗

(
t0,γ0

)
:= inf

t≥t0
r(t)R(t) +μ(t)
r(t)R(t) + γ0μ(t)

. (3.8)

Similarly, by induction, ϕk(t)≥ γk/R(t), where

γk = γ0 + γ2
k−1Γ∗

(
t0,γk−1

)
, k = 1,2, . . . . (3.9)

Observe that the function x �→ x2Γ∗(t0,x) is increasing for x > 0. Hence, γk < γk+1, k =
0,1,2, . . . . We claim that limk→∞ γk =∞. If not, let limk→∞ γk = L <∞. Then from (3.9) we
have

L= γ0 +L2Γ∗
(
t0,L

)
. (3.10)

First assume thatM :=M∗ =M∗. Letting t0 to∞ in Γ∗ we obtain Γ∗(∞,L)= (1 +M)/(1 +
ML) when M ∈ [0,∞) and Γ∗(∞,L)= 1/L when M =∞. Next we show that (3.10) after
this limiting process has no real positive solution. Indeed, if M =∞, then (3.10) yields
L= γ0 +L, but we have γ0 > 0. If M ∈ [0,∞), then (3.10) yields L2 + (γ0M− 1)L+ γ0 = 0,
and a simple analysis shows that this equation is not solvable in the set of positive reals
since γ0 > 1/(

√
M + 1 + 1)2; in particular, the discriminant for this equation attains zero

when γ0 = 1/(
√
M + 1 + 1)2 and the function x �→ L2 + (xM− 1)L+ x is increasing. Hence

we must have γk →∞ as k →∞, which implies ϕk(t) →∞ as k →∞ for t ≥ t0, where
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t0 is sufficiently large. Consequently, (1.1) is oscillatory by Lemma 2.3. Now we exam-
ine the case when M∗ <M∗. We show that (3.10) taken as t0 →∞ with γ0 > γ(M∗) has
no real positive solution. Observe that limt0→∞Γ∗(t0,L)= limx→M̄(1 + x)/(1 + xL), where
M̄ ∈ [M∗,M∗]. Using the arguments as above, the equation L= γ̄0 +L2 limt0→∞Γ∗(t0,L)
has no real positive solution provided γ̄0 > γ(M̄). Since x �→ γ(x) is decreasing for x > 0,
we have γ0 > γ(M∗) ≥ γ(M̄), and so neither does the last equation with γ0 instead of γ̄0

have a real solution. The rest of the proof is the same as in the case M∗ =M∗. Note that
M∗ in (3.4) is the best value which can be attained when proceeding as in this proof since
the function x �→ (1 + x)/(1 +Lx) is nondecreasing when L∈ [0,1], and a closer examina-
tion shows that we are interested just in such L’s.

Nonoscillatory part. First note that the case M∗ =∞ (i.e., γ(M∗) = 0) may obviously
be excluded, in view of the assumptions of the theorem. Condition (3.5) can be rewritten
as ϕ0(t) ≤ δ0/R(t) for large t, say t ≥ t0 > a, where 0 < δ0 < γ(M∗). Similarly as in the
previous part of this proof, we get

ϕk(t)≤ δk
R(t)

, t ≥ t0 > a, (3.11)

where

δk = δ0 + δ2
k−1Γ

∗(t0,δk−1
)
, Γ∗

(
t0,δk−1

)
:= sup

t≥t0

r(t)R(t) +μ(t)
r(t)R(t) + δk−1μ(t)

, (3.12)

k = 1,2, . . . . Clearly, {δk} is increasing. We claim that it converges. First assume that M :=
M∗ =M∗. To show the convergence, consider the fixed point problem x = g(x), where
g(x) = λ+ x2(1 +M)/(1 +Mx) with a positive constant λ, and the “perturbed” problem
x = g̃(x), where g̃(x) = λ + x2Γ∗(t0,x). First consider x = g(x), which can be rewritten
as x = x2 + λMx + λ =: g1(x); note that we are particularly interested in the first quad-
rant. The fixed points of this problem will be found by means of the iteration scheme
xk = g1(xk−1), k = 1,2, . . . . If λ= 1/(

√
M + 1 + 1)2, then the graph of g1 is a parabola which

has a unique minimum at x =−M/[2(
√
M + 1 + 1)2] and touches the line y = x at (x, y)=

(1/(
√
M + 1 + 1),1/(

√
M + 1 + 1)). Therefore, if we choose x0 = λ= 1/(

√
M + 1 + 1)2, then

we see that the approximating sequence {xk} for the problem x = g1(x), that is, satis-
fying the relation xk = g1(xk−1) is strictly increasing and converges to 1/(

√
M + 1 + 1).

Clearly, if 0 < y0 = λ < 1/(
√
M + 1 + 1)2, then the approximating sequence {yk} for the

same problem that is satisfying yk = g1(yk−1) is increasing as well and permits yk < xk <
1/(
√
M + 1 + 1); therefore, {yk} converges. Thus we have solved the fixed point problem

x = g1(x), and consequently, x = g(x). Now we take into account that limt0→∞Γ∗(t0,x)=
(1 +M)/(1 +Mx). Hence the function g̃ in the perturbed problem can be made as close
to g as we need (locally, on the interval under consideration) provided t0 is sufficiently
large. This closeness of g to g̃ along with the inequality δ0 < γ(M) lead to the fact that the
sequence {δk} for the original problem (3.12) converges for t0 large. Thus {ϕk(t)} con-
verges by (3.11), and so (1.1) is nonoscillatory by Lemma 2.3. The case when M∗ <M∗

can be treated similarly, using ideas from the last part of the proof of oscillation. �

If there exists a limit of the expression in (3.3), then we may establish the critical con-
stant (which is sharp) for the Hille-Nehari criteria.
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Corollary 3.2. Let M :=M∗ =M∗ in Theorem 3.1. Then γ(M) is the critical constant
(the constants on the right-hand sides of criteria (3.4) and (3.5) are equal). In particular,

γ(M)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
4

if M = 0,

1
(√

M + 1 + 1
)2 if 0 <M <∞,

0 if M =∞.

(3.13)

Using the transformation of dependent variable and Theorem 3.1 we can easily treat
the complementary case to (3.1), namely,

∫∞
a 1/r(s)Δs converges.

Theorem 3.3. Let
∫∞

a

1
r(s)

Δs <∞. (3.14)

Assume that

∫∞

t

(∫∞

σ(s)

1
r(τ)

Δτ

)2

p(s)Δs≥ 0 and nontrivial for large t. (3.15)

Denote

M̃∗ := liminf
t→∞

μ(t)

r(t)
∫∞
σ(t) 1/r(s)Δs

, M̃∗ := limsup
t→∞

μ(t)

r(t)
∫∞
σ(t) 1/r(s)Δs

,

�̃(t) :=
(∫∞

t

1
r(s)

Δs

)−1∫∞

t

(∫∞

σ(s)

1
r(τ)

Δτ

)2

p(s)Δs.

(3.16)

If

liminf
t→∞ �̃(t) > γ

(
M̃∗

)
, (3.17)

then (1.1) is oscillatory. If

limsup
t→∞

�̃(t) < γ
(
M̃∗), (3.18)

then (1.1) is nonoscillatory.

Proof. Denote R̃(t) := ∫∞t 1/r(s)Δs. First note that by Lemma 2.4, the transformation y =
hu with h(t) = R̃(t) transforms (1.1) into the equation (r̃(t)uΔ)Δ + p̃(t)uσ = 0, where
r̃(t) = R̃(t)R̃σ(t)r(t) and p̃(t) = (R̃σ(t))2p(t). Since (1/R̃(t))Δ = 1/r̃(t), we get that∫∞
a 1/r̃(s)Δs̃ = ∞. Further we obtain that the limit behavior (as t → ∞) of μ(t)/

(r̃(t)
∫ t
a 1/r̃(s)Δs) is the same as that of μ(t)/(r(t)R̃σ(t)), and the limit behavior (as t→∞)

of (
∫ t
a 1/r̃(s)Δs)

∫∞
t p̃(s)Δs is the same as that of �̃(t). Applying now Theorem 3.1 and us-

ing the fact that oscillatory properties of transformed equation are preserved, we get the
statement. �
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Similarly as for Theorem 3.1, there is a corollary of Theorem 3.3 where the condition
M̃∗ = M̃∗ leads to the existence of a sharp critical constant.

4. Consequences, comparisons, and examples

(i) Critical and oscillation constants. As already said in introduction, in the continuous
case it is well known that if liminf t→∞�R(t) > 1/4, where

�R(t) :=
(∫ t

a

1
r(s)

ds

)∫∞

t
p(s)ds, (4.1)

then (1.2) is oscillatory, and the constant 1/4 is the best possible constant: it cannot be
lowered since limsupt→∞�R(t) < 1/4 implies nonoscillation of (1.2). Note that the lat-
ter condition is sufficient for nonoscillation provided

∫∞
t p(s)ds≥ 0 for large t. If there is

no such sign condition on p(t), then we need to assume that liminf t→∞�R(t) >−3/4, see,
for example, [6]. On the other hand, oscillation is still possible even when
liminf t→∞�R(t) < 1/4, see Theorem 2.5 and [6]. The constant on the right-hand sides
of the above Hille-Nehari criteria (but also of other ones that are of a similar type, like
Kneser’s one, see (iv)) is called a critical constant; in particular, it is the same for both
oscillation and nonoscillation, and equals 1/4. Sometimes this constant is said to be an
oscillation constant. However, we prefer to use the former terminology (and its exten-
sion to the time-scale case) since the second one has sometimes another meaning, see
the next item devoted to conditionally oscillatory equations. As we will see, there is a
connection between critical and oscillation constants: Hille-Nehari criteria involving the
critical constant can be used to derive the oscillation constant. Note that sometimes (this
particularly concerns various extensions, for example, higher-order, nonlinear, or dis-
crete cases) the constant on the right-hand side of oscillatory [nonoscillatory] criteria
(like that of Hille-Nehari-type) is called oscillation [nonoscillation] constant. In general,
one may not be completely successful in extending, and the oscillation constant in the
latter sense may be strictly greater than the nonoscillation one. Thus using the later ter-
minology in Theorem 3.1, γ(M∗) is oscillation constant and γ(M∗) is nonoscillation
constant. The above defined term “critical constant” reflects the fact that this constant
cannot be improved and forms a sharp border between oscillation and nonoscillation.
Note that the strict inequalitities in Hille-Nehari criteria cannot be replaced by non-
strict ones since no conclusion can be drawn if either liminf t→∞�(t) or limsupt→∞�(t)
equals the critical constant; both oscillation and nonoscillation may happen, as it has
already been shown in the continuous case, see, for example, [26]. Our result shows
that if liminf t→∞�(t) > 1/4, then (1.1) is oscillatory (no matter what time scale is, since
γ(x)≤ 1/4 for x ∈ [0,∞)∪{∞}). However, in addition, our theorem says that 1/4 is not
the best possible constant which is universal for all time scales (in particular, it may not
be critical at all). In fact, the constant depends on a time scale and also on the coeffi-
cient r; the cases happen where it is strictly less than 1/4. If (3.3) is satisfied, then the
critical constant is γ(M) ∈ [0,1/4]. Later we will present examples where γ(M) < 1/4.
We conclude this item with noting that oscillation of (1.1) is still possible even when
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liminf t→∞�(t) < γ(M). This follows from Theorem 2.5, and we emphasize that there is
no additional condition on a time scale in that theorem.

(ii) Strong and conditional oscillation. Consider the equation

(
r(t)yΔ

)Δ
+ λp(t)yσ = 0, (4.2)

where r(t) > 0, p(t) > 0, and λ is a real parameter. In the continuous case, the concept
of strong and conditional oscillation was introduced by Nehari [18]. We say that (4.2) is
conditionally oscillatory if there exists a constant 0 < λ0 <∞ such that (4.2) is oscillatory
for λ > λ0 and nonoscillatory for λ < λ0. The value λ0 is called the oscillation constant
of (4.2). Since this constant depends on the coefficients of the equation, we often speak
about the oscillation constant of the function p with respect to r. If (4.2) is oscillatory
(resp., nonoscillatory) for every λ > 0, then this equation is said to be strongly oscillatory
(resp., strongly nonoscillatory). Next we apply the results from the previous section to
derive necessary and sufficient condition for strong (non-) oscillation.

Theorem 4.1. Let (3.1) hold and
∫∞
a p(s)Δs converge with p(t)≥ 0 for large t. Assume that

M∗ <∞. Then (4.2) is strongly oscillatory if and only if limsupt→∞�(t) = ∞, and it is
strongly nonoscillatory if and only if limt→∞�(t)= 0.

Proof. Denote that R(t) := ∫ ta 1/r(s)Δs. If limsupt→∞�(t) =∞ does hold, then we have
limsupt→∞R(t)

∫∞
t λp(s)Δs > 1 for every λ > 0, and so (4.2) is oscillatory for every λ > 0

by Theorem 2.5. Conversely, if (4.2) is strongly oscillatory, then

limsup
t→∞

R(t)
∫∞

t
λp(s)Δs≥ γ

(
M∗) > 0 (4.3)

for every λ > 0 by Theorem 3.1. This implies limsupt→∞�(t)=∞; otherwise, (4.3) would
be violated for sufficiently small λ. The proof of the part concerning strong nonoscillation
is based on similar arguments. The details are left to the reader. �

One could ask whether the condition M∗ <∞ in the last theorem may be dropped.
In general, the answer is no. Realize that strong oscillation (strong nonoscillation) of
(4.2) is nothing but λ0 = 0 [λ0 =∞], where λ0 is the oscillation constant. Now assume
that M∗ =∞=M∗ and limt→∞�(t) = L ∈ (0,∞) exists. Then limt→∞R(t)

∫∞
t λp(s)Δs=

λL > 0 for every λ > 0. This implies strong oscillation of (4.2), however the condition
limsupt→∞R(t)

∫∞
t λp(s)Δs=∞ does not hold. A particular example of such strongly os-

cillatory equation will be given later. Similar criteria as those in Theorem 4.1 can obvi-
ously be established also in the case when

∫∞
a 1/r(s)Δs <∞. Then they involve the ex-

pression �̃(t). For the proof we use Theorem 3.3 and the counterpart—in the sense of∫∞
a 1/r(s)Δs <∞—to Theorem 2.5 which can be derived by means of Lemma 2.4.

(iii) Euler-type dynamic equation. Consider the equation

yΔΔ +
λ

tσ(t)
yσ = 0, (4.4)
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where λ is a positive parameter. Note that we are interested only in positive λ’s since for
λ= 0, (4.4) is readily explicitly solvable, it is nonoscillatory, and thus for λ < 0 is nonoscil-
latory as well by the Sturm-type comparison theorem (Theorem 2.1). Equation (4.4) will
be called an Euler dynamic equation since for T = R it reduces to the well known Euler
differential equation y′′ + λt−2y = 0. Applying Theorem 3.1 we get that (4.4) is oscil-
latory provided λ > γ(M∗) and nonoscillatory provided λ < γ(M∗). Assume that M :=
M∗ =M∗. Then M = limt→∞μ(t)/t, γ(M) is the critical constant, and λ0 = γ(M) is the
oscillation constant. Now if, for example, T = R or T = Z, then M = 0 and γ(M) = 1/4.
This matches what we know from the classical differential and difference equations case,
see, for example, [21, Section 8], [23, Example 2], and [28] for the discrete case. Note that
γ(M)= 1/4 for all time scales whose graininess μ(t) is asymptotically less than t; for exam-
ple, T= {n2 : n∈N0} (then μ(t)= 1 + 2

√
t). If we assume that T= qN0 := {qk : k ∈N0}

with q > 1, then (4.4) reduces to the Euler q-difference equation, μ(t) = (q− 1)t, and
M = q− 1 > 0. Hence the critical constant is γ(M)= 1/(

√
q+ 1)2 < 1/4. This matches the

result by Bohner and Ünal [5] who solved (4.4) explicitly on T = qN0 . Finally assume
that T= 2α

N0 := {2αk : k ∈N0} with α > 1. Then μ(t) = tα− t and so M =∞. Hence, the
critical constant is γ(M) = 0. This implies that (4.4) on 2α

N0 is oscillatory for all λ > 0.
Therefore, (4.4) is strongly oscillatory when T= 2α

N0 while it is conditionally oscillatory
in all previous cases.

(iv) Generalized Euler-type dynamic equation and Kneser-type criteria. Consider the so-
called generalized Euler dynamic equation

(
r(t)yΔ

)Δ
+

λ

r(t)R(t)Rσ(t)
yσ = 0, (4.5)

where λ is a positive parameter and R(t) := ∫ ta 1/r(s)Δs with r(t) > 0 and R(∞) = ∞.
First note that if r(t) ≡ 1, then (4.5) reduces to (4.4). In the continuous case, there is
no essential difference between (4.4) and (4.5) owing to the transformation of inde-
pendent variable t �→ R(t), and so it suffices to examine (4.4) only. However, in gen-
eral case such a transformation is not available, and so considering the case r(t) �= 0
brings new observations. According to Corollary 3.2, the critical constant is γ(M) pro-
vided M :=M∗ =M∗; for the associated oscillation constant we have λ0 = γ(M). Equa-
tions of type (4.5) may be very useful for comparison purposes: The Sturm-type compar-
ison theorem (Theorem 2.2), where (1.1) and (4.5) are compared, leads to the following
criteria.

(i) If liminf t→∞ r(t)R(t)Rσ(t)p(t) > λ0, then (1.1) is oscillatory.
(ii) If limsupt→∞ r(t)R(t)Rσ(t)p(t) < λ0, then (1.1) is nonoscillatory.

Since we know that λ0 = γ(M), we have derived Kneser-type criteria for (1.1), see, for ex-
ample, [26] for the continuous case. A slight modification gives the Kneser-type criteria in
the case when M∗ <M∗. We omit details. Now imagine for a moment that Theorem 3.1is
not at disposal but the oscillation constant λ0 in (4.5) is known. Applying the Hille-
Wintner-type comparison theorem (Theorem 2.2), where (1.1) and (4.5) are compared,
we obtain Hille-Nehari-type criteria. Thus we have another method of how to get Hille-
Nehari-type criteria. However, a disadvantage of this approach is that in a general case
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we do not know how to describe solutions of Euler-type equations, even when r(t) ≡ 1,
in such a way which would provide an exact information about critical constants. Similar
observations can be done also in the case when R̃(t) := ∫∞t 1/r(s)Δs converges. Then we
consider the equation

(
r(t)yΔ

)Δ
+

λ

r(t)
(
R̃σ(t)

)2 y
σ = 0, (4.6)

which has the oscillation constant λ0 = γ(M̃) provided M̃ := M̃∗ = M̃∗ by Theorem 3.3.
Kneser-type and Hille-Nehari-type criteria can be again derived by means of suitable
comparison theorems, the Sturm one and the modification of the Hille-Nehari one for
the case R̃(t) <∞ (see [10, Theorem 2.5]), respectively. Details are omitted.

(v) Example from h-calculus. Let h > 0. Recall that the calculi developed on the time scales
T= hZ := {hk : k ∈ Z} and the above- and below-mentioned T= qN0 are two important
types of quantum calculus, see [15]. These calculi are called h-calculus (or calculus of
finite differences) and q-calculus, respectively. Associated dynamic equations are called
h-difference equations (or, especially when h= 1, difference equations) and q-difference
equations, respectively. Consider the equation

(
yΔ

et

)Δ

+
λ

et
yσ = 0, (4.7)

where λ is a real constant and e is a base of the natural logarithm. We start with the contin-
uous case, that is, assume T=R. Applying Corollary 3.2, it is easy to see that for the oscil-
lation constant of (4.7) we have λ0 = γ(M)= 1/4. Moreover, y(t)=√et is a nonoscillatory
solution of (4.7) where λ= λ0. Now assume T= hZ. Then σ(t)= t+h and μ(t)≡ h. Since
(et)Δ = et(eh − 1)/h and (e−t)Δ = e−t(e−h − 1)/h, we have limt→∞�(t) = λh2eh/(eh − 1),
M = eh − 1, and γ(M) = 1/(

√
eh + 1)2. Applying Corollary 3.2, we find that the oscilla-

tion constant of (4.7) when T = hZ is λ0 = (
√
eh − 1)2/(h2eh). Moreover, y(t) = √et is a

nonoscillatory solution of (4.7) where λ= λ0. Note how the results resemble the continu-
ous counterparts as h→ 0. In particular, γ(M)→ 1/4 and λ0 → 1/4 as h→ 0. Thus we have
shown an example of difference equation where γ(M) < 1/4 which is not possible in the
continuous case. As far as we know, finding Hille-Nehari-type criteria with the (sharp)
critical constant when M > 0 has been an open problem even in the well-studied discrete
case (T = Z), and this problem is solved now. One of the reasons for that problem may
have been the absence of the above-mentioned transformation of the independent vari-
able when T �= R. Note that M > 0 may happen only when r(t) �≡ 1 in the case T = hZ.
For this case, even we may have M =∞, for example, when r(t)= 2−tt .

(vi) Examples from q-calculus. Assume that T = qN0 := {qk : k ∈ N0} with q > 1. Then
σ(t) = qt and μ(t) = (q− 1)t. We will compute the value of the critical constant γ for
two different coefficients r(t) and examine one q-difference equation, where p(t) is not
eventually of one sign. Let r(t)= tα, α∈R. First suppose α < 1. Then, with t = qn, n∈N0,
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we have

lim
t→∞

μ(t)/r(t)
∫ t

1 1/r(s)Δs
= lim

n→∞
(q− 1)qn/

(
qn
)α

∑n−1
j=0 μ

(
q j
)
/r
(
q j
) = lim

n→∞
(q− 1)

(
q1−α)n

∑n−1
j=0 (q− 1)

(
q1−α) j

= lim
n→∞

q(1−α)n
(
q1−α− 1

)

q(1−α)n
= q1−α− 1,

(4.8)

where L’Hôpital’s rule is used. The same result is obtained when α = 1 since (ln t)Δ =
lnq/((q− 1)t). If α > 1, then we proceed with the arguments similar to those in the case
α < 1, and we get limt→∞ (μ(t)/r(t))/

∫∞
σ(t) 1/r(s)Δs= qα−1− 1. Hence, for the critical con-

stant associated to r(t) = tα we have γ = (
√
q|α−1| + 1)−2 for α ∈ R with the note that

∫∞
1 1/r(s)Δs =∞ if α ≤ 1 and

∫∞
1 1/r(s)Δs <∞ if α > 1. Observe how in the above results

the “limits” as q→ 1 correspond to the continuous counterparts. As another example,
assume that r(t) = βlogq(1/t), β > 0. Then, with t = qn, n ∈ N0, we have r(t) = β−n. Ap-
plying again similar arguments as above, we obtain: if qβ ≥ 1, then

∫∞
1 1/r(s)Δs=∞ and

γ = (
√
qβ+ 1)−2; if 0 < qβ < 1, then

∫∞
1 1/r(s)Δs <∞ and γ = (

√
1/(qβ) + 1)−2. Consider-

ing now one of the above two r(t)’s and taking the relevant p(t) as in (4.5) or (4.6), we
get nice examples of conditionally oscillatory q-difference equations with known oscilla-
tion constant that can be further used for comparison purposes. The details are left to the
reader. As the last example of a q-difference equation, consider (1.1) where

p(t)= λ1

t logq t logq(qt)
+
λ2(−1)logq t

t logq t
, r(t)= t, (4.9)

λ1, λ2 being nonnegative constants. Observe that p(t) is not eventually of one sign if λ2 �=
0. We have ((q− 1)logq t)

Δ = 1/r(t). Hence, R(t) := ∫ t1 1/r(s)Δs = (q− 1)logq t and M =
limt→∞ 1/ logq t = 0. Further, it holds ((q− 1)/ logq t)

Δ =−1/(t logq t logq(qt)). Therefore,

∫∞

t
p(s)Δs= λ1(q− 1)

logq t
+ λ2(q− 1)(−1)logq t

(
1

logq t
− 1

logq(qt)
+

1
logq(q2t)

−···
)

.

(4.10)

Now it is easy to see that (q − 1)2(λ1 − λ2) ≤ �(t) ≤ (q − 1)2(λ1 + λ2). According to
Corollary 3.2, we get the following: if λ1 − λ2 > (q− 1)−2/4, then (1.1) is oscillatory; if
λ1 + λ2 < (q− 1)−2/4 and λ1 ≥ λ2, then (1.1) is nonoscillatory. Since M = 0, in view of
[20, Theorem 7], in the latter case, λ1 ≥ λ2 can be improved as λ1− λ2 ≥−3(q− 1)−2/4.
If λ2 = 0, then there is the oscillation constant λ0 = (q− 1)−2/4. Note that

r(t)R(t)Rσ(t)p(t)= (q− 1)λ1 + (q− 1)λ2(−1)logq t logq(qt). (4.11)

Since limsup [liminf] of r(t)R(t)Rσ(t)p(t) as t→∞ is equal to ∞ [−∞], we see that the
Kneser-type criteria derived in (iv) are not suitable to be applied here while the Hille-
Nehari ones give the result.
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(vii) Comparisons. Here we compare the results of this paper with related ones which
have been achieved in previous works (in particular, with the criteria of a similar type or
with examinations of Euler-type equations). We have already seen that in the cases T=R
or T= Z our results reduce to the classical ones, see [7, 8, 14, 16–19, 21, 26, 28], with the
note that our results from Section 3 are new in the discrete case when r(t) �≡ 1. In [4], it
was shown that (4.4) is oscillatory if λ > 1/4 on any time scale. From the above, we can
see that this result follows from our ones, but the constant 1/4 may be improved. Using
a Wirtinger-type inequality, in [13] it was shown that (4.4) is nonoscillatory provided
λ < 1/Ψ, where

Ψ= limsup
T→∞

⎧
⎨

⎩

(

sup
t≥T

σ(t)
t

)1/2

+

[(

sup
t≥T

μ(t)
t

)

+

(

sup
t≥T

σ(t)
t

)]1/2
⎫
⎬

⎭

2

(4.12)

(on any time scale). If, for example, T= qN0 , then Ψ= (
√
q+

√
2q− 1)2. Comparing now

1/Ψ with the (critical) constant γ(q− 1) obtained from Corollary 3.2, we get γ(q− 1)=
(
√
q+ 1)−2 > (

√
q+

√
2q− 1)−2 = 1/Ψ, and we see that the constant 1/Ψ can be improved.

Using a Hardy-type inequality, in [22] it was shown (even for a more general, namely,
half-linear case) that the Euler-type equation

yΔΔ +
λ̄

(σ(t))2 y
σ = 0 (4.13)

is nonoscillatory provided λ̄≤ 1/4 (on any time scale). Let T= qN0 . Rewriting (4.13) into
the form (4.4) we get yΔΔ + (λ̄/q)/(tσ(t))yσ = 0. Now Corollary 3.2 says that (4.13) is
nonoscillatory provided λ̄ < q/(

√
q + 1)2. Since 1/4 < q/(

√
q + 1)2 we have again an im-

provement. Note that in [22] the constant in the Hardy inequality which then corre-
sponds to 1/4 in the Euler equation is shown to be the best possible constant when
μ(t)/t → 0 as t →∞. Our observations now reveal justifiability of the additional condi-
tion μ(t)/t→ 0 which is nothing but M = 0. As we have already pointed out, in [5] de-
voted to linear q-difference equations, (4.4) (when T= qN0 ) was explicitly solved, and the
oscillation constant λ0 = (

√
q+ 1)−2 was derived which coincides with what we get from

Corollary 3.2. In addition, (4.4) with λ= λ0 was shown to have a nonoscillatory solution.
The obtained results are used to establish Kneser-type criteria. Finally note that in [23] it
was shown (even for half-linear case) that 1/4 is the critical constant in Hille-Nehari-type
criteria for (1.1) provided limt→∞μ(t)/(r(t)

∫ t
a 1/r(s)Δs) = 0 which again coincides with

our results. The case when the limit is greater than zero or it does not exist is not dis-
cussed there, and for half-linear case it remains as challenging problem, in view of how
the linear case is shown to work in the presented paper.
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Boston, Massachusetts, 2003.

[4] M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales,
The Rocky Mountain Journal of Mathematics 34 (2004), no. 4, 1239–1254.
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