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We construct invariant foliations of the extended state space for nonautonomous semilin-
ear dynamic equations on measure chains (time scales). These equations allow a specific
parameter dependence which is the key to obtain perturbation results necessary for ap-
plications to an analytical discretization theory of ODEs. Using these invariant foliations
we deduce a version of the Pliss reduction principle.
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1. Introduction

We begin with the motivation for this paper which has its origin in the classical theory
of discrete dynamical systems. For this purpose, consider a C1-mapping f :U →� from
an open neighborhood U ⊆� of 0 into a Banach space �, which leaves the origin fixed
( f (0)= 0). It is a well-established result and can be traced back to the work of Perron in
the early 1930s (to be more precise, it is due to his student Li, cf. [11]) that the origin is
an asymptotically stable solution of the autonomous difference equation

xk+1 = f
(
xk
)
, (1.1)

if the spectrum Σ(D f (0)) is contained in the open unit circle of the complex plane. Sim-
ilar results also hold for continuous dynamical systems (replace the open unit disc by
the negative half-plane) or nonautonomous equations (replace the assumption on the
spectrum by uniform asymptotic stability of the linearization). In a time scales setting of
dynamic equations these questions are addressed in [4] (for scalar equations), [9] (equa-
tions in Banach spaces), and easily follow from a localized version of Theorem 2.3(a)
below. Such considerations are usually summarized under the phrase principle of lin-
earized stability, since the stability properties of the linear part dominate the nonlinear
equation locally.
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Significantly more interesting is the generalized situation when Σ(D f (0)) allows a de-
composition into disjoint spectral sets Σs, Σc, where Σs is contained in the open unit disc,
but Σc lies on its boundary. Then nonlinear effects enter the game and the center manifold
theorem applies (cf., e.g., [8]): there exists a locally invariant submanifold R0 ⊆� which
is graph of a C1-mapping r0 over an open neighborhood of 0 in �(P), where P ∈�(�)
is the spectral projector associated with Σc. Beyond that, the stability properties of the
trivial solution to (1.1) are fully determined by those of

pk+1 = P f
(
pk + r0

(
pk
))
. (1.2)

The advantage we obtained from this is that (1.2) is an equation in the lower-dimensional
subspace �(P)⊆�. This is known as the reduction principle. From the immense literature
we only cite [13]—the pathbreaking paper in the framework of finite-dimensional ODEs.

The paper at hand has two primary goals.
(1) It can be considered as a continuation of our earlier works [10, 15]. In [15] we

studied the robustness of invariant fiber bundles under parameter variation and obtained
quantitative estimates. Such results were successfully applied to study the behavior of
invariant manifolds under numerical discretization using one-step schemes (cf. [10]).
Here we prepare future results in this direction on the behavior of invariant foliations
under varying parameters. As a matter of course, this gives the present paper a somehow
technical appearance, at least until Section 4.

(2) We want to derive a version of the above reduction principle for nonautonomous
dynamic equations on measure chains. To obtain this in a geometrically transparent fash-
ion, invariant foliations appear to be the appropriate vehicle.

In Section 2 we establish our general set-up and present an earlier result on the exis-
tence of invariant fiber bundles, which canonically generalize stable and unstable mani-
folds of dynamical systems to nonautonomous equations. The actual invariant foliations
are constructed in Section 3 via pseudostable and pseudounstable fibers through specific
points in the extended state space. Each such fiber contains all initial values of solutions
approaching the invariant fiber bundles exponentially; actually they are asymptotically
equivalent to a solution on the invariant fiber bundles. This behavior can be summarized
under the notion of an asymptotic phase. While the above global results are stated in a—
from an applied point of view—very restrictive setting of semilinear equations, the final
Section 4 covers a larger class of dynamic equations. For them we deduce a reduction
principle and apply this technique to a specific example.

Let us close this introductory remark by pointing out that our Proposition 3.2 is not
just a “unification” of the corresponding results obtained in, for example, [2] for ODEs
and [1] for difference equations. In fact, we had to include a particular parameter de-
pendence allowing a perturbation theory needed to study the behavior of ODEs under
numerical approximation. Beyond that, invariant foliations are the key ingredient to ob-
tain topological linearization results for dynamic equations (cf. [7]).

Throughout this paper, Banach spaces � are all real (F= R) or complex (F= C) and
their norm is denoted by ‖ · ‖. For the open ball in � with center 0 and radius r > 0 we
write Br . �(�) is the Banach space of linear bounded endomorphisms, I� the identity on
�, and �(T) := T� the range of an operator T ∈�(�).
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If a mapping f : �→� between metric spaces � and � satisfies a Lipschitz condition,
then its smallest Lipschitz constant is denoted by Lip f . Frequently, f : �×�→ � also
depends on a parameter from some set �, and we write

Lip1 f := sup
p∈�

Lip f (·, p). (1.3)

In case � has a metric structure, we define Lip2 f accordingly, and proceed along these
lines for mappings depending on more than two variables.

To keep this work self-contained, we introduce some basic terminology from the calcu-
lus on measure chains (cf. [3, 6]). In all subsequent considerations we deal with a measure
chain (T,�,μ), that is, a conditionally complete totally ordered set (T,�) (see [6, Axiom
2]) with growth calibration μ : T2 →R (see [6, Axiom 3]). The most intuitive and relevant
examples of measure chains are time scales, where T is a canonically ordered closed subset
of the reals and μ is given by μ(t,s)= t− s. Continuing, σ : T→ T, σ(t) := inf{s∈ T : t ≺
s} defines the forward jump operator and μ∗ : T→R, μ∗(t) := μ(σ(t), t) the graininess. For
τ ∈ T we abbreviate T+

τ := {s∈ T : τ � s} and T−τ := {s∈ T : s� τ}.
Since we are interested in an asymptotic theory, we impose the following standing

hypothesis.

Hypothesis 1.1. μ(T,τ)⊆R, τ ∈ T, is unbounded above, and μ∗ is bounded.

�rd(T,�) denotes the set of rd-continuous functions from T to � (cf. [6, Section 4.1]).
Growth rates are functions a ∈ �rd(T,R) with −1 < inf t∈Tμ∗(t)a(t), supt∈Tμ

∗(t)a(t) <
∞. Moreover, for a,b ∈ �rd(T,R) we introduce the relations 
b − a� := inf t∈T(b(t)−
a(t)),

a� b :⇐⇒ 0 < 
b− a�, a� b :⇐⇒ 0≤ 
b− a�, (1.4)

and the set of positively regressive functions

�+
rd�(T,R) :=

{
a∈�rd(T,R) : a is a growth rate and 1 +μ∗(t)a(t) > 0 for t ∈ T

}
.

(1.5)

This class is technically appropriate to describe exponential growth and for a∈�+
rd�(T,

R) the exponential function on T is denoted by ea(t,s)∈R, s, t ∈ T (cf. [6, Theorem 7.3]).
Measure chain integrals of mappings φ : T→ � are always understood in Lebesgue’s

sense and denoted by
∫ t
τ φ(s)Δs for τ, t ∈ T, provided they exist (cf. [12]).

We finally introduce the so-called quasiboundedness which is a convenient notion due
to Bernd Aulbach describing exponentially growing functions.

Definition 1.2. For c ∈�+
rd�(T,R) and τ ∈ T, φ∈�rd(T,�) is

(a) c+-quasibounded, if ‖φ‖+
τ,c := supt∈T+

τ
‖φ(t)‖ec(τ, t) <∞,

(b) c−-quasibounded, if ‖φ‖−τ,c := supt∈T−τ ‖φ(t)‖ec(τ, t) <∞,
(c) c±-quasibounded, if supt∈T‖φ(t)‖ec(τ, t) <∞.

�+
τ,c and �−

τ,c denote the sets of c+- and c−-quasibounded functions on T+
τ and T−τ , re-

spectively.
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Remark 1.3. (1) In order to provide some intuition for these abstract notions, in case
c � 0 a c+-quasibounded function is exponentially decaying as t →∞. Accordingly, for
0 � c a c−-quasibounded function decays exponentially as t → −∞ (suppose T is un-
bounded below). Classical boundedness corresponds to the situation of 0+- (or 0−-) qua-
siboundedness.

(2) Obviously �+
τ,c and �−

τ,c are nonempty and by [6, Theorem 4.1(iii)], it is immediate
that for any c ∈ �+

rd�(T,R), τ ∈ T, the sets �+
τ,c and �−

τ,c are Banach spaces with the
norms ‖ · ‖+

τ,c and ‖ · ‖−τ,c, respectively.

2. Preliminaries on semilinear equations

Given A∈�rd(T,�(�)), a linear dynamic equation is of the form

xΔ =A(t)x; (2.1)

here the transition operator ΦA(t,s)∈�(�), s� t, is the solution of the operator-valued
initial value problem XΔ =A(t)X , X(s)= I� in �(�).

A projection-valued mapping P : T→�(�) is called an invariant projector of (2.1) if

P(t)ΦA(t,s)=ΦA(t,s)P(s) ∀s, t ∈ T, s� t (2.2)

holds, and finally an invariant projector P is denoted as regular if

I� +μ∗(t)A(t)
∣
∣

�(P(t)) : �
(
P(t)

)−→�
(
P
(
σ(t)

))
is bijective ∀t ∈ T. (2.3)

Then the restriction Φ̄A(t,s) := ΦA(t,s)|�(P(s)) : �(P(s)) →�(P(t)), s � t, is a well de-
fined isomorphism, and we write Φ̄A(s, t) for its inverse (cf. [14, Lemma 2.1.8, page 85]).
These preparations allow to include noninvertible systems (2.4) into our investigation.

For the mentioned applications in discretization theory it is crucial to deal with equa-
tions admitting a certain dependence on parameters θ ∈ F (see [10]). More precisely, we
consider nonlinear perturbations of (2.1) given by

xΔ =A(t)x+F1(t,x) + θF2(t,x) (2.4)

with mappings Fi : T×�→� such that Fi is rd-continuous (see [6, Section 5.1]) for i=
1,2. Further assumptions on F1, F2 can be found below. A solution of (2.4) is a function ν
satisfying the identity νΔ(t)≡ A(t)ν(t) +F1(t,ν(t)) + θF2(t,ν(t)) on aT-interval. Provided
it exists, ϕ denotes the general solution of (2.4), that is, ϕ(·;τ,x0;θ) solves (2.4) on T+

τ

and satisfies the initial condition ϕ(τ;τ,x0;θ)= x0 for τ ∈ T, x0 ∈�. It fulfills the cocycle
property

ϕ
(
t;s,ϕ

(
s;τ,x0;θ

)
;θ
)= ϕ(t;τ,x0;θ

) ∀τ,s, t ∈ T, τ � s� t, x0 ∈�. (2.5)

We define the dynamic equation (2.4) to be regressive on a set Θ⊆ F if

I� +μ∗(t)
[
A(t) +F1(t,·) + θF2(t,·)] : �−→� ∀θ ∈Θ (2.6)
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is a homeomorphism. Then the general solution ϕ(t;τ,x0;θ) exists for all t,τ ∈ T and the
cocycle property (2.5) holds for arbitrary t,s,τ ∈ T.

From now on we assume the following hypothesis.

Hypothesis 2.1. Let K1,K2 ≥ 1 be reals and a,b ∈�+
rd�(T,R) growth rates with a� b.

(i) Exponential dichotomy: there exists a regular invariant projector P : T→�(�) of
(2.1) such that the estimates

∥
∥ΦA(t,s)Q(s)

∥
∥≤ K1ea(t,s),

∥
∥Φ̄A(s, t)P(t)

∥
∥≤ K2eb(s, t) ∀t � s (2.7)

are satisfied, with the complementary projector Q(t) := I�−P(t).
(ii) Lipschitz perturbation: we abbreviate Hθ := F1 + θF2, for i= 1,2 the identities Fi(t,

0)≡ 0 on T hold and the mappings Fi satisfy the global Lipschitz estimates

Li := sup
t∈T

LipFi(t,·) <∞. (2.8)

Moreover, we require that

L1 <

b− a�

4
(
K1 +K2

) ; (2.9)

choose a fixed δ ∈ (2(K1 +K2)L1,
b− a�/2) and abbreviate Θ := {θ ∈ F : L2|θ| ≤ L1},
Γ := {c ∈�+

rd�(T,R) : a+ δ � c� b− δ}, Γ := {c ∈�+
rd�(T,R) : a+ δ � c� b− δ}.

Remark 2.2. (1) The existence of suitable values for δ yields from (2.9): since we have δ <

b− a�/2, there exist functions c ∈ Γ and, in addition, a+ δ, b− δ are positively regressive.
Furthermore, for later use we have the inequality

L(θ) := K1 +K2

δ

(
L1 + |θ|L2

)
< 1 ∀θ ∈Θ, (2.10)

and define the constant �(θ) := (K1K2/(K1 +K2))/(L(θ)/(1−L(θ))).
(2) Under Hypothesis 2.1 the solutions ϕ(·;τ,x0;θ) exist and are unique on T+

τ for
arbitrary τ ∈ T, x0 ∈�, θ ∈ F (cf. [14, Satz 1.2.17(a), page 38]) and depend continuously
on the data (t,τ,x0,θ).

The next notion is helpful to understand the geometrical behavior of solutions for
(2.4): any (nonempty) subset S(θ) of the extended state space T×� is called a nonau-
tonomous set with τ-fibers:

S(θ)τ := {x ∈� : (τ,x)∈ S(θ)
} ∀τ ∈ T. (2.11)

We denote S(θ) as forward invariant if for any pair (τ,x0) ∈ S(θ) one has the inclusion
(t,ϕ(t;τ,x0;θ)) ∈ S(θ) for all t ∈ T+

τ . Presuming each fiber S(θ)τ is a submanifold of �,
we speak of a fiber bundle. Our invariant fiber bundles generalize invariant manifolds to
nonautonomous equations, and consist of all initial value pairs leading to exponentially
decaying solutions; admittedly in the generalized sense of quasiboundedness.
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Theorem 2.3 (invariant fiber bundles). Assume that Hypothesis 2.1 is fulfilled. Then for
all θ ∈Θ the following statements are true.

(a) The pseudostable fiber bundle of (2.4), given by

S(θ) := {(τ,x0
)∈ T×� : ϕ

(·;τ,x0;θ
)∈�+

τ,c ∀c ∈ Γ
}

, (2.12)

is an invariant fiber bundle of (2.4) possessing the representation

S(θ)= {(τ,x0 + s
(
τ,x0;θ

))∈ T×� : τ ∈ T, x0 ∈�
(
Q(τ)

)}
(2.13)

with a continuous mapping s : T×�×Θ→� satisfying

s
(
τ,x0;θ

)= s(τ,Q(τ)x0;θ
)∈�

(
P(τ)

) ∀τ ∈ T, x0 ∈�, (2.14)

and the invariance equation

P(t)ϕ
(
t;τ,x0;θ

)= s(t,Q(t)ϕ
(
t;τ,x0;θ

)
;θ
) ∀(τ,x0

)∈ S(θ), τ � t. (2.15)

Furthermore, for all τ ∈ T, x0 ∈� it holds that
(a1) s(τ,0;θ)≡ 0,
(a2) s : T×�×Θ→� satisfies the Lipschitz estimates

Lips(τ,·;θ)≤ �(θ), Lips
(
τ,x0;·)≤ δK1K2

(
K1 +K2

)
L2

[
δ− 2

(
K1 +K2

)
L1
]2

∥
∥x0

∥
∥. (2.16)

(b) For T unbounded below, the pseudounstable fiber bundle of (2.4), given by

R(θ) :=
{
(
τ,x0

)∈ T×� :
there exists a solution ν : T−→� of (2.4)

with ν(τ)= x0 and ν∈�−
τ,c for all c ∈ Γ

}

(2.17)

is an invariant fiber bundle of (2.4) possessing the representation

R(θ)= {(τ, y0 + r
(
τ, y0;θ

))∈� : τ ∈ T, y0 ∈�
(
P(τ)

)}
(2.18)

with a continuous mapping r : T×�×Θ→� satisfying

r
(
τ,x0;θ

)= r(τ,P(τ)x0;θ
)∈�

(
Q(τ)

) ∀τ ∈ T, x0 ∈�, (2.19)

and the invariance equation

Q(t)ϕ
(
t;τ,x0;θ

)= r(t,P(t)ϕ
(
t;τ,x0;θ

)
;θ
) ∀(τ,x0

)∈ R(θ), τ � t. (2.20)

Furthermore, for all τ ∈ T, x0 ∈� it holds that
(b1) r(τ,0;θ)≡ 0,
(b2) r : T×�×Θ→� satisfies the Lipschitz estimates

Lipr(τ,·;θ)≤ �(θ), Lipr
(
τ,x0;·)≤ δK1K2

(
K1 +K2

)
L2

[
δ− 2

(
K1 +K2

)
L1
]2

∥
∥x0

∥
∥. (2.21)
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(c) For T unbounded below, and if L1 < δ/2(K1 +K2 + max{K1,K2}), then only the zero
solution of (2.4) is contained in S(θ) and R(θ), that is,

S(θ)∩R(θ)= T×{0}, (2.22)

and the zero solution is the only c±-quasibounded solution of (2.4) for any c ∈ Γ.

Proof of Theorem 2.3. See [15, Theorem 3.3]. �

3. Invariant foliations

In Section 2 and Theorem 2.3 we were able to characterize the set of solutions (or tra-
jectories) for (2.4) which approaches the zero solution at an exponential rate. Now we
drop the restriction to the trivial solution and investigate attractivity properties of ar-
bitrary solutions. For that purpose, we begin with an abstract lemma carrying most of
the technical load for the following proofs. Due to the fact that the general solution ϕ of
(2.4) exists uniquely in forward time, the mapping Gθ : {(t,x,τ,x0)∈ T×�×T×� : τ ∈
T, t ∈ T+

τ , x,x0 ∈�} →�,

Gθ
(
t,x;τ,x0

)
:=Hθ

(
t,x+ϕ

(
t;τ,x0;θ

))−Hθ
(
t,ϕ
(
t;τ,x0;θ

))
(3.1)

is well defined under Hypothesis 2.1. Moreover, by Remark 2.2(2), Gθ is continuous in
(τ,x0), Gθ(t,0;τ,x0)≡ 0, and Lip2Gθ ≤ L1 + |θ|L2.

Lemma 3.1. Assume that Hypothesis 2.1 is fulfilled and choose τ ∈ T fixed. Then for growth
rates c ∈�+

rd�(T,R), a� c� b, the operator 	τ : �+
τ,c×�(Q(τ))×�×Θ→�+

τ,c,

	τ
(
ψ; y0,x0,θ

)
:=ΦA(·,τ)

[
y0−Q(τ)x0

]
+
∫ ·

τ
ΦA
(·,σ(s)

)
Q
(
σ(s)

)
Gθ
(
s,ψ(s);τ,x0

)
Δs

−
∫∞

·
Φ̄A
(·,σ(s)

)
P
(
σ(s)

)
Gθ
(
s,ψ(s);τ,x0

)
Δs

(3.2)

is well defined and has, for fixed y0 ∈�(Q(τ)), x0 ∈�, θ ∈Θ the following properties.
(a) There exists a z0 ∈� such that ψ := ϕ(·;τ,z0;θ)−ϕ(·;τ,x0;θ)∈�+

τ,c and satisfies

Q(τ)ψ(τ)= y0−Q(τ)x0 (3.3)

if and only if ψ ∈�+
τ,c solves the fixed point problem

ψ =	τ
(
ψ; y0,x0,θ

)
. (3.4)

Moreover, in case c ∈ Γ,
(b) 	τ(·; y0,x0,θ) : �+

τ,c →�+
τ,c is a uniform contraction with Lipschitz constant

Lip	τ
(·; y0,x0,θ

)≤ L(θ) < 1, (3.5)
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(c) the unique fixed point ψ∗τ (y0,x0,θ) ∈ �+
τ,c of 	τ(·; y0,x0,θ) does not depend on the

growth rate c ∈ Γ and the following estimates hold:

∥
∥P(τ)ψ∗τ

(
y0,x0,θ

)
(τ)
∥
∥≤ �(θ)

∥
∥y0− x0

∥
∥, (3.6)

LipP(τ)ψ∗τ
(·,x0,θ

)
(τ)≤ �(θ), (3.7)

(d) for c ∈ Γ the mapping ψ∗τ : �(Q(τ))×�×Θ→�+
τ,c is continuous.

Proof. Let τ ∈ T be fixed, and choose a growth rate c ∈ �+
rd�(T,R) with a� c � b. We

show the well definedness of the operator 	τ . Thereto, pick x0 ∈�, y0 ∈�(Q(τ)), θ ∈Θ
arbitrarily. For ψ, ψ̄ ∈�+

τ,c we obtain just as in the proof of [15, Lemma 3.2],

∥
∥	τ

(
ψ; y0,x0,θ

)
(t)−	τ

(
ψ̄; y0,x0,θ

)
(t)
∥
∥ec(τ, t)

≤
(

K1


c− a� +
K2


b− c�

)
δL(θ)
K1 +K2

‖ψ− ψ̄‖+
τ,c ∀t ∈ T+

τ .
(3.8)

Thus, to show that 	τ is well defined, we observe 	θ(0; y0,x0,θ)=ΦA(·,τ)[y0−Q(τ)x0]
from (3.2), whence

∥
∥	τ

(
ψ; y0,x0,θ

)
(t)
∥
∥ec(τ, t)

≤ ∥∥ΦA(t,τ)
[
y0−Q(τ)x0

]∥∥ec(τ, t) +
∥
∥	τ

(
ψ; y0,x0,θ

)−	τ
(
0; y0,x0,θ

)∥∥+
τ,c

(2.7)≤ K1
∥
∥y0− x0

∥
∥+

(
K1


c− a� +
K2


b− c�

)
δL(θ)
K1 +K2

‖ψ‖+
τ,c ∀t ∈ T+

τ ,

(3.9)

and taking the supremum over t ∈ T+
τ implies 	τ(ψ; y0,x0,θ)∈�+

τ,c.
(a) Let x0 ∈�, θ ∈Θ be arbitrary. We suppress the dependence on θ.
“If” part. Let y0 ∈�(Q(τ)) and assume there exists a z0 ∈� such that ψ = ϕ(·;τ,z0)−

ϕ(·;τ,x0) is c+-quasibounded andQ(τ)ψ(τ)= y0−Q(τ)x0. Then ψ is a c+-quasibounded
solution of the linear inhomogeneous equation xΔ = A(t)x +Gθ(t,ψ(t);τ,x0) and [14,
Satz 2.2.4(a), page 103] implies that ψ is a fixed point of 	τ(·; y0,x0).

“Only if” part. Conversely, assume ψ ∈ �+
τ,c satisfies (3.4) for some y0 ∈ �(Q(τ)),

x0 ∈�. Then define z0 := P(τ)[x0 +ψ(τ)] + y0 and set ν := ψ +ϕ(·;τ,x0). Hence,

ν(τ)= ψ(τ) + x0
(3.4)= P(τ)ψ(τ) +Q(τ)	τ

(
ψ; y0,x0

)
(τ) + x0

(3.2)= P(τ)ψ(τ) + y0−Q(τ)x0 + x0 = P(τ)
[
ψ(τ) + x0

]
+ y0 = z0,

(3.10)

and the difference ν also solves (2.4). Due to the uniqueness of forward solutions, this
gives us ν= ϕ(·;τ,z0), that is, ψ = ϕ(·;τ,z0)−ϕ(·;τ,x0). Finally, one has

Q(τ)ψ(τ)
(3.10)= Q(τ)

[
z0− x0

]=Q(τ)
[
y0− x0

]= y0−Q(τ)x0, (3.11)

and the equivalence in assertion (a) is established.
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From now on, let c ∈ Γ.
(b) Passing over to the least upper bound for t ∈ T+

τ in (3.8) yields the estimate (3.5)
and our choice of δ in Hypothesis 2.1(ii) guarantees L(θ) < 1 for θ ∈ Θ. Therefore, the
contraction mapping principle implies a unique fixed point ψ∗τ (y0,x0,θ)∈�+

τ,c of 	τ(·; y0,
x0,θ), which moreover satisfies

∥
∥ψ∗τ

(
y0,x0,θ

)∥∥+
τ,c ≤

K1

1−L(θ)

∥
∥y0− x0

∥
∥. (3.12)

(c) One proceeds as in [15, Lemma 3.2(c)] to show that ψ∗τ (y0,x0,θ) ∈ �+
τ,c is inde-

pendent of c ∈ Γ. To prove the Lipschitz estimate (3.7), we suppress the dependence on
the fixed parameters x0 ∈ �, θ ∈ Θ. To this end, consider y0, ȳ0 ∈�(Q(τ)) and corre-
sponding fixed points ψ∗τ (y0),ψ∗τ ( ȳ0) ∈ �+

τ,c of 	τ(·; y0) and 	τ(·; ȳ0), respectively. We
have

∥
∥ψ∗τ

(
y0
)−ψ∗τ

(
ȳ0
)∥∥+

τ,c

(3.4)≤ ∥
∥	τ

(
ψ∗τ
(
y0
)
; y0
)−	τ

(
ψ∗τ
(
ȳ0
)
; y0
)∥∥+

τ,c

+
∥
∥	τ

(
ψ∗τ
(
ȳ0
)
; y0
)−	τ

(
ψ∗τ
(
ȳ0
)
; ȳ0
)∥∥+

τ,c

(3.5)≤ L(θ)
∥
∥ψ∗τ

(
y0
)−ψ∗τ

(
ȳ0
)∥∥+

τ,c

+
∥
∥	τ

(
ψ∗τ
(
ȳ0
)
; y0
)−	τ

(
ψ∗τ
(
ȳ0
)
; ȳ0
)∥∥+

τ,c,

(3.13)

and thus,

∥
∥ψ∗τ

(
y0
)−ψ∗τ

(
ȳ0
)∥∥+

τ,c ≤
1

1−L(θ)

∥
∥	τ

(
ψ∗τ
(
ȳ0
)
; y0
)−	τ

(
ψ∗τ
(
ȳ0
)
; ȳ0
)∥∥+

τ,c

(3.2)= 1
1−L(θ)

sup
t∈T+

τ

∥
∥ΦA(t,τ)Q(τ)

[
y0− ȳ0

]∥∥ec(τ, t)

(2.7)≤ K1

1−L(θ)

∥
∥y0− ȳ0

∥
∥.

(3.14)

Moreover, directly from (3.2) and (3.4) we get the identity

P(·)ψ∗τ
(
y0
) (2.2)= −

∫∞

·
Φ̄A
(·,σ(s)

)
P
(
σ(s)

)
Gθ
(
s,ψ∗τ

(
y0
)
(s);τ,x0

)
Δs, (3.15)

and similar to the proof of (b) this yields

∥
∥P(·)[ψ∗τ

(
y0
)−ψ∗τ

(
ȳ0
)]∥∥+

τ,c ≤
K2


b− c�
δL(θ)
K1 +K2

∥
∥ψ∗τ

(
y0
)−ψ∗τ

(
ȳ0
)∥∥+

τ,c, (3.16)

with (3.14) this implies (3.7). The same arguments give (note Gθ(t,0;τ,x0)≡ 0)

∥
∥P(·)ψ∗τ

(
y0
)∥∥+

τ,c ≤
K2


b− c�
δL(θ)
K1 +K2

∥
∥ψ∗τ

(
y0
)∥∥+

τ,c, (3.17)

and together with (3.12) we get (3.6). Therefore we have established the assertion (c).
(d) This can be shown as in [15, Lemma 3.2(d)]. �
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Proposition 3.2 (invariant fibers). Assume that Hypothesis 2.1 is fulfilled. Then for all
τ ∈ T, x0 ∈�, θ ∈Θ the following hold.

(a) The pseudostable fiber through (τ,x0), given by

S+(x0,θ
)
τ := {z0 ∈� : ϕ

(·;τ,z0;θ
)−ϕ(·;τ,x0;θ

)∈�+
τ,c ∀c ∈ Γ

}
, (3.18)

is forward invariant with respect to (2.4), that is,

ϕ
(
t;τ,S+(x0,θ

)
τ ;θ
)⊆ S+(ϕ

(
t;τ,x0;θ

)
,θ
)
τ ∀t ∈ T+

τ , (3.19)

and possesses the representation

S+(x0,θ
)= {(τ, y0 + s+

(
τ, y0,x0;θ

))
: y0 ∈�

(
Q(τ)

)}
(3.20)

as graph of a continuous mapping s+ : T×�×�×Θ→� satisfying

s+
(
τ, y0,x0;θ

)= s+(τ,Q(τ)y0,x0;θ
)∈�

(
P(τ)

) ∀y0 ∈�. (3.21)

Furthermore, for all c ∈ Γ it holds that
(a1) s+ : T×�×�×Θ→� is linearly bounded:

∥
∥s+

(
τ, y0,x0;θ

)∥∥≤ ∥∥P(τ)x0
∥
∥+ �(θ)

∥
∥y0− x0

∥
∥ ∀y0 ∈�, (3.22)

(a2) s+(τ,·,x0;θ) is globally Lipschitzian with

Lip2 s
+(·,θ)≤ K1�(θ). (3.23)

(b) For T unbounded below and if (2.4) is regressive on Θ, then the pseudounstable fiber
through (τ,x0), given by

R−
(
x0,θ

)
τ := {z0 ∈� : ϕ

(·;τ,z0;θ
)−ϕ(·;τ,x0;θ

)∈�−
τ,c ∀c ∈ Γ

}
, (3.24)

is invariant with respect to (2.4), that is,

ϕ
(
t;τ,R−

(
x0,θ

)
τ ;θ
)= R−(ϕ(t;τ,x0;θ

)
,θ
)
τ ∀t ∈ T, (3.25)

and possesses the representation

R−
(
x0,θ

)= {(τ, y0 + r−
(
τ, y0,x0;θ

))
: y0 ∈�

(
P(τ)

)}
(3.26)

as graph of a continuous mapping r− : T×�×�×Θ→� satisfying

r+(τ, y0,x0;θ
)= r+(τ,P(τ)y0,x0;θ

)∈�
(
Q(τ)

) ∀y0 ∈�. (3.27)

Furthermore, for all c ∈ Γ it holds that
(b1) r− : T×�×�×Θ→� is linearly bounded:

∥
∥r−

(
τ, y0,x0;θ

)∥∥≤ ∥∥Q(τ)x0
∥
∥+ �(θ)

∥
∥y0− x0

∥
∥ ∀y0 ∈�, (3.28)
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(b2) r−(τ,·,x0;θ) is globally Lipschitzian with

Lip2 r
−(·,θ)≤ K2�(θ). (3.29)

Remark 3.3. It is not difficult to see that the pseudostable fibers S+(x0,θ)τ are the leaves
of a (forward) invariant foliation over each fiber R(θ)τ , that is, for each τ ∈ T we have

�=
⋃

x0∈R(θ)τ

S+(x0,θ
)
, S+(x1,θ

)∩ S+(x2,θ
)=∅ ∀x1,x2 ∈ R(θ)τ , x1 �= x2.

(3.30)

Similarly, the fibers R−(x0,θ) form a foliation over S(θ)τ .

Proof. Keep θ ∈Θ fixed and note that we suppress the dependence on θ to a large extent.
(a) Let x0, y0 ∈� and c ∈ Γ. We aim to show the invariance assertion (3.19) for S+(x0)τ .

Let x̂0 ∈ ϕ(t;τ,S+(x0)τ) for some t ∈ T+
τ , and by definition this is equivalent to the exis-

tence of a z0 ∈� such that x̂0 = ϕ(t;τ,z0) and ϕ(·;τ,z0)−ϕ(·;τ,x0)∈�+
τ,c. Therefore,

ϕ
(·; t, x̂0

)−ϕ(·; t,ϕ(t;τ,x0
))= ϕ(·; t,ϕ(t;τ,z0

))−ϕ(·; t,ϕ(t;τ,x0
))

(2.5)= ϕ
(·;τ,z0

)−ϕ(·;τ,x0
)
,

(3.31)

that is, x̂0 ∈ S+(ϕ(t;τ,x0))τ for all t ∈ T+
τ .

The above Lemma 3.1 implies that 	τ(·; y0,x0) : �+
τ,c → �+

τ,c possesses a unique fixed
point ψ∗τ (y0,x0) ∈ �+

τ,c. Furthermore, this fixed point is of the form ψ∗τ (y0,x0) = ϕ(·;τ,
z0)−ϕ(·;τ,x0) with some z0 ∈� (cf. Lemma 3.1(a)). We define

s+
(
τ, y0,x0;θ

)
:= P(τ)

[
x0 +ψ∗τ

(
Q(τ)y0,x0;θ

)
(τ)
]

(3.32)

and evidently have s+(τ, y0,x0)∈�(P(τ)). Let us verify the representation (3.20).
(⊆) Let z0 ∈ S+(x0)τ , that is, ψ = ϕ(·;τ,z0)− ϕ(·;τ,x0) ∈ �+

τ,c. Then Lemma 3.1 im-
plies

z0 = ψ(τ) + x0
(3.3)= P(τ)ψ(τ) + y0−Q(τ)x0 + x0 = P(τ)ψ(τ) + y0 +P(τ)x0, (3.33)

hence Q(τ)z0 = y0, and z0 = Q(τ)z0 + P(τ)[x0 +ψ∗τ (y0,x0)(τ)]. Thus, z0 is contained in
the graph of s+(τ,·,x0) over �(Q(τ)).

(⊇) On the other hand, let z0 ∈ � be of the form z0 = y0 + s+(τ, y0,x0) with y0 ∈
�(Q(τ)). Then (3.2) and (3.4) imply Q(τ)ψ∗τ (y0,x0)(τ)= y0−Q(τ)x0, which yields z0 =
y0 + P(τ)[x0 + ψ∗τ (y0,x0)(τ)] = x0 + ψ∗τ (y0,x0)(τ), and consequently ϕ(·;τ,z0)− ϕ(·;τ,
x0)∈�+

τ,c, that is, z0 ∈ S+(x0)τ . We postpone the continuity proof for s+ to the end, (a2)
below.

(a1) Referring to (3.32), the inequality (3.22) is an immediate consequence of
(3.6).

(a2) The estimate (3.23) is a consequence of (3.7) and (3.32). Addressing the con-
tinuity of s+, we know from Lemma 3.1(d) that ψ∗τ : �(Q(τ))×�×Θ→�+

τ,c

is continuous, and by definition in (3.32) we get the continuity of s+(τ,·). Fi-
nally, the strategy to show that s+ : T×�×�×Θ→� is continuous can be
adapted from [15, proof of Theorem 3.3].
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(b) Since (2.4) is assumed to be regressive, its general solution ϕ(t;τ,x0;θ) exists for
all t,τ ∈ T, as well as the mapping Gθ(t,x;τ,x0). Analogously to Lemma 3.1 we can show
that the operator 	̄τ : �−

τ,c×�(P(τ))×�×Θ→�−
τ,c,

	̄τ
(
ψ; y0,x0,θ

)
:= Φ̄A(·,τ)

[
y0−P(τ)x0

]−
∫ ·

τ
Φ̄A
(·,σ(s)

)
P
(
σ(s)

)
Gθ
(
s,ψ(s);τ,x0

)
Δs

+
∫ ·

−∞
ΦA
(·,σ(s)

)
Q
(
σ(s)

)
Gθ
(
s,ψ(s);τ,x0

)
Δs

(3.34)

possesses a unique fixed point ψ∗τ (y0,x0,θ)∈�−
τ,c. We define r−(τ, y0,x0;θ) :=Q(τ)[x0 +

ψ∗τ (P(τ)y0,x0;θ)(τ)] and proceed as in (a). �

In a more geometrically descriptive way, the subsequent result states that the invariant
fiber bundles from Theorem 2.3 are exponentially attractive in a generalized sense of qua-
siboundedness. In fact, this convergence is actually “in phase” with solutions on the fiber
bundles, and for that reason we speak of an asymptotic phase: for each solution ν of (2.4)
there exists a solution ν0 in the fiber bundles from Theorem 2.3 such that the difference
ν− ν0 is quasibounded.

Theorem 3.4 (asymptotic phase). Assume T is unbounded below, that Hypothesis 2.1 is
fulfilled with

L1 <

b− a�

4
(
K1 +K2 +K1K2 max

{
K1,K2

}) , (3.35)

and choose a fixed δ ∈ (2(K1 +K2 +K1K2 max{K1,K2})L1,
b− a�/2) and c ∈ Γ. Then for
all τ ∈ T, x0 ∈�, θ ∈Θ the following hold.

(a) The pseudounstable fiber bundle R(θ) from Theorem 2.3(b) possesses an asymptotic
(forward) phase, that is, there exists a retraction π+(τ,·;θ) : �→ R(θ)τ onto R(θ)τ with the
property

∥
∥ϕ
(
t;τ,x0;θ

)−ϕ(t;τ,π+(τ,x0;θ
)
;θ
)∥∥≤ K1

1−L(θ)
1 +

(
K2− 1

)
�(θ)

1− �(θ)

∥
∥x0

∥
∥ec(t,τ)

(3.36)

for all t ∈ T+
τ . Geometrically, π+(τ,x0,θ) is the unique intersection

R(θ)τ ∩ S+(x0,θ
)
τ =

{
π+(τ,x0;θ

)} ∀x0 ∈�, (3.37)

and one has that
(a1) π+ : T×�×Θ→� is continuous and linearly bounded:

∥
∥π+(τ,x0;θ

)∥∥≤ K2
1 + �(θ)
1− �(θ)

∥
∥x0

∥
∥ ∀x0 ∈�, (3.38)

(a2) ϕ(t;τ,·;θ)◦π+(τ,·;θ)= π+(t,·;θ)◦ϕ(t;τ,·;θ) for t ∈ T+
τ .



Christian Pötzsche 13

(b) In case (2.4) is regressive on Θ, the pseudostable fiber bundle S(θ) from Theorem
2.3(a) possesses an asymptotic (backward) phase, that is, there exists a retraction π−(τ,·;θ) :
�→ S(θ)τ onto S(θ)τ with the property

∥
∥ϕ
(
t;τ,x0;θ

)−ϕ(t;τ,π−
(
τ,x0;θ

)
;θ
)∥∥≤ K2

1−L(θ)
1 +

(
K1− 1

)
�(θ)

1− �(θ)

∥
∥x0

∥
∥ec(t,τ)

(3.39)

for all t ∈ T−τ . Geometrically, π−(τ,x0,θ) is the unique intersection

S(θ)τ ∩R−
(
x0,θ

)
τ =

{
π−
(
τ,x0;θ

)} ∀x0 ∈�, (3.40)

and one has that
(b1) π− : T×�×Θ→� is continuous and linearly bounded:

∥
∥π−

(
τ,x0;θ

)∥∥≤ K1
1 + �(θ)
1− �(θ)

∥
∥x0

∥
∥ ∀x0 ∈�, (3.41)

(b2) ϕ(t;τ,·;θ)◦π−(τ,·;θ)= π−(t,·;θ)◦ϕ(t;τ,·;θ) for t ∈ T−τ .

Remark 3.5. Note that condition (3.35) is stronger than the corresponding inequality
(2.9) necessary for Theorem 2.3 and Proposition 3.2. Consequently, all the above re-
sults remain applicable. The fact that (3.35) holds, implies max{K1,K2}�(θ) < 1 and thus
�(θ) < 1 for all θ ∈Θ. Using Theorem 2.3 and Proposition 3.2 gives us

Lip2r < 1, Lip2s
+ < 1,

Lip2s < 1, Lip2r
− < 1.

(3.42)

Proof. Let θ ∈Θ, c ∈ Γ, and fix τ ∈ T, x0 ∈�.
(a) We derive that there exists a unique z0 ∈ R(θ)τ ∩ S+(x0,θ)τ . For that purpose, note

that z0 ∈ R(θ)τ ∩ S+(x0,θ)τ if and only if z0 = P(τ)z0 + r(τ,P(τ)z0;θ) and z0 = Q(τ)z0 +
s+(τ,Q(τ)z0,x0;θ), which is equivalent to

Q(τ)z0 = r
(
τ,P

(
τ)z0;θ

)
, P(τ)z0 = s+

(
τ,Q(τ)z0,x0;θ

)
. (3.43)

Due to Theorem 2.3(b2) and Proposition 3.2(a2) we know from (3.42) that Lip2 r ·Lip2 s
+

< 1 and [5, (A.13), page 19] apply to (3.43). Thus, there exist two unique functions qτ :
�×Θ→�(Q(τ)), pτ : �×Θ→�(P(τ)) satisfying (3.43), that is,

qτ
(
x0,θ

)≡ r(τ, pτ
(
x0,θ

)
;θ
)
, pτ

(
x0,θ

)≡ s+(τ,qτ
(
x0,θ

)
,x0;θ

)
on �×Θ. (3.44)

Therefore, π+(τ,x0;θ) := pτ(x0;θ) + qτ(x0;θ) is the unique element in the intersection
R(θ)τ ∩ S+(x0,θ)τ . As preparation for later use we deduce two estimates. From (3.44) and
Theorem 2.3(b1) one has

∥
∥qτ

(
x0,θ

)∥∥ (2.21)≤ �(θ)
∥
∥pτ

(
x0,θ

)∥∥, (3.45)
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and also

∥
∥pτ

(
x0,θ

)∥∥ (3.22)≤ ∥
∥P(τ)x0

∥
∥+ �(θ)

∥
∥qτ

(
x0,θ

)− x0
∥
∥

(2.7)≤ K2
(
1 + �(θ)

)∥∥x0
∥
∥+ �(θ)2

∥
∥pτ

(
x0,θ

)∥∥,
(3.46)

which implies (note Remark 3.5)

∥
∥pτ

(
x0,θ

)∥∥≤ K2

1− �(θ)

∥
∥x0

∥
∥,

∥
∥qτ

(
x0,θ

)∥∥≤ K2�(θ)
1− �(θ)

∥
∥x0

∥
∥. (3.47)

Now we can show (3.36) and neglect the dependence on θ. Since by definition, π+(τ,x0)∈
S+(x0)τ for x0 ∈ �, it follows from Lemma 3.1(a) that ϕ(·;τ,x0)− ϕ(·;τ,π+(τ,x0)) =
ψ∗τ (Q(τ)π+(τ,x0),x0) and Lemma 3.1 together with (3.12) imply

∥
∥ϕ
(
t;τ,x0

)−ϕ(t;τ,π+(τ,x0
))∥∥+

τ,c ≤
K1

1−L(θ)

∥
∥qτ

(
x0
)− x0

∥
∥; (3.48)

so the triangle inequality implies (3.36). Theorem 2.3(b) and Proposition 3.2(a1), to-
gether with the uniform contraction principle (cf. [5, (A.4), page 18]) easily yield that
the functions pτ(x0,θ), qτ(x0,θ) are continuous in (τ,x0,θ); thus also π+ : T×�×Θ→�
shares this property.

(a1) It remains to derive the estimate (3.38), which is an easy consequence of the
above inequalities for ‖pτ(x0,θ)‖ and ‖qτ(x0,θ)‖, respectively.

(a2) The (forward) invariance of R(θ) and S+(x0,θ)τ implies

ϕ
(
t;τ,π+(τ,x0

)) (3.37)∈ ϕ
(
t;τ,R(θ)τ ∩ S+(x0

)
τ

)⊆ ϕ(t;τ,R(θ)τ
)∩ϕ(t;τ,S+(x0

)
τ

)

(3.19)⊆ R(θ)τ ∩ S+(ϕ
(
t;τ,x0

))
τ

(3.37)= {
π+(τ,ϕ

(
t;τ,x0

))} ∀t ∈ T+
τ .

(3.49)

(b) Since (2.4) is supposed to be regressive on Θ, we can construct pseudounstable
fibers R−(x0,θ)τ by virtue of Proposition 3.2(b). With an analogous argumentation one
shows that the intersection of S(θ)τ and R−(x0,θ)τ consists of a single point π−(τ,x0;θ)
and proceeds as in the proof of assertion (a).

This finishes our proof. �

Before we continue to the more applied part of this work, let us conclude and give a
geometrical interpretation of the results obtained until now (we keep θ ∈Θ fixed).

Under Hypothesis 2.1 the semilinear dynamic equation (2.4) possesses a pseudounsta-
ble fiber bundle R(θ)⊆ T×�. In case a� 0 and for sufficiently small Lipschitz constant
of the nonlinearityHθ , we can choose c� 0 and R(θ) contains all solutions to (2.4) which
exist in backward time and tend away from the origin at an exponential rate (they are
c−-quasibounded). The pseudounstable fiber bundle R(θ) is invariant, that is, for any
solution ν : T+

τ →� of (2.4) with ν(τ)∈ R(θ)τ one has ν(t)∈ R(θ)t for all t ∈ T+
τ , conse-

quently (cf. (2.20))

ν(t)≡ P(t)ν(t) + r
(
t,P(t)ν(t);θ

)
on T+

τ , (3.50)
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and the projection ν0(t) := P(t)ν(t) solves the reduced equation

pΔ = A(t)p+P(t)Hθ
(
t, p+ r(t, p;θ)

)
. (3.51)

This is a dynamic equation evolving in the lower-dimensional set {(t,x)∈T×� : t∈T,
x ∈�(P(t))}, that is, any solution ν0 of (3.51) satisfies ν0(t)∈�(P(t)) for all t ∈ T+

τ (see
(2.2)), provided ν0(τ)∈�(P(τ)).

Conversely, the solutions of (3.51) are related to the solutions of (2.4) starting on R(θ)
via the relation

ϕ
(
t;τ,ν0(τ) + r

(
τ,ν0(τ);θ

)
;θ
)≡ ν0(t) + r

(
t,ν0(t);θ

)
on T+

τ . (3.52)

Then Theorem 3.4(a) states that for every solution ν : T+
τ →� of (2.4) there exists a solu-

tion ν0 of (3.51) such that the difference ν−ϕ(·;τ,ν0(τ) + r(τ,ν0(τ);θ);θ) is exponentially
decaying as t→∞. The initial value for ν0 is given by ν0(τ)= P(τ)π+(τ,ν(τ);θ).

Dual considerations also hold for the pseudostable fiber bundle S(θ) and its asymp-
totic (backward) phase π−, if (2.4) is regressive.

4. Stability in critical cases

So far the present paper had an abstract and quite technical flavor since our main con-
cern was to provide general existence results for invariant foliations. Nevertheless, the
harvest of these considerations will be a version of the Pliss reduction principle from the
introduction for a quite general class of nonautonomous dynamic equations on measure
chains. Here we can restrict to the parameter-free situation and consider (2.4) for θ = 0,
that is, the system

xΔ =A(t)x+F1(t,x) (4.1)

to deduce the subsequent center manifold theorem.

Theorem 4.1 (reduction principle). LetK1,K2≥1 be reals, a,b ∈�+
rd�(T,R) growth rates

with a� b, a� 0, assume T is unbounded below, and let U ⊆� be an open neighborhood
of 0. Moreover, suppose the following.

(i) Exponential dichotomy: there exists a regular invariant projector P : T→ �(�) of
(2.1) such that the estimates

∥
∥ΦA(t,s)Q(s)

∥
∥≤ K1ea(t,s),

∥
∥Φ̄A(s, t)P(t)

∥
∥≤ K2eb(s, t) ∀t � s (4.2)

are satisfied, with the complementary projector Q(t) := I�−P(t).
(ii) o(x)-perturbation: the identity F1(t,0)≡ 0 on T holds and one has

lim
x,y→0

F1(t,x)−F1(t, y)
‖x− y‖ = 0 uniformly in t ∈ T. (4.3)

Then for all λ > 0 there exist a ρ > 0 and a continuous mapping r0 : T×Bρ → Bρλ ⊆� with

r0
(
τ,x0

)= r0
(
τ,P(τ)x0

)∈�
(
Q(τ)

) ∀τ ∈ T, x0 ∈ Bρ, (4.4)
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and the following properties:
(a) r0(τ,0)≡ 0 on T and Lip2 r0 ≤ λ,
(b) the graph R0 := {(τ, y0 + r0(τ, y0))∈ T×� : y ∈�(P(τ))∩Bρ} is locally invariant

with respect to (4.1), that is, for all (τ,x0)∈ R0 one has the inclusion (t,ϕ(t;τ,x0))∈
R as long as ϕ([τ, t]T;τ,x0)⊆ Bρ,

(c) if the zero solution of the reduced equation

pΔ = A(t)p+P(t)F1
(
t, p+ r0(t, p)

)
(4.5)

is stable (uniformly stable, asymptotically stable, uniformly asymptotically stable, or
unstable, resp.), then the zero solution of (4.1) is stable (uniformly stable, asymptoti-
cally stable, uniformly asymptotically stable, or unstable, resp.).

Proof. Let λ > 0 be given.
Thanks to our assumption (ii) we can choose a fixed ρ > 0 so small that beyond Bρ ⊆�

also the Lipschitz condition

∥
∥F1(t,x)−F1(t, x̄)

∥
∥≤ L1

2
‖x− x̄‖ ∀t ∈ T, x, x̄ ∈ Bρ (4.6)

holds with L1 :=min{min{
−a�,
b− a�}/8(K1 +K2 +K1K2 max{K1,K2}),λ((K1 +K2)/
K1K2)}. On the other hand, it is well known that the radial retraction χ : �→ B1,

χ(x) :=
⎧
⎪⎨

⎪⎩

x for ‖x‖ ≤ 1,
x

‖x‖ for ‖x‖ > 1,
(4.7)

is globally Lipschitz with Lipχ ≤ 2. Then the globally extended nonlinearity F̃1 : T×�→
�, F̃1(t,x) := F1(t,ρχ(x/ρ)) satisfies F̃1(t,x)≡ F1(t,x) on T×Bρ and Lip2 F̃1 ≤ L1. There-
fore, due to our choice of L1, Theorem 2.3(b) guarantees that the extended system

xΔ =A(t)x+ F̃1(t,x) (4.8)

possesses a (global) pseudounstable fiber bundle R̃ ⊆ T×� given as graph of a contin-
uous mapping r̃ : T×�→ � satisfying (2.19). Furthermore, the growth rate c ∈ Γ can
be chosen so that c� 0. We now define the continuous restriction r0 := r̃|T×Bρ and verify
that it has all the desired properties claimed in Theorem 4.1. Above all, (4.4) is a direct
consequence of (2.19).

(a) While r0(τ,0)≡ 0 onT follows from Theorem 2.3(b1), we get the Lipschitz estimate
from (2.21) and our choice for L1. Combining this, we also have ‖r0(t,x)‖ ≤ λ‖x‖ ≤ λρ
for all t ∈ T, x ∈ Bρ.

(b) The invariance of R̃ from Theorem 2.3(b) immediately gives us local invariance
of R0.

(c) If the zero solution of the reduced equation (4.5) is unstable, then by invariance of
R0, also the zero solution of (4.1) is unstable (cf. (3.52)). Now, let ε > 0, τ ∈ T be given,
but without loss of generality ε ≤ 2(1 + λ)ρ. We suppose the zero solution of (4.5) is stable,
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that is, there exists a δ ∈ (0,ρ) so that

∥
∥ν0(t)

∥
∥ <

ε

2(1 + λ)
∀t ∈ T+

τ (4.9)

and any solution ν0 : T+
τ →� of (4.5) with ν0(τ)∈�(P(τ))∩Bδ . In the following, let ν :

T+
τ →� be an arbitrary solution of (4.1) with ‖ν(τ)‖ <min{δ((1− �(0))/K2), (ε/2)((1−

�(0))(1−L(0))/K1(1 + (K2− 1)�(0)))}. From Theorem 3.4(a) we know that there exists a
solution ν̃0 : T+

τ →� of pΔ =A(t)p+P(t)F̃1(t, p+ r̃(t, p)) with

∥
∥ϕ̃
(
t;τ,ν(τ)

)− ϕ̃(t;τ, ν̃0(τ) + r̃
(
τ, ν̃0(τ)

))∥∥ (3.36)≤ K1

1−L(0)
1 +

(
K2− 1

)
�(0)

1− �(0)

∥
∥ν(τ)

∥
∥ec(t,τ)

(4.10)

for all t ∈ T+
τ , where ϕ̃ denotes the general solution of (4.8). We have from Theorem 3.4(a)

∥
∥ν̃0(τ)

∥
∥= ∥∥P(τ)π+(τ,ν(τ)

)∥∥ (3.47)≤ K2

1− �(0)

∥
∥ν(τ)

∥
∥ < δ, (4.11)

and consequently (4.9) gives us ‖ν̃0(t)‖ < ε/2(1 + λ) for all t ∈ T+
τ . But this yields (note

that we have ec(t,τ)≤ 1 for t ∈ T+
τ ) with the triangle inequality

∥
∥ϕ̃
(
t;τ,ν(τ)

)∥∥≤ ∥∥ϕ̃(t;τ,ν(τ)
)− ϕ̃(t;τ,π+(τ,ν(τ)

))∥∥+
∥
∥ϕ̃
(
t;τ,π+(τ,ν(τ)

))∥∥

≤ K1

1−L(0)
1 +

(
K2− 1

)
�(0)

1− �(0)

∥
∥ν(τ)

∥
∥ec(t,τ) +

∥
∥ν̃0(t) + r̃

(
t, ν̃0(t)

)∥∥

≤ K1

1−L(0)
1 +

(
K2− 1

)
�(0)

1− �(0)

∥
∥ν(τ)

∥
∥+ (1 + λ)

∥
∥ν̃0(t)

∥
∥ < ε ∀t ∈ T+

τ ,

(4.12)

and 0 is a stable solution of (4.8). However, since the systems (4.1) and (4.8) coincide on
T× Bρ, and due to ϕ̃(t;τ,ν(τ)) ∈ Bρ for all t ∈ T+

τ , it is ν = ϕ̃(·;τ,ν(τ)). Thus, the zero
solution is also stable with respect to (4.1). Keeping in mind that R0 is uniformly expo-
nentially attracting (cf. (3.36)), a similar reasoning gives us the assertion on the remaining
stability properties. �

In our concluding example we make use of the “Hilger discs” given by

H0 := {z ∈ C :�z < 0}, Hh :=
{
z ∈ C :

∣
∣
∣
∣z+

1
h

∣
∣
∣
∣ <

1
h

}
∀h > 0, (4.13)

which are crucial for a stability analysis on general measure chains.

Example 4.2. In a population-dynamical framework, Rosenzweig (see [17]) studied an
autonomous version of the following planar ODE:

ẋ1 =−x1
(
1− x1

)− b(t)x2
(
1− e−x1

)
,

ẋ2 = c(t)x2
(
1− e−x1

)− 2x2,
(4.14)
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whereas we allow an explicit time-dependence in form of the bounded continuous func-
tions b,c :R→R. In its equilibrium (0,0) the above system has the linearization

(−1 0
0 −2

)

and by the principle of linearized stability the zero solution is asymptotically stable. Now
we want to study the time scale version of (4.14) on time scalesT satisfying μ∗(T)⊆ [h,H]
for 0≤ h≤H . This system can be represented in the form (4.1) with �=R2 and

A(t)≡
(−1 0

0 −2

)

, F1(t,x)=
(
x2

1 − b(t)x2
(
1− e−x1

)

c(t)x2
(
1− e−x1

)

)

. (4.15)

Hence, A= A(t) has the spectrum Σ(A)= {−2,−1} and concerning the stability proper-
ties for the trivial solution of (4.1), the following can be stated.

(i) For Σ(A)⊆HH the zero solution is asymptotically stable.
(ii) For Σ(A) �⊆Hh the zero solution is unstable, since (4.1) possesses an unstable fiber

bundle consisting of solutions tending exponentially away from 0.
The interesting situation is given when, for instance, on the homogeneous time scale
T = Z the constant matrix A has eigenvalues on the boundary of H1. The principle of
linearized stability does not apply, but we can use Theorem 4.1: its assumption (i) is ful-
filled with K1 = K2 = 1, constant functions a(t) ≡ α, b(t) ≡ β with −1 < α < β < 0, and
an invariant projector P(t)= (0 0

0 1

)
. Due to limx→0D2F1(t,x)= 0 uniformly in t ∈ T also

assumption (ii) holds. Thus, if we choose λ= 1, there exists a function r0 : T× (−ρ,ρ)→
(−ρ,ρ) with r0(t,0) ≡ 0, such that the stability of the zero solution of the planar system
(4.1) is determined by the stability of the trivial solution for the scalar equation

xΔ2 =−2x2 + c(t)x2

(
1− e−r0(t,x2)

)
. (4.16)

Nevertheless, due to our limited space the stability analysis of this equation is beyond the
scope of the paper. Such methods, in particular a procedure to obtain approximations of
the mapping r0, have been developed in [16].
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Augsburg, 2001.
[13] V. A. Pliss, A reduction principle in the theory of stability of motion, Izvestiya Akademii Nauk

SSSR. Seriya Matematicheskaya 28 (1964), 1297–1324 (Russian).
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