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This paper deals with some classes of nonlinear implicit difference equations obtained
via discretization of nonlinear differential-algebraic or partial differential-algebraic equa-
tions. The unique solvability of discretized problems is proved and the compatibility be-
tween index notions for nonlinear differential-algebraic equations and nonlinear implicit
difference equations is studied.
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1. Introduction

The importance of implicit difference equations (IDEs) seems to flow from two sources.
First, in real world situations it has been found that many problems are modeled by sin-
gular discrete systems, such as the Leslie population growth model, the Leontief dynamic
model of multisector economy, singular discrete optimal control problems and so forth.
Second, implicit discrete systems appear in a natural way of using discretization tech-
niques for solving differential-algebraic equations (DAEs) and partial differential-algebraic
equations (PDAEs).

Recently [1, 2, 6], a class of implicit difference equations, called index-1 IDEs has been
investigated. The solvability of initial-value problems (IVPs) as well as boundary-value
problems (BVPs) associated with index-1 IDEs has been studied. In [1] a connection be-
tween linear index-1 DAEs and linear index-1 IDEs has been revealed. In particular, the
compatibility between index notions for linear index-1 DAEs and linear index-1 IDEs has
been established.

Until now, we have not found any results on the unique solvability of nonlinear im-
plicit difference systems obtained via discretization by using explicit schemes for nonlin-
ear DAEs and PDAEs. This problem will be studied in the paper.

The paper is organized as follows. In Section 2 we show that the explicit Euler method
applied to nonlinear index-1 DAEs leads to nonlinear index-1 IDEs. Moreover, the
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convergence of the explicit Euler method for nonlinear index-1 DAEs is established. The
results of this section are a “nonlinear version” of the corresponding results in [1]. Section
3 deals with the unique solvability of a discretized problem for degenerated parabolic
equations. In Section 4 two numerical examples are given and finally Section 5 summa-
rizes the main results of this work.

2. Compatibility of index notions for nonlinear DAEs and IDEs

According to Griepentrog and März [5], a nonlinear DAE

f
(
x′(t),x(t), t

)= 0, t ∈ J := [t0,T
]
, (2.1)

where the function f : Rm×Rm× J → Rm is continuous in t and continuously differen-
tiable in the first two variables, is said to be of index-1 if

(i) the null-space Ker(∂ f /∂y)(y,x, t) ≡ �(t) does not depend on y,x ∈ Rm, and
there exists a smooth projection Q ∈ C1(J ,Rm×m) such that

Q2(t)=Q(t); ImQ(t)=�(t) ∀t ∈ J. (2.2)

(ii) the matrix G(y,x, t) := (∂ f /∂y)(y,x, t) + (∂ f /∂x)(y,x, t)Q(t) is nonsingular ∀y,
x ∈Rm and∀t ∈ J .

Together with (2.1) we consider a nonlinear IDE

fn
(
xn+1,xn

)= 0 (n≥ 0), (2.3)

where the functions fn : Rm ×Rm → Rm are supposed to be continuously differentiable.
We recall the following definition.

Definition 2.1 ([2, Definition 3.2]). Equation (2.3) is called an index-1 IDE if
(i) the subspaces �n := Ker(∂ fn/∂y)(y,x) are independent of y,x ∈Rm and have the

same dimension, that is, dim�n =m− r for some integer r between 1 and m− 1,
(ii) the matrices Gn(y,x) := (∂ fn/∂y)(y,x) + (∂ fn/∂x)(y,x)Qn−1,n are nonsingular for

all y,x ∈ Rm and n ≥ 0, where the so-called connecting operators Qn−1,n are de-
fined as follows.

Let Qn−1 and Qn be arbitrary projections onto subspaces �n−1 and �n, respectively.
Then Qn−1 = Vn−1Q̃V

−1
n−1 and Qn = VnQ̃V−1

n , where Vn−1, Vn are nonsingular matri-
ces and Q̃ = diag(Or ,Im−r). Here Or and Im−r stand for zero and identity matrices, re-
spectively. We define an operator connecting two subspaces �n−1 and �n as Qn−1,n =
Vn−1Q̃V−1

n . For definiteness, we put �−1 :=�0; Q−1 :=Q0 and V−1 :=V0.
It can be verified (cf. [2]) that the matrices Gn(y,x) are nonsingular if and only if

Sn(y,x)∩�n−1 = {0} ∀y,x ∈Rm; ∀n≥ 0, (2.4)

where, as in the DAE case, Sn(y,x) denotes the set

{
ξ ∈Rm :

∂ fn
∂x

(y,x)ξ ∈ Im
∂ fn
∂y

(y,x)
}
. (2.5)
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Since condition (2.4) does not depend on the choice of connecting operators, the cor-
rectness of the index-1 notion for nonlinear IDEs is guaranteed.

Now we discretize (2.1) by the explicit Euler scheme, namely

f
(
xn+1− xn

τ
,xn, tn

)
= 0, n= 0,N − 1, (2.6)

where tn = t0 +nτ; τ := (T − t0)/N , n= 0,N . The following theorem ensures the compat-
ibility of index notions for DAE (2.1) and IDE (2.6).

Theorem 2.2. Suppose the DAE (2.1) is of index-1 and the matrices G−1(y,x, t) and (∂ f /
∂x)(y,x, t) are uniformly bounded. Then for sufficiently small τ, the discretized equation
(2.6) is also an index-1 IDE.

Proof. For the proof of the theorem we first reduce (2.6) to its normal form (2.3). Then we
will show that (2.3) is of index-1 by verifying all the conditions of Definition 2.1. Let the
DAE (2.1) be of index-1. Then the null-space �(t)= Ker(∂ f /∂y)(y,x, t) does not depend
on y,x ∈ Rm and is smooth in t. In particular, dim�(t) ≡m− r for some integer r be-
tween 1 andm− 1. Further, the matrixG(y,x, t) := (∂ f /∂y)(y,x, t) + (∂ f /∂x)(y,x, t)Q(t),
where Q(t)=V(t)Q̃V−1(t) is a smooth projection on �(t), is nonsingular.

To reduce (2.6) to (2.3), we put fn(y,x) := f ((y− x)/τ,x, tn) (n= 0,N − 1). First ob-
serve that

∂ fn
∂y

(y,x)= 1
τ

∂ f

∂y

(
(y− x)/τ,x, tn

)
,

∂ fn
∂x

(y,x)= ∂ f

∂x

(
(y− x)/τ,x, tn

)− 1
τ

∂ f

∂y

(
(y− x)/τ,x, tn

)
.

(2.7)

Clearly, Ker(∂ fn/∂y)(y,x) = Ker(∂ f /∂y)((y − x)/τ,x, tn) = �(tn) ≡ �n. Let P(t) := I −
Q(t); Qn :=Q(tn); Pn := P(tn); Vn := V(tn), n≥ 0 and �−1 :=�0; Q−1 :=Q0; V−1 := V0.
We define connecting operators Qn−1,n = Vn−1Q̃V−1

n , n ≥ 0. To prove the index-1 prop-
erty of (2.6) we have to verify the nonsingularity of the matrix

H̄n(y,x) := ∂ fn
∂y

(y,x) +
∂ fn
∂x

(y,x)Qn−1,n ≡ 1
τ
Hn(y,x), (2.8)

where

Hn(y,x) := ∂ f

∂y
((y− x)/τ,x, tn) +

[
τ
∂ f

∂x

(
(y− x)/τ,x, tn

)− ∂ f

∂y

(
(y− x)/τ,x, tn

)
]
Qn−1,n.

(2.9)

Letting Ḡ(y,x, t) := (∂ f /∂y)(y,x, t) + τ(∂ f /∂x)(y,x, t)Q(t) and using the relation

Q(t)=G−1(y,x, t)
∂ f

∂x
(y,x, t)Q(t), (2.10)
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we find

Ḡ(y,x, t)=G(y,x, t)− (1− τ)
∂ f

∂x
(y,x, t)Q(t)

=G(y,x, t)
[
I − (1− τ)G−1(y,x, t)

∂ f

∂x
(y,x, t)Q(t)

]

=G(y,x, t)
[
I − (1− τ)Q(t)

]

=G(y,x, t)
(
P(t) + τQ(t)

)
.

(2.11)

From the identity (P(t) + τQ(t))−1 ≡ (1/τ)(τP(t) +Q(t)), it follows

Ḡ−1(y,x, t)= 1
τ

(
τP(t) +Q(t)

)
G−1(y,x, t). (2.12)

Now we will express Hn(y,x) in terms of G((y− x)/τ,x, tn) and projections Pn, Qn. Ob-
serving that (∂ f /∂y)((y− x)/τ,x, tn)Qn = 0 and Qn−1,n−Qn = (Vn−1−Vn)Q̃V−1

n , after a
short computation we find

Hn(y,x)= Ḡ((y− x)/τ,x, tn
)

×
{
I +

[
(
τPn +Qn

)
G−1((y− x)/τ,x, tn

)∂ f

∂x

(
(y− x)/τ,x, tn

)−Pn
]

× (Vn−1−Vn
)
Q̃V−1

n

}
.

(2.13)

By assumption, the matrices G−1((y − x)/τ,x, tn) and (∂ f /∂x)((y − x)/τ,x, tn) are uni-
formly bounded. Further, P(t), Q(t) and V−1(t) are continuous, hence they are uni-
formly bounded on J . The smoothness of V(t) on the compact segment J implies that
‖Vn−1−Vn‖� c1τ, where c1 =maxt∈J ‖V ′(t)‖. Thus the norm of the matrix

Mn(y,x) :=
[
(
τPn +Qn

)
G−1((y− x)/τ,x, tn

)∂ f

∂x

(
(y− x)/τ,x, tn

)−Pn
]
(
Vn−1−Vn

)
Q̃V−1

n

(2.14)

will be bounded by cτ, where the constant c is determined by the bounds of G−1, ∂ f /∂x,
P, Q, V−1 and V ′. This fact implies the nonsingularity of the matrix

H̄n(y,x)= 1
τ
Ḡ
(
(y− x)/τ,x, tn

)(
I +Mn(y,x)

)
, (2.15)

provided τ < τ0 := 1/c. The proof of Theorem 2.2 is complete. �

Now for finding a solution of (2.1), satisfying the initial condition

P
(
t0
)(
x
(
t0
)− x0)= 0, (2.16)

we use the explicit Euler method, that is, we seek for a solution of (2.6) satisfying condi-
tion

P0
(
x0− x0)= 0. (2.17)
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Theorem 2.3. Under the assumptions of Theorem 2.2, the explicit Euler method applied to
the IVP (2.1), (2.16) does converge.

Proof. The proof is divided into three steps. First, the H’adamard theorem is used for
decomposing (2.1) into a system of an inherent ODE and an algebraic constraint. The
second step is devoted to the similar decomposition for the discretized equation (2.6).
The last step deals with the convergence of the explicit Euler method.

Step 1. Since Q(t) is a projection onto �(t)= Ker(∂ f /∂y)(y,x, t) it implies

f (y,x, t)− f (P(t)y,x, t
)=
∫ 1

0

∂ f

∂y

(
sy+(1−s)P(t)y,x, t

)
Q(t)yds=0, ∀y,x∈Rm; ∀t∈ J.

(2.18)

Thus the IVP (2.1), (2.16) is reduced to the problem

f
(
P(t)x′(t),P(t)x(t) +Q(t)x(t), t

)= 0, t ∈ J ,
P
(
t0
)
x
(
t0
)= P(t0

)
x0.

(2.19)

Putting u(t) := P(t)x(t) we come to the equivalent IVP

f
(
P(t)x′(t),u(t) +Q(t)x(t), t

)= 0, t ∈ J , (2.20)

u
(
t0
)= P(t0

)
x0. (2.21)

To establish the convergence of the explicit Euler method, we will treat the DAE (2.20) in
a slightly different way than that of [5, 9]. Since P(t) andQ(t) are smooth projections and
dim(ImP(t))= r, dim(ImQ(t))=m− r,∀t ∈ J , there exist linear homeomorphisms

ξt :Rr −→ ImP(t), ζt :Rm−r −→ ImQ(t), (2.22)

such that ξt and ζt depend continuously on t ∈ J .
For fixed ū∈ Rm and t, t1, t2 ∈ J we consider an operator Ft;ū;t1,t2 : Rm → Rm mapping

every z = (zT1 ,zT2 )T ∈Rm, where z1 ∈Rr and z2 ∈Rm−r , into f (ξt1z1, ū+ ζt2z2, t). For the
sake of simplicity we denote Ft;ū := Ft;ū;t,t. Thus

Ft;ū(z)= f
(
ξtz1, ū+ ζtz2, t

)
, (2.23)

and the Frechet derivative of Ft;ū(z) is determined by

F′t;ū(z)w = ∂ f

∂y

(
ξtz1, ū+ ζtz2, t

)
ξtw1 +

∂ f

∂x

(
ξtz1, ū+ ζtz2, t

)
ζtw2, (2.24)

where w = (wT
1 ,wT

2 )T ∈Rm, w1 ∈Rr , w2 ∈Rm−r .
Consider an equation

F′t;ū(z)w = q, (2.25)
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where q ∈Rm, or equivalently,

∂ f

∂y

(
ξtz1, ū+ ζtz2, t

)
ξtw1 +

∂ f

∂x

(
ξtz1, ū+ ζtz2, t

)
ζtw2 = q. (2.26)

Observing that ξtw1 ∈ ImP(t), ζtw2 ∈ ImQ(t), hence P(t)ξtw1 = ξtw1, Q(t)ζtw2 = ζtw2,
from (2.26) we find

∂ f

∂y

(
ξtz1, ū+ ζtz2, t

)
ξtw1 +

∂ f

∂x

(
ξtz1, ū+ ζtz2, t

)
Q(t)ζtw2 = q. (2.27)

Taking into account the relation (2.10) and

G−1(y,x, t)
∂ f

∂y
(y,x, t)= P(t), (2.28)

from (2.27) we get

P(t)ξtw1 +Q(t)ζtw2 =G−1(ξtz1, ū+ ζtz2, t
)
q. (2.29)

Multiplying both sides of (2.29) by P(t) and Q(t), respectively we find

ξtw1 = P(t)G−1(ξtz1, ū+ ζtz2, t
)
q,

ζtw2 =Q(t)G−1(ξtz1, ū+ ζtz2, t
)
q.

(2.30)

Thus (2.25) has a unique solution w = (wT
1 ,wT

2 )T . Moreover,

‖w‖� c
(∥∥w1

∥
∥+

∥
∥w2

∥
∥)� c̃‖q‖ (2.31)

for some positive constant c̃ since G−1(ξtz1, ū+ ζtz2, t), P(t), Q(t), ξ−1
t , ζ−1

t are uniformly
bounded. It follows that

∥
∥
∥
[
F′t;ū(z)

]−1
∥
∥
∥� c̃. (2.32)

By the H’adamard theorem on homeomorphism (see [4, 10]), Ft;ū is a homeomorphism
between Rm and Rm. For fixed ū∈Rm and t ∈ J , the equation

Ft;ū(z)= 0 (2.33)

has a unique solution

z = ϕ(ū, t)= (ϕT1 (ū, t),ϕT2 (ū, t)
)T

, (2.34)

where ϕ1(ū, t)∈Rr , ϕ2(ū, t)∈Rm−r . Moreover, by the implicit function theorem, ϕ(ū, t)
is continuously differentiable in ū and continuous in t and

ϕ′ū(ū, t)=−[F′t;ū(z)
]−1 ∂ f

∂x

(
ξtz1, ū+ ζtz2, t

)
. (2.35)
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The last relation shows that ϕ′̄u(ū, t) is uniformly bounded because [F′t;ū(z)]−1 is uni-
formly bounded by (2.32) and (∂ f /∂x)(y,x, t) is uniformly bounded by assumption.

The application of the above mentioned arguments to (2.20) gives

P(t)x′(t)= ξtϕ1
(
u(t), t

)
,

Q(t)x(t)= ζtϕ2
(
u(t), t

)
.

(2.36)

On the other hand,

u′(t)= [P(t)x(t)
]′ = P′(t)x(t) +P(t)x′(t)= P′(t)x(t) + ξtϕ1

(
u(t), t

)

= P′(t)[P(t)x(t) +Q(t)x(t)
]

+ ξtϕ1
(
u(t), t

)
.

(2.37)

Therefore, the IVP (2.1), (2.16) is equivalent to

u′(t)= P′(t)u(t) +P′(t)ζtϕ2
(
u(t), t

)
+ ξtϕ1

(
u(t), t

)
, (2.38)

u
(
t0
)= P(t0

)
x0 =: u0, (2.39)

x(t)= u(t) + ζtϕ2
(
u(t), t

)
. (2.40)

Let

ψ(u, t)= P′(t)u+P′(t)ζtϕ2(u, t) + ξtϕ1(u, t). (2.41)

Clearly, ψ is continuously differentiable in u and continuous in t. Moreover, the partial
derivative of ψ w.r.t. u is bounded, hence ψ is Lipschitz continuous in u. It follows that
the IVP (2.38), (2.39) and hence, the IVP (2.1), (2.16) has a unique solution on J .

Step 2. Now we return to the discretized IVP (2.6), (2.17). Arguing as in DAE case, we
rewrite (2.6) as

f
(
Pn
xn+1− xn

τ
,un +Qn−1xn, tn

)
= 0, n= 0,N − 1, (2.42)

where un := Pn−1xn. For a fixed n≥ 0 we consider the map

Ftn;un;tn,tn−1 (z)= f
(
ξtnz1,un + ζtn−1z2, tn

)
, (2.43)

where t−1 := t0.
Acting in the same manner as for (2.25), we realize that the equation

F′tn;un;tn,tn−1
(z)w = q, (2.44)

where w = (wT
1 ,wT

2 )T and w1 ∈Rr , w2 ∈Rm−r , has the form

∂ f

∂y

(
ξtnz1,un + ζtn−1z2, tn

)
ξtnw1 +

∂ f

∂x

(
ξtnz1,un + ζtn−1z2, tn

)
ζtn−1w2 = q. (2.45)
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Since Qn−1ζtn−1z2 = ζtn−1z2 and Qn−1,nQn,n−1 = Qn−1, where Qn,n−1 := VnQ̃V
−1
n−1, we can

rewrite the last equation as

∂ f

∂y

(
ξtnz1,un + ζtn−1z2, tn

)
ξtnw1 +

∂ f

∂x

(
ξtnz1,un + ζtn−1z2, tn

)
Qn−1,nQn,n−1ζtn−1w2 = q. (2.46)

Using the relations

G̃−1
n

(
ξtnz1,un + ζtn−1z2

)∂ f

∂y

(
ξtnz1,un + ζtn−1z2, tn

)= Pn,

G̃−1
n

(
ξtnz1,un + ζtn−1z2

)∂ f

∂x

(
ξtnz1,un + ζtn−1z2, tn

)
Qn−1,n =Qn,

(2.47)

where G̃n(y,x) := (∂ f /∂y)(y,x, tn) + (∂ f /∂x)(y,x, tn)Qn−1,n, we reduce (2.44) to the form

Pnξtnw1 +Qn,n−1ζtn−1w2 = G̃−1
n

(
ξtnz1,un + ζtn−1z2

)
q. (2.48)

Multiplying both sides of the last equation by Pn and Qn, respectively, and taking into
account relations

PnQn,n−1 =O; Pnξtnw1 = ξtnw1;

Qn,n−1ζtn−1w2 =VnV
−1
n−1Qn−1ζtn−1w2 =VnV

−1
n−1ζtn−1w2,

(2.49)

we get

ξtnw1 = PnG̃−1
n

(
ξtnz1,un + ζtn−1z2

)
q,

ζtn−1w2 =Qn−1,nG̃
−1
n

(
ξtnz1,un + ζtn−1z2

)
q.

(2.50)

Therefore, (2.44) has a unique solution. On the other hand, sinceG−1(y,x, t) is uniformly
bounded, we can prove that G̃−1

n (ξtnz1,un + ζtn−1z2) is also uniformly bounded and hence,
‖w‖ � c̃1‖q‖, where c̃1 is a positive constant, therefore [F′tn;un;tn,tn−1

(z)]−1 is uniformly
bounded. Using similar ideas as those employed to reduce (2.20) to the system (2.38) and
(2.40), we can apply the H’adamard theorem to (2.42) to get

Pn
xn+1− xn

τ
= ξtnϕ1

(
un, tn

)
,

Qn−1xn = ζtn−1ϕ2
(
un, tn

)
,

(2.51)

or

Pnxn+1 = Pnxn + τξtnϕ1
(
un, tn

)
; Qn−1xn = ζtn−1ϕ2

(
un, tn

)
. (2.52)

Using the identity

Pnxn =
(
Pn−Pn−1

)
Pn−1xn +

(
Pn−Pn−1

)
Qn−1xn +Pn−1xn (2.53)
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we rewrite the IVP (2.6), (2.17) as

un+1 =
(
Pn−Pn−1

)
un +

(
Pn−Pn−1

)
ζtn−1ϕ2

(
un, tn

)
+un + τξtnϕ1

(
un, tn

)
, (2.54)

u0 = u0 := P0x
0, (2.55)

xn = un + ζtn−1ϕ2
(
un, tn

)
, n= 0,N. (2.56)

Step 3. Together with (2.54), (2.55) we consider the explicit Euler scheme for the inherent
ODE (2.38)

ūn+1− ūn
τ

= P′nūn +P′nζtnϕ2
(
ūn, tn

)
+ ξtnϕ1

(
ūn, tn

)
, n= 0,N − 1,

ū0 = u0 := P0x
0,

(2.57)

where P′n := P′(tn), or

ūn+1 = τP′nūn + τP′nζtnϕ2
(
ūn, tn

)
+ τξtnϕ1

(
ūn, tn

)
+ ūn (n= 0,N − 1), (2.58)

ū0 = u0. (2.59)

From (2.40), (2.56), it follows that

x(tn)− xn = u
(
tn
)

+ ζtnϕ2
(
u
(
tn
)
, tn
)−un− ζtn−1ϕ2

(
un, tn

)

= (u(tn
)− ūn

)
+ ζtn

[
ϕ2
(
u
(
tn
)
, tn
)−ϕ2

(
ūn, tn

)]
+
(
ζtn − ζtn−1

)
ϕ2
(
ūn, tn

)

+
(
ūn−un

)
+ ζtn−1

[
ϕ2
(
ūn, tn

)−ϕ2
(
un, tn

)]
(n= 0,N).

(2.60)

Clearly, the explicit Euler method for the IVP (2.38), (2.39) is convergent, that is,

∥
∥ūn−u

(
tn
)∥∥=O(τ), n= 0,N. (2.61)

Further, the partial derivative of ϕ2 w.r.t. u is uniformly bounded and ζt is continuous on
J , therefore we get

∥
∥ζtn

[
ϕ2
(
u
(
tn
)
, tn
)−ϕ2

(
ūn, tn

)]∥∥=O(τ) (n= 0,N). (2.62)

On the other hand, since ūn is bounded, ϕ2 is continuous and ζt is uniformly continuous
on J , we come to the conclusion that if

∥
∥un− ūn

∥
∥−→ 0 (τ −→ 0) (2.63)

then

∥
∥x
(
tn
)− xn

∥
∥−→ 0 (τ −→ 0). (2.64)
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From (2.54), (2.58) we have

un+1− ūn+1 =
(
un− ūn

)
+
(
Pn−Pn−1

)(
un− ūn

)

+ τξtn
[
ϕ1
(
un, tn

)−ϕ1
(
ūn, tn

)]

+
(
Pn−Pn−1

)
ζtn−1

[
ϕ2
(
un, tn

)−ϕ2
(
ūn, tn

)]

+
(
Pn−Pn−1− τP′n

)
ūn +

(
Pn−Pn−1− τP′n

)
ζtn−1ϕ2

(
ūn, tn

)

+ τP′n
(
ζtn−1 − ζtn

)
ϕ2
(
ūn, tn

)
,

(2.65)

this implies that
∥
∥un+1− ūn+1

∥
∥�

∥
∥un− ūn

∥
∥+

∥
∥Pn−Pn−1

∥
∥
∥
∥un− ūn

∥
∥+ τL̃1

∥
∥un− ūn

∥
∥

+ L̃2
∥
∥Pn−Pn−1

∥
∥
∥
∥un− ūn

∥
∥+

∥
∥Pn−Pn−1− τP′n

∥
∥
∥
∥ūn

∥
∥

+
∥
∥Pn−Pn−1− τP′n

∥
∥
∥
∥ζtn−1ϕ2

(
ūn, tn

)∥∥

+ τ
∥
∥P′n

∥
∥
∥
∥(ζtn−1 − ζtn

)
ϕ2
(
ūn, tn

)∥∥,

(2.66)

where L̃1, L̃2 are positive constants satisfying
∥
∥ξtn

[
ϕ1
(
un, tn

)−ϕ1
(
ūn, tn

)]∥∥� L̃1
∥
∥un− ūn

∥
∥,

∥
∥ζtn−1

[
ϕ2
(
un, tn

)−ϕ2
(
ūn, tn

)]∥∥� L̃2
∥
∥un− ūn

∥
∥.

(2.67)

Putting αn := ‖un− ūn‖, an := 1 +‖Pn−Pn−1‖+ τL̃1 + L̃2‖Pn−Pn−1‖ and observing that

γn := ∥∥Pn−Pn−1− τP′n
∥
∥
∥
∥ūn

∥
∥+

∥
∥Pn−Pn−1− τP′n

∥
∥
∥
∥ζtn−1ϕ2

(
ūn, tn

)∥∥

+ τ
∥
∥P′n

∥
∥
∥
∥(ζtn−1 − ζtn

)
ϕ2
(
ūn, tn

)∥∥

= o(τ) (n= 0,N), α0 = 0,

(2.68)

we get the estimate

αn+1 �
n−1∑

k=0

( n∏

i=k+1

ai

)

γk + γn (n≥ 0). (2.69)

Since ai � 1 + τL, where L is a positive constant, we have

n∏

i=k+1

ai � (1 + τL)n−k � (1 + τL)n � enτL � eL(T−t0). (2.70)

Thus we come to the estimate

αn+1 � neL(T−t0) max
k
γk + γn = o(τ)

τ
, that is,

∥
∥un− ūn

∥
∥−→ 0 (τ −→ 0), (2.71)

as desired. Theorem 2.3 is proved. �

Theorems 2.2 and 2.3 for linear DAEs were proved in [1].
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3. Nonlinear IDEs obtained via discretization of PDAEs

Consider the PDAE

A(x, t)
∂u

∂t
= B(x, t)

∂2u

∂x2
+ f (u,x, t), 0 < x < l, 0 < t < T ,

u(x,0)= ϕ(x), 0 < x < l,

u(0, t)= ψ1(t), u(l, t)= ψ2(t), 0 � t � T ,

(3.1)

where A,B ∈ C(J1× J2,Rk×k) with J1 := [0, l] and J2 := [0,T], f ∈ C(Rk × J1× J2,Rk) and
the matrix A(x, t) is singular for every (x, t)∈ J1× J2.

In this section we impose the following conditions:
(H1) KerA(x, t) = �(t) ∀(x, t) ∈ J1 × J2, and there exists a smooth projection Q ∈

C1(J2,Rk×k) onto KerA(x, t), that is, Q2(t) = Q(t) and ImQ(t) = �(t) ∀t ∈ J2.
Moreover, dim�(t)≡ k− r, where 1 � r � k− 1,

(H2) the matrices

G(x, t) := A(x, t) +B(x, t)Q(t), (x, t)∈ J1× J2, (3.2)

are nonsingular,
(H3) there exists a positive constant L such that

∥
∥ f (ξ,x, t)− f (ζ ,x, t)

∥
∥� L‖ξ − ζ‖ (3.3)

for any ξ,ζ ∈Rk and (x, t)∈ J1× J2.
Now let J1,h = {x0 < x1 < ··· < xM} and J2,τ = {t0 < t1 < ··· < tN} denote uniform parti-
tions of J1 and J2, respectively, that is, xm :=mh (m = 0,M) with h = l/M and tn := nτ,
n = 0,N , where τ = T/N . Put Amn := A(xm, tn), Bmn := B(xm, tn), Gmn := G(xm, tn) (m =
0,M, n= 0,N), �n :=�(tn) (n= 0,N).

We are interested in the following discretized problem for (3.1):

Amn
um,n+1−umn

τ
= Bmn um+1,n− 2umn +um−1,n

h2
+ f

(
umn,xm, tn

)

(
m= 1,M− 1, n= 0,N − 1

)
,

(3.4)

um0 = ϕm (m= 1,M− 1); u0n = ψ1,n, uMn = ψ2,n (n= 0,N), (3.5)

where ϕm := ϕ(xm) (m= 1,M− 1); ψ1,n := ψ1(tn), ψ2,n := ψ2(tn), n= 0,N .
The reader interested in discretization methods for PDAEs should refer to [7, 8] and

references therein. Let

�(x, t) := {ξ ∈Rk : B(x, t)ξ ∈ ImA(x, t)
}
. (3.6)

Then the nonsingularity of G(x, t) is equivalent to the condition

�(x, t)∩�(t)= {0} ∀(x, t)∈ J1× J2. (3.7)
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Since condition (3.7) is independent of the choice of Q(t), the nonsingularity of G(x, t)
does not depend on the choice of Q(t). For simplicity, we can choose orthogonal pro-
jections Q(t) on �(t) and Q(t) = V(t)Q̃VT(t), where Q̃ = diag(Or ,Ik−r) and V(t) is an
orthogonal matrix, that is,

V(t)VT(t)=VT(t)V(t)= I ∀t ∈ J2. (3.8)

Let Vn := V(tn); Qn := Q(tn), Pn := I −Qn (n = 0,N) and V−1 := V0; Q−1 := Q0; �−1 :=
�0; P−1 := P0. In what follows, the norm of Rk is assumed Euclidean. From the smooth-
ness of Q(t) it can be proved that V ∈ C1(J2,Rk×k). In this section, we also define the
connecting operators as Qn−1,n :=Vn−1Q̃VT

n , n= 0,N .
We introduce the matrix Ḡmn := Amn +BmnQn−1,n. Clearly,

Ḡmn =Gmn +Bmn
(
Qn−1,n−Qn

)=Gmn
[
I +G−1

mnBmn
(
Vn−1−Vn

)
Q̃VT

n

]
. (3.9)

Further, we have

∥
∥G−1

mnBmn
(
Vn−1−Vn

)
Q̃VT

n

∥
∥� c

∥
∥Vn−1−Vn

∥
∥, (3.10)

where the generic constant c is determined by the bounds of G−1, B, Q̃ and VT . On the
other hand,

∥
∥Vn−Vn−1

∥
∥� c1τ, (3.11)

where c1 =maxt∈J2 ‖V ′(t)‖. Thus, we can conclude that for τ < τ0 := (cc1)−1 the matrix
Ḡmn has a uniformly bounded inverse, that is,

∥
∥Ḡ−1

mn

∥
∥� c̄1 ∀m= 0,M, ∀n= 0,N. (3.12)

Obviously,

Pn = Ḡ−1
mnAmn; Qn = Ḡ−1

mnBmnQn−1,n. (3.13)

Define

α := τ

h2
, vmn := Pn−1umn (m= 0,M, n= 0,N),


humn := um+1,n− 2umn +um−1,n (m= 1,M− 1, n= 0,N).
(3.14)

Clearly,

Pn−1
humn =
hvmn =
hPn−1umn ∈ ImPn−1. (3.15)
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Performing PnḠ−1
mn and QnḠ−1

mn on both sides of (3.4), we get after a simple computation

vm,n+1 = Pnumn +αPnḠ−1
mnBmn
humn + τPnḠ−1

mn f (umn,xm, tn), (3.16)

um0 = ϕm, (3.17)


humn =
(
I −Qn−1,nḠ

−1
mnBmn

)
hvmn−h2Qn−1,nḠ
−1
mn f

(
umn,xm, tn

)
, (3.18)

u0n = ψ1,n; uMn = ψ2,n. (3.19)

Suppose for a fixed n, umn is found (um0 = ϕm is given). Then the right-hand side of
(3.16) is known. Thus we find vm,n+1 (m= 1,M− 1). Besides, v0,n+1 = Pnu0,n+1 = Pnψ1,n+1,
vM,n+1 = PnuM,n+1 = Pnψ2,n+1.

For computing um,n+1 we consider the equation


hum,n+1 =−h2Qn,n+1Ḡ
−1
m,n+1 f

(
um,n+1,xm, tn+1

)
+ qm,n+1, m= 1,M− 1, (3.20)

where qm,n+1 := (I −Qn,n+1Ḡ
−1
m,n+1Bm,n+1)
hvm,n+1 is known. Introducing the notations

ū := (uT1,n+1, . . . ,uTM−1,n+1

)T
,

E :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2I I O ··· O O O

I −2I I ··· O O O

O I −2I ··· O O O

...
...

...
. . .

...
...

...

O O O ··· −2I I O

O O O ··· I −2I I

O O O ··· O I −2I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

F(ū) :=−h2

⎛

⎜
⎜
⎜
⎝

Qn,n+1Ḡ
−1
1,n+1 f

(
u1,n+1,x1, tn+1

)

...

Qn,n+1Ḡ
−1
M−1,n+1 f

(
uM−1,n+1,xM−1, tn+1

)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

q1,n+1

...

qM−1,n+1

⎞

⎟
⎟
⎟
⎠
.

(3.21)

Then (3.20) can be rewritten as

Eū= F(ū). (3.22)

We will prove that (3.22) has a unique solution, which can be approximated by iterations

Eū(ν+1) = F(ū(ν)), ν= 0, . . . ,μ− 1, (3.23)

where ū(0) ∈Rk(M−1) is an arbitrary vector and μ is a certain positive integer.
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For this purpose we endow the space Rk(M−1) by the Euclidean norm, that is, if z̄ =
(zT1 , . . . ,zTM−1)T ∈Rk(M−1) then ‖z̄‖ = (

∑M−1
m=1 ‖zm‖2)1/2.

Using the Gaussian elimination we can reduce E to the form

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2I I O ··· O O O

O −3
2
I I ··· O O O

O O −4
3
I ··· O O O

...
...

...
. . .

...
...

...

O O O ··· −M− 2
M− 3

I I O

O O O ··· O −M− 1
M− 2

I I

O O O ··· O O − M

M− 1
I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.24)

Clearly, det(U)= (−1)k(M−1)Mk, hence det(E) �= 0, that is, E is nonsingular.
Now we are able to state the existence and uniqueness theorem for problem (3.4)–

(3.5).

Theorem 3.1. Under the hypotheses (H1)–(H3) the discretized problem (3.4)–(3.5) has a
unique solution, provided h is sufficiently small and τ = αh2, α= const.

Proof. From the above mentioned argument we see that the problem of finding solution
of system (3.4)–(3.5) when τ, h are sufficiently small is reduced to the fixed-point problem

ū=H(ū), (3.25)

where H := E−1F.
For any ū, z̄ ∈Rk(M−1), we have

∥
∥H(ū)−H(z̄)

∥
∥� h2

∥
∥E−1

∥
∥
(M−1∑

m=1

∥
∥Qn,n+1Ḡ

−1
m,n+1

(
f
(
ūm,xm, tn+1

)− f
(
z̄m,xm, tn+1

))∥∥2
)1/2

� c̄1h
2
∥
∥E−1

∥
∥
(M−1∑

m=1

∥
∥ f
(
ūm,xm, tn+1

)− f
(
z̄m,xm, tn+1

)∥∥2
)1/2

� c̄1h
2
∥
∥E−1

∥
∥L

(M−1∑

m=1

∥
∥ūm− z̄m

∥
∥2
)1/2

= (c̄1L
∥
∥E−1

∥
∥)h2‖ū− z̄‖.

(3.26)



P. K. Anh and L. C. Loi 15

1.2

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

tn

E
rr
n

×10−13

Figure 4.1. (Example 4.1) h= 0.05, τ = 0.001.

Thus, for a sufficiently small h > 0, H is a contraction and the Banach theorem ensures
the desired conclusions. �

We end this section by recalling the sweeping method [3] applied to (3.23). Note that,
(3.23) can be rewritten as


hu
(ν+1)
m,n+1 =−h2Qn,n+1Ḡ

−1
m,n+1 f

(
u(ν)
m,n+1,xm, tn+1

)
+ qm,n+1 =: g(ν)

m,n+1

(m= 1,M− 1, n= 0,N − 1).
(3.27)

Firstly, we define d(ν)
m,n+1 (m= 1,M− 1) by the formulae

d(ν)
m,n+1 =

m− 1
m

d(ν)
m−1,n+1 + g(ν)

m,n+1 (m= 2,M− 1); d(ν)
1,n+1 = g(ν)

1,n+1−ψ1,n+1. (3.28)

Then u(ν+1)
m,n+1 (m= 1,M− 1) can be computed by the back substitution, namely

u(ν+1)
m,n+1 =

m

m+ 1

(
u(ν+1)
m+1,n+1−d(ν)

m,n+1

)
(m=M− 1,1); u(ν+1)

M,n+1 = ψ2,n+1. (3.29)

4. Numerical examples

In this section, we consider two numerical examples. The computation was carried out
in Matlab 7.0 on a Pentium IV 2.8 GHz running Windows NT.

The number of iterations and the initial approximation for the fixed-point iteration
(3.23) in both examples are μ= 50 and ū(0) = 0, respectively.
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Figure 4.2. (Example 4.2) h= 0.05, τ = 0.0005.

Figures 4.1 and 4.2 show the maximal values of the local error between the exact solu-
tion of (3.1) and the approximate solution determined by (3.23), that is,

Errn := max
0�m�M

∥
∥u

(μ)
mn−u(xm, tn

)∥∥, n= 0,N , (4.1)

for Examples 4.1 and 4.2, respectively.
Performing computation with different stepsizes τ and h we observe that the conver-

gence of the explicit scheme (3.4), (3.5) depends on the ratio τ/h2.

Example 4.1. Consider the PDAE (3.1) with the following data:

A(x, t)=
(
x −x(t+ 1)

1 −(t+ 1)

)

; B(x, t)=
(

0 −(t+ 1)

x 0

)

;

f (u,x, t)=
(

sinu1 + sinx− x(t+ 1)

cosu2 + cos t− t− 1

)

;

ϕ(x)=
(
π + x

π

)

; ψ1(t)=
(

π

π + t

)

, ψ2(t)=
(
π + 1

π + t

)

,

(4.2)

where u= (u1,u2)T ∈R2, and J1 = J2 = [0,1]=: J .
Obviously, u(x, t)= (π+x

π+t ) is an exact solution of the PDAE (3.1) with data (4.2). Since
KerA(x, t) = span{(t + 1,1)T} =: �(t) ∀(x, t) ∈ [0,1]2 we can define Q(t) = ( 0 t+1

0 1 ).
Clearly, Q ∈ C1(J ,R2×2), Q2(t)=Q(t) and ImQ(t)=�(t)∀t ∈ J . Thus, we obtain

G(x, t) := A(x, t) +B(x, t)Q(t)=
(
x −(x+ 1)(t+ 1)

1 (x− 1)(t+ 1)

)

. (4.3)
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The nonsingularity of G(x, t) follows from the fact that detG(x, t)= (x2 + 1)(t+ 1) > 0 for
all (x, t)∈ J × J . On the other hand, we have

∥
∥ f (ξ,x, t)− f (ζ ,x, t)

∥
∥=

∥
∥
∥
(

sinξ1− sinζ1,cosξ2− cosζ2
)T∥∥
∥

=
(∣
∣sinξ1− sinζ1

∣
∣2

+
∣
∣cosξ2− cosζ2

∣
∣2
)1/2

�
(∣
∣ξ1− ζ1

∣
∣2

+
∣
∣ξ2− ζ2

∣
∣2
)1/2

= ‖ξ − ζ‖,

(4.4)

where ξ = (ξ1,ξ2)T , ζ = (ζ1,ζ2)T ∈R2. Therefore, the conditions (H1)–(H3) are satisfied.
Theorem 3.1 ensures the unique solvability of the discretized problem (3.4)–(3.5) with
data (4.2), provided h and τ are sufficiently small.

Example 4.2. In the second example we consider the PDAE (3.1) with the data:

A(x, t)=

⎛

⎜
⎜
⎝

t+ 1 −x xt

0 1 −t
−x2 0 0

⎞

⎟
⎟
⎠ ; B(x, t)=

⎛

⎜
⎜
⎝

x2 + 1 0 0

0 2 0

0 0 t+ 1

⎞

⎟
⎟
⎠ ;

f (u,x, t)=

⎛

⎜
⎜
⎝

cosu1 + sinx− x
sinu2 + sin t+ 1

∣
∣u3

∣
∣− x

⎞

⎟
⎟
⎠ ;

ϕ(x)=

⎛

⎜
⎜
⎝

π/2 + x

π

x

⎞

⎟
⎟
⎠ ; ψ1(t)=

⎛

⎜
⎜
⎝

π/2

π + t

0

⎞

⎟
⎟
⎠ , ψ2(t)=

⎛

⎜
⎜
⎝

π/2 + 1

π + t

1

⎞

⎟
⎟
⎠ ,

(4.5)

where u= (u1,u2,u3)T ∈R3, and J1 = J2 = [0,1]=: J .

In this case u(x, t)=
(π/2+x

π+t
x

)
is an exact solution. Now we verify the hypotheses (H1)–

(H3). Firstly, we have KerA(x, t) = span{(0, t,1)T} =: �(t) ∀(x, t) ∈ J × J . Therefore,
choosing

Q(t)= 1
t2 + 1

⎛

⎜
⎜
⎝

0 0 0

0 t2 t

0 t 1

⎞

⎟
⎟
⎠ , (4.6)

then we can verify that Q ∈ C1(J ,R3×3), Q2(t) = Q(t) and ImQ(t) =�(t) ∀t ∈ J . Next,
calculating G(x, t) :=A(x, t) +B(x, t)Q(t), we find

G(x, t)=

⎛

⎜
⎜
⎝

t+ 1 −x xt

0
(
3t2 + 1

)
/
(
t2 + 1

) (
t− t3)/(t2 + 1

)

−x2
(
t2 + t

)
/
(
t2 + 1

)
(t+ 1)/

(
t2 + 1

)

⎞

⎟
⎟
⎠ (4.7)
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and detG(x, t)= (t + 1)2 + 2x3t > 0 ∀(x, t)∈ [0,1]2. It follows that G(x, t) is nonsingular
for all (x, t)∈ J × J . Further,

∥
∥ f (ξ,x, t)− f (ζ ,x, t)

∥
∥=

∥
∥
∥
(

cosξ1− cosζ1, sinξ2− sinζ2,
∣
∣ξ3

∣
∣−∣∣ζ3

∣
∣)T

∥
∥
∥

=
(∣
∣cosξ1− cosζ1

∣
∣2

+
∣
∣sinξ2− sinζ2

∣
∣2

+
∣
∣(
∣
∣ξ3

∣
∣−∣∣ζ3

∣
∣)
∣
∣2
)1/2

�
(∣
∣ξ1− ζ1

∣
∣2

+
∣
∣ξ2− ζ2

∣
∣2

+
∣
∣ξ3− ζ3

∣
∣2
)1/2

= ‖ξ − ζ‖,
(4.8)

where ξ = (ξ1,ξ2,ξ3)T , ζ = (ζ1,ζ2,ζ3)T ∈ R3. Thus, all the conditions (H1)–(H3) are sat-
isfied. Theorem 3.1 ensures that the discretized problem (3.4)–(3.5) with data (4.5) has a
unique solution when h and τ are sufficiently small.

5. Conclusion

Explicit schemes applied to nonlinear DAEs and PDAEs lead to nonlinear IDEs. In this
paper the unique solvability of discretized problems obtained via discretization of non-
linear implicit differential equations is studied. The compatibility between index notions
for nonlinear index-1 DAEs and nonlinear index-1 IDEs as well as the convergence of the
explicit Euler method for nonlinear index-1 DAEs were established.

The investigation on the stability and convergence of an explicit scheme for degener-
ated parabolic equations is now in progress. Besides, the Floquet theory for linear index-1
IDEs and its applications to the stability theory for nonlinear IDEs has been established.
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