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We study the global behavior of positive solutions of the system of rational difference
equations xn+1 = f (yn−q,xn−s), yn+1 = g(xn−t, yn−p), n = 0,1,2, . . . , where p,q,s, t ∈
{0,1,2, . . .} with s ≥ t and p ≥ q, the initial values x−s,x−s+1, . . . ,x0, y−p, y−p+1, . . . , y0 ∈
(0,+∞). We give sufficient conditions under which every positive solution of this system
converges to the unique positive equilibrium.
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1. Introduction

In this paper, we study the convergence of positive solutions of a system of rational dif-
ference equations. Recently there has been published quite a lot of works concerning the
behavior of positive solutions of systems of rational difference equations [1–7, 9, 11]. Not
only these results are valuable in their own right, but also they can provide insight into
their differential counterparts.

Papaschinopoulos and Schinas [10] studied the oscillatory behavior, the periodicity,
and the asymptotic behavior of the positive solutions of systems of rational difference
equations

xn+1 =A+
xn−1

yn
, yn+1 = A+

yn−1

xn
, n= 0,1, . . . , (1.1)

where A∈ (0,+∞) and the initial values x−1,x0, y−1, y0 ∈ (0,+∞).
Recently, Kulenović and Nurkanović [8] investigated the global asymptotic behavior

of solutions of systems of rational difference equations

xn+1 = a+ xn
b+ yn

, yn+1 = d+ yn
e+ xn

, n= 0,1, . . . , (1.2)

where a,b,d,e ∈ (0,+∞) and the initial values x0, y0 ∈ (0,+∞).
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2 The system of difference equations

In this paper, we consider the more general equation

xn+1 = f
(
yn−q,xn−s

)
, yn+1 = g

(
xn−t, yn−p

)
, (1.3)

where p,q,s, t∈{0,1,2, . . .} with s≥ t and p≥ q, the initial values x−s,x−s+1, . . . ,x0, y−p,
y−p+1, . . . , y0 ∈ (0,+∞) and f satisfies the following hypotheses.

(H1) f (u,v),g(u,v) ∈ C(E × E, (0,+∞)) with a = inf (u,v)∈E×E f (u,v) ∈ E and b =
inf (u,v)∈E×E g(u,v)∈ E, where E ∈ {(0,+∞),[0,+∞)}.

(H2) f (u,v) and g(u,v) are decreasing in u and increasing in v.
(H3) Equation

x = f (y,x), y = g(x, y) (1.4)

has a unique positive solution x = x, y = y.
(H4) f (b,x) has only one fixed point in the interval (a,+∞), denoted by A, and g(a, y)

has only one fixed point in the interval (b,+∞), denoted by B.
(H5) For every w ∈ E, f (w,x)/x and g(w,x)/x are nonincreasing in x in (0,+∞).

2. Main results

Theorem 2.1. Assume that (H1)–(H5) hold and {(xn, yn)} is a positive solution of (1.3),
then there exists a positive integer N such that

f (B,a)≤ xn ≤A, g(A,b)≤ yn ≤ B, for n≥N. (2.1)

Proof. Since a= inf (u,v)∈E×E f (u,v)∈ E and b = inf (u,v)∈E×E g(u,v)∈ E, we have

x = f (y,x) > f (y + 1,x)≥ a,

y = g(x, y) > g(x+ 1, y)≥ b.
(2.2)

Claim 1. g(A,b) < y < B and f (B,a) < x < A.

Proof of Claim 1. If B ≤ y, then it follows from (H2), (H4), and (H5) that

B = g(a,B) > g(x,B)= B
g(x,B)

B
≥ B

g(x, y)
y

= B, (2.3)

which is a contradiction. Therefore y < B. In a similar fashion it is true that x < A.
Since y < B and x < A, we have that

f (B,a) < f (y,x)= x, g(A,b) < g(x, y)= y, (2.4)

Claim 1 is proven. �

Claim 2. (i) For all n≥ q+ 1, xn+1 ≤ xn−s if xn−s > A and xn+1 ≤A if xn−s ≤A.
(ii) For all n≥ t+ 1, yn+1 ≤ yn−p if yn−p > B and yn+1 ≤ B if yn−p ≤ B.
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Proof of Claim 2. We only prove (i) (the proof of (ii) is similar). Obviously

xn+1 = f
(
yn−q,xn−s

)≤ f
(
b,xn−s

)
. (2.5)

If xn−s ≤A, then xn+1 ≤ f (b,xn−s)≤ f (b,A)= A.
If xn−s > A, then

f
(
b,xn−s

)

xn−s
≤ f (b,A)

A
= 1, (2.6)

which implies xn+1 ≤ f (b,xn−s)≤ xn−s. Claim 2 is proven. �

Claim 3. (i) There exists a positive integer N1 such that xn ≤A for all n≥N1.
(ii) There exists a positive integer N2 such that yn ≤ B for all n≥N2.

Proof of Claim 3. We only prove (i) (the proof of (ii) is similar). Assume on the contrary
that Claim 3 does not hold. Then it follows from Claim 2 that there exists a positive in-
teger R such that xn(s+1)+R ≥ x(n+1)(s+1)+R > A for every n ≥ 1. Let limn→∞ xn(s+1)+R = A1,
then A1 ≥ A.

We know from Claim 2 that {xn} and {yn} are bounded. Let c= limn→∞ sup yn(s+1)+R−q−1,
then c ≥ b and there exists a sequence nk →∞ such that

lim
k→∞

ynk(s+1)+R−q−1 = c. (2.7)

By (1.3) we have that

xnk(s+1)+R = f
(
ynk(s+1)+R−q−1,x(nk−1)(s+1)+R

)
, (2.8)

from which it follows that

A1 = f
(
c,A1

)≤ f
(
b,A1

)= A1
f
(
b,A1

)

A1
≤ A1

f (b,A)
A

= A1. (2.9)

This with (H2) and (H4) implies c = b and A1 =A. Therefore limn→∞ yn(s+1)+R−q−1 = b.
Since {xn} and {yn} are bounded, we may assume (by taking a subsequence) that there

exist a sequence ln→∞ and α,β ∈ E such that

lim
k→∞

xlk(s+1)+R−q−t−2 = α, lim
k→∞

ylk(s+1)+R−q−p−2 = β. (2.10)

By (1.3) we have that

ylk(s+1)+R−q−1 = g
(
xlk(s+1)+R−q−t−2, ylk(s+1)+R−q−p−2

)
, (2.11)

from which it follows that

b = g(α,β) > g(α+ 1,β)≥ b. (2.12)

This is a contradiction. Claim 3 is proven. �



4 The system of difference equations

Let N =max{N1,N2}+ 2s+ 2p, then for all n > N we have that

xn ≤A, yn ≤ B,

xn = f
(
yn−q−1,xn−s−1

)≥ f (B,a),

yn = g
(
xn−t−1, yn−p−1

)≥ g(A,b).

(2.13)

Theorem 2.1 is proven. �

Theorem 2.2. Let I = [c,d] and J = [α,β] be intervals of real numbers. Assume that f ∈
C(J × I ,I) and g ∈ C(I × J , J) satisfy the following properties:

(i) f (u,v) and g(u,v) are decreasing in u and increasing in v;
(ii) if M1,m1 ∈ I with m1 ≤M1 and M2,m2 ∈ J with m2 ≤M2 are a solution of the

system

M1 = f
(
m2,M1

)
, m1 = f

(
M2,m1

)
,

M2 = g
(
m1,M2

)
, m2 = g

(
M1,m2

)
,

(2.14)

then M1 =m1 and M2 =m2.
Then the system

xn+1 = f
(
yn−q,xn−s

)
, yn+1 = g

(
xn−t, yn−p

)
, n= 0,1, . . . , (2.15)

has a unique equilibrium (S,T) and every solution of (2.15) with the initial values x−s,x−s+1,
. . . ,x0 ∈ I and y−p, y−p+1, . . . , y0 ∈ J converges to (S,T).

Proof. Let

m0
1 = c, m0

2 = α, M0
1 = d, M0

2 = β, (2.16)

and for i= 1,2, . . ., we define

Mi
1 = f

(
mi−1

2 ,Mi−1
1

)
, mi

1 = f
(
Mi−1

2 ,mi−1
1

)
,

Mi
2 = g

(
mi−1

1 ,Mi−1
2

)
, mi

2 = g
(
Mi−1

1 ,mi−1
2

)
.

(2.17)

It is easy to verify that

m0
1 ≤m1

1 = f
(
M0

2 ,m0
1

)≤ f
(
m0

2,M0
1

)=M1
1 ≤M0

1 ,

m0
2 ≤m1

2 = g
(
M0

1 ,m0
2

)≤ g
(
m0

1,M0
2

)=M1
2 ≤M0

2 .
(2.18)

From (i) and (2.18) we obtain

m1
1 = f

(
M0

2 ,m0
1

)≤ f
(
M1

2 ,m1
1

)=m2
1,

m2
1 = f

(
M1

2 ,m1
1

)≤ f
(
m1

2,M1
1

)=M2
1 ,

M2
1 = f

(
m1

2,M1
1

)≤ f
(
m0

2,M0
1

)=M1
1 ,

m1
2 = g

(
M0

1 ,m0
2

)≤ g
(
M1

1 ,m1
2

)=m2
2,

m2
2 = g

(
M1

1 ,m1
2

)≤ g
(
m1

1,M1
2

)=M2
2 ,

M2
2 = g

(
m1

1,M1
2

)≤ g
(
m0

1,M0
2

)=M1
2 .

(2.19)
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By induction it follows that for i= 0,1, . . . ,

mi
1 ≤mi+1

1 ≤ ··· ≤Mi+1
1 ≤Mi

1,

mi
2 ≤mi+1

2 ≤ ··· ≤Mi+1
2 ≤Mi

2.
(2.20)

On the other hand, we have xn ∈ [m0
1,M0

1 ] for any n ≥ −s and yn ∈ [m0
2,M0

2 ] for any
n≥−p since x−s,x−s+1, . . . ,x0 ∈ [m0

1,M0
1 ] and y−p, y−p+1, . . . , y0 ∈ [m0

2,M0
2 ]. For any n≥ 0,

we obtain

m1
1 = f

(
M0

2 ,m0
1

)≤ xn+1 = f
(
yn−q,xn−s

)≤ f
(
m0

2,M0
1

)=M1
1 ,

m1
2 = g

(
M0

1 ,m0
2

)≤ yn+1 = g
(
xn−t, yn−p

)≤ g
(
m0

1,M0
2

)=M1
2 .

(2.21)

Let k =max{s+ 1, p+ 1}. It follows that for any n≥ k,

m2
1 = f

(
M1

2 ,m1
1

)≤ xn+1 = f
(
yn−q,xn−s

)≤ f
(
m1

2,M1
1

)=M2
1 ,

m2
2 = g

(
M1

1 ,m1
2

)≤ yn+1 = g
(
xn−t, yn−p

)≤ g
(
m1

1,M1
2

)=M2
2 .

(2.22)

By induction, for l = 0,1, . . . , we obtain that for any n≥ lk,

ml+1
1 ≤ xn+1 ≤Ml+1

1 , ml+1
2 ≤ yn+1 ≤Ml+1

2 . (2.23)

Let

lim
n→∞m

n
1 =m1, lim

n→∞m
n
2 =m2,

lim
n→∞M

n
1 =M1, lim

n→∞M
n
2 =M2.

(2.24)

By the continuity of f and g, we have from (2.17) that

M1 = f
(
m2,M1

)
, M2 = g

(
m1,M2

)
,

m2 = g
(
M1,m2

)
, m1 = f

(
M2,m1

)
.

(2.25)

Using assumption (ii), it follows from (2.23) that

lim
n→∞xn =m1 =M1 = S, lim

n→∞ yn =m2 =M2 = T. (2.26)

Theorem 2.2 is proven. �

Theorem 2.3. If (H1)–(H5) hold and the system

M1 = f
(
m2,M1

)
, M2 = g

(
m1,M2

)
,

m2 = g
(
M1,m2

)
, m1 = f

(
M2,m1

)
,

(2.27)
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with f (B,a) ≤ m1 ≤M1 ≤ A and g(A,b) ≤ m2 ≤M2 ≤ B has the unique solution m1 =
M1 = x and m2 =M2 = y, then every solution of (1.3) converges to the unique positive equi-
librium (x, y).

Proof. Let {(xn, yn)} is a positive solution of (1.3). By Theorem 2.1, there exists a positive
integer N such that f (B,a) ≤ xn = f (yn−q,xn−s) ≤ A and g(A,b) ≤ yn = g(xn−t, yn−p) ≤
B for all n ≥ N . Since f , g satisfy the conditions (i) and (ii) of Theorem 2.2 in I =
[ f (B,a),A] and J = [(A,b),B], it follows that {(xn, yn)} converges to the unique positive
equilibrium (x, y). �

3. Examples

In this section, we will give two applications of the above results.

Example 3.1. Consider equation

xn+1 = c+ xn−s
a+ yn−q

, yn+1 =
d+ yn−p
b+ xn−t

, (3.1)

where p,q,s, t ∈ {0,1,2, . . .} with s ≥ t and p ≥ q, the initial values x−s,x−s+1, . . . ,x0,
y−p, y−p+1, . . . , y0 ∈ (0,+∞) and a,b,c,d ∈ (0,+∞). If a > 1 and b > 1, then every positive
solution of (3.1) converges to the unique positive equilibrium.

Proof. Let E = [0,+∞), it is easy to verify that (H1)–(H5) hold for (3.1). In addition, if

M1 = c+M1

a+m2
, M2 = d+M2

b+m1
,

m2 = d+m2

b+M1
, m1 = c+m1

a+M2
,

(3.2)

with 0≤m1 ≤M1 and 0≤m2 ≤M2, then we have
(
M1−m1

)
(a− 1)=m1M2−M1m2,

(
M2−m2

)
(b− 1)=M1m2−m1M2,

(3.3)

from which it follows that M1 =m1 and M2 =m2. Moreover, it is easy to verify that (3.2)
have the unique solution

M1 =m1 = x = −(a− 1)(b− 1) + c−d+
√[

(a− 1)(b− 1) +d− c
]2

+ 4c(a− 1)(b− 1)

2(a− 1)
,

M2 =m2 = y = −(a− 1)(b− 1) +d− c+
√[

(a− 1)(b− 1) + c−d
]2

+ 4d(a− 1)(b− 1)

2(b− 1)
.

(3.4)

It follows from Theorems 2.1 and 2.3 that every positive solution of (3.1) converges to the
unique positive equilibrium (x, y). �
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Example 3.2. Consider equation

xn+1 = a+
xn−s
yn−q

, yn+1 = b+
yn−p
xn−t

, (3.5)

where p,q,s, t ∈ {0,1,2, . . .} with s ≥ t and p ≥ q, the initial values x−s,x−s+1, . . . ,x0,
y−p, y−p+1, . . . , y0 ∈ (0,+∞) and a,b ∈ (0,+∞). If a > 1 and b > 1, then every positive so-
lution of (3.5) converges to the unique positive equilibrium.

Proof. Let E = (0,+∞), it is easy to verify that (H1)–(H5) hold for (3.5). In addition, if

M1 = a+
M1

m2
, M2 = b+

M2

m1
,

m2 = b+
m2

M1
, m1 = a+

m1

M2
,

(3.6)

with 0≤m1 ≤M1 and 0≤m2 ≤M2, then (3.6) have the unique solution

M1 =m1 = x = ab− 1
b− 1

,

M2 =m2 = y = ab− 1
a− 1

.

(3.7)

It follows from Theorems 2.1 and 2.3 that every positive solution of (3.5) converges to the
unique positive equilibrium (x, y)= ((ab− 1)/(b− 1),(ab− 1)/(a− 1)). �
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