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We are concerned with proving the existence of one or more than one positive solution
of an n-point right-focal boundary value problem for the nonlinear dynamic equation
(−1)n−1xΔ

n
(t)= λr(t) f (t,xσ(t)). We will also obtain criteria which lead to nonexistence

of positive solutions. Here the independent variable t is in a time scale. We will use fixed
point theorems for operators on a Banach space.
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the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Motivated by the work of Anderson [3] on discrete third-order three-point right-focal
boundary value problems, in this paper we will study an nth-order n-point right-focal
boundary problem on time scales. This paper also gives nonexistence and multiplicity
results for positive solutions to the time scale boundary value problem

(−1)n−1xΔ
n
(t)= λr(t) f

(
t,xσ(t)

) ∀t ∈ [t1,ρ
(
tn
)]

, (1.1)

x
(
t1
)= xΔ

(
t2
)= ··· = xΔ

n−1
(tn)= 0, (1.2)

where n≥ 2, t1 < t2 < ··· < tn−1 < tn, λ is a real parameter, and x = x(t) is a desired solu-
tion. The arguments are similar to those used in [9, 13].

In the third section we obtain multiplicity results for this problem with λ = 1. In the
fourth section existence, nonexistence, and multiplicity results are given for the eigen-
value problem.

To understand this so-called dynamic equation (1.1) on a time scale T, we need some
preliminary definitions.

Definition 1.1. Let T be a nonempty closed subset of R and define the forward jump
operator σ(t) at t for t < supT by

σ(t) := inf
{
s > t : s∈ T

}
(1.3)
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2 A right-focal boundary value problem on time scales

and the backward jump operator ρ(t) at t for t > inf T by

ρ(t) := sup
{
s < t : s∈ T

}
(1.4)

for all t ∈ T.

We assume throughout that T has the topology that it inherits from the standard topol-
ogy on the real numbers R. If σ(t) > t, we say t is right scattered, while if ρ(t) < t, we say
t is left scattered. If σ(t)= t, we say t is right dense, while if ρ(t)= t, we say t is left dense.

We assume σ0(t)= t, and for any integer n > 0, we have

σn(t) := σ
(
σn−1(t)

)
. (1.5)

Throughout this paper we make the blanket assumption that a≤ b are points in T.

Definition 1.2. Define the interval in T:

[a,b] := {t ∈ T such that a≤ t ≤ b}. (1.6)

Other types of intervals are defined similarly.
We are concerned with calculus on time scales which is a unified approach to contin-

uous and discrete calculus. In [4, 11], Aulbach and Hilger have initiated the development
of this calculus. Since then, efforts have been made in the context of time scales, in estab-
lishing that some results for boundary value problems for ordinary differential equations
and their discrete analogues are special cases of more general results on time scales; for a
wide variety of problems addressed, see many references [1, 5, 6, 8–10, 14].

Definition 1.3. Assume x : T→ R and fix t ∈ T such that t < supT, then xΔ(t) is defined
to be the number (provided it exists) with the property that, given any ε > 0, there is a
neighborhood U of t such that

∣
∣[x
(
σ(t)

)− x(s)
]− xΔ(t)

[
σ(t)− s

]∣∣ < ε
∣
∣σ(t)− s

∣
∣ (1.7)

for all s∈U . xΔ(t) is called the delta derivative of x at t.

It can be shown that if x : T→ R is continuous at t ∈ T, t < supT, and t is right scat-
tered, then

xΔ(t)= xσ(t)− x(t)
σ(t)− t

. (1.8)

Note, if T= Z, where Z is the set of integers, then

xΔ(t)= Δx(t) := x(t+ 1)− x(t). (1.9)

Moreover, if T=R, then

xΔ(t)= x′(t). (1.10)
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Finally, for n≥ 1, define

xΔ
n
(t) := {xΔ(t)

}Δn−1

(1.11)

assuming xΔ
0
(t)= x(t).

Definition 1.4. If FΔ(t)= f (t), then define the integral of f by

∫ t

a
f (τ)Δτ := F(t)−F(a). (1.12)

Note that in the case T=R we have

∫ b

a
f (t)Δt =

∫ b

a
f (t)dt, (1.13)

and in the case T= Z we have

∫ b

a
f (t)Δt =

b−1∑

k=a
f (k), (1.14)

where a,b ∈ T with a≤ b.

2. Preliminaries

As in [2], we introduce the Taylor polynomials hj : T2 →R, j ∈N0, recursively defined as
follows:

h0(t,s)= 1 ∀s, t ∈ T, (2.1)

hj+1(t,s)=
∫ t

s
h j(τ,s)Δτ ∀s, t ∈ T. (2.2)

For integers n≥ 2 and for i= 1,2, . . . ,n− 1, define

un,i(t,s)≡ un,i
(
t,s : t1, t2, . . . , tn

)
, (2.3)

with t,s, t j ∈ T for 1≤ j ≤ n, as follows:

un,i(t,s) := (−1)n+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 h1
(
t, t1
)

h2
(
t, t1
)

. . . hn−1
(
t, t1
)

c2(s, i) 1 h1
(
t2, t1

)
. . . hn−2

(
t2, t1

)

c3(s, i) 0 1 . . . hn−3
(
t3, t1

)

...
...

... . . .
...

cn−1(s, i) 0 0 . . . h1
(
tn−1, t1

)

1 0 0 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.4)

where

cj(s, i) :=H( j− 1− i)hn− j
(
t j ,σ(s)

)
, (2.5)
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for j = 2,3, . . . ,n− 1 and i= 1,2, . . . ,n− 1. Here

H(x)=
⎧
⎨

⎩
0 if x < 0,

1 if x ≥ 0,
(2.6)

is the usual Heaviside function, and hj(t,s) is as defined in (2.2). In addition, define

vn,i(t,s) := un,i(t,s) + (−1)n−1hn−1
(
t,σ(s)

)
, (2.7)

for integers n≥ 2 and for i= 1,2, . . . ,n− 1.

Theorem 2.1 [2]. For un,i(t,s) as in (2.4) and vn,i(t,s) as in (2.7),

Gn
(
t,s : t1, t2, . . . , tn

)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∈ I1 :

⎧
⎨

⎩
un,1(t,s) if t ≤ σ(s),

vn,1(t,s) if t ≥ σ(s),

s∈ I2 :

⎧
⎨

⎩
un,2(t,s) if t ≤ σ(s),

vn,2(t,s) if t ≥ σ(s),
...

s∈ In−1 :

⎧
⎨

⎩
un,n−1(t,s) if t ≤ σ(s),

vn,n−1(t,s) if t ≥ σ(s),

(2.8)

where I1 = [t1,ρ(t2)], and Ii = [ρ(ti),ρ(ti+1)] for i= 1,2, . . . ,n− 1, is Green’s function for the
homogeneous problem (−1)n−1xΔ

n−1
(t)= 0 satisfying the boundary conditions (1.2).

Lemma 2.2 [2]. For s∈ [t1,ρ(t2)] and n≥ 2,

Gn
(
t,s : t1, t2, . . . , tn

)
⎧
⎨

⎩
< 0 if t ∈ (−∞, t1

)
,

> 0 if t ∈ (t1,σn−1
(
tn
)]
.

(2.9)

Theorem 2.3 [2]. Let un,i(t,s) and vn,i(t,s) be given as in (2.4) and (2.7), respectively.
Assume for n≥ 4 that

vn−i, j−i+1
(
σn−i

(
tn
)
,σ
(
s j
)

: ti, ti+1, . . . , tn−1
)
> 0, (2.10)

for j ∈ {2,3, . . . ,n− 2} and i= j− 1, j− 2, . . . ,1, and for s j ∈ [ρ(t j),ρ(t j+1)]. Then

Gn
(
t,s : t1, t2, . . . , tn

)
⎧
⎨

⎩
< 0 if t ∈ (−∞, t1

)
,

> 0 if t ∈ (t1,σn−1
(
tn
)]

,
(2.11)
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for s∈ [t1,ρ(tn)] if n is even, or for s∈ [t1,ρ(tn−1)] if n is odd. For odd n≥ 3, the additional
assumption

un,n−1
(
σn−1(tn

))
+ (−1)n−1hn−1

(
σn−1(tn

)
, tn
)
> 0 (2.12)

yields (2.11) for s∈ [ρ(tn−1),ρ(tn)] as well.

Throughout this paper, we assume that the time scale T is such that σ(s) is delta dif-
ferentiable for all s∈ T, t1 is right-scattered, and hypotheses of Theorem 2.3 hold.

Furthermore, we have the following assumptions.
(H1) r(s) is a nonnegative continuous function defined on [t1,ρ(tn)] satisfying

0 <
∫ tn

t1
Gn(t,s)r(s)Δs <∞, (2.13)

for t ∈ [σ(t1),σn−1(tn)].
(H2) f : [t1,ρ(tn)]×R→ R is such that f (t,x) ≥ 0 for x ∈ R+ and continuous with

respect to x, where R+ denotes the set of nonnegative real numbers.
Let us set

Mn :=maxGn(t,s)r(s), mn :=minGn(t,s)r(s) (2.14)

for s∈ [t1,ρ(tn)], t ∈ [σ(t1),σn−1(tn)], and

A1n := max
t∈[σ(t1),σn−1(tn)]

∫ tn

t1
Gn(t,s)r(s)Δs, A2n := min

t∈[σ(t1),σn−1(tn)]

∫ tn

t1
Gn(t,s)r(s)Δs.

(2.15)

We refer to [7, 12] for a discussion of the fixed point index that we use below. In
particular, we will make frequent use of the following lemma.

Lemma 2.4. Let � be a Banach space, and let �⊂� be a cone in �. Assume r > 0 and that
Ψ : �r →� is compact operator such that Ψx �= x for x ∈ ∂�r := {x ∈� : ‖x‖ = r}. Then
the following assertions hold.

(i) If ‖x‖ ≤ ‖Ψx‖ for all x ∈ ∂�r , then i(Ψ,�r ,�)= 0.
(ii) If ‖x‖ ≥ ‖Ψx‖ for all x ∈ ∂�r , then i(Ψ,�r ,P)= 1.

Thus, if there exists r1 > r2 > 0 such that condition (i) holds for x ∈ ∂�r1 and (ii) holds
for x ∈ ∂�r2 (or (ii) and (i)), then, from the additivity properties of the index, we know
that

i
(
Ψ,�r1 ,�

)= i
(
Ψ,�r1 \ int

(
�r2

)
,�
)

+ i
(
Ψ,�r2 ,�

)
. (2.16)

As a consequence of i(Ψ,�r1 \ int(�r2 ),�) �= 0,Ψ has a fixed point (nonzero) whose norm
is between r1 and r2.

Consider the Banach space of continuous functions on [t1,σn−1(tn)] with the norm

‖x‖ =max
{∣∣x(t)

∣
∣, t ∈ [σ(t1

)
,σn−1(tn

)]}
, (2.17)



6 A right-focal boundary value problem on time scales

and cone � in � given by

�=
{
x ∈� : x(t)≥ 0, t ∈ [σ(t1

)
,σn−1(tn

)]
, min
t∈[σ(t1),σn−1(tn)]

x(t)≥ mn

Mn
‖x‖

}
. (2.18)

By Theorem 2.1, solving the BVP (1.1)–(1.2) is equivalent to solving the following
integral equation in �:

x(t)= λ
∫ tn

t1
Gn(t,s)r(s) f

(
s,xσ(s)

)
Δs, t ∈ [t1,σn−1(tn

)]
, (2.19)

and consequently, it is equivalent to finding fixed points of the operator Ψnλ : �→�
defined by

Ψnλx(t) := λ
∫ tn

t1
Gn(t,s)r(s) f

(
s,xσ(s)

)
Δs, t ∈ [t1,σn−1(tn

)]
. (2.20)

First, we prove that for every λ > 0 given, this operator maps the cone � in itself.

Lemma 2.5. Let λ > 0 be given. Under the hypotheses (H1) and (H2), the operator Ψnλ is a
compact operator such that Ψnλ(�)⊂�.

Proof. That Ψnλ is a compact operator follows by Arzela-Ascoli’s theorem. Next, for all
x ∈�, by (H1), (H2), and the positivity property of the Green function, we have from
(2.20), Ψnλx(t)≥ 0 for all t ∈ [σ(t1),σn−1(tn)]. If x ∈�, then

min
t∈[σ(t1),σn−1(tn)]

Ψnλx(t)≥ λmn

∫ tn

t1
f
(
s,xσ(s)

)
Δs

≥ λ
mn

Mn

∫ tn

t1

{
max

t∈[σ(t1),σn−1(tn)]
Gn(t,s)r(s)

}
f
(
s,xσ(s)

)
Δs

≥ λ
mn

Mn
max

t∈[σ(t1),σn−1(tn)]

∫ tn

t1
Gn(t,s)r(s) f

(
s,xσ(s)

)
Δs

= mn

Mn

∥
∥Ψnλx

∥
∥.

(2.21)

Therefore, Ψnλx ∈�. �

3. Noneigenvalue problem

In this section we study the existence of at least two positive solutions to the following
BVP:

(−1)n−1xΔ
n
(t)= r(t) f

(
t,xσ(t)

) ∀t ∈ [t1,ρ
(
tn
)]

,

x
(
t1
)= xΔ

(
t2
)= ··· = xΔ

n−1(
tn
)= 0,

(3.1)

which is problem (1.1)-(1.2) with λ = 1. As an application, we also give an example to
demonstrate our result.

Theorem 3.1. The boundary value problem (3.1) has at least two positive solutions, x1 and
x2, if (H1) and (H2) are satisfied and, in addition, both of the following hold.
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(H3) There exists 0 < k < R < +∞ such that

f (t,x) >
Mn

m2
n

(
tn− t1

)x ∀x ∈ [0,k]
⋃

[R,+∞], t ∈ [t1,ρ
(
tn
)]
. (3.2)

(H4) There exists p > 0 such that

f (t,x) <
p

Mn
(
tn− t1

) ∀x ∈ [0, p], t ∈ [t1,ρ
(
tn
)]

, (3.3)

where Mn and mn are given as (2.14). Moreover, 0 < ‖x1‖ < p < ‖x2‖.

Proof. Let x ∈ ∂�k. From condition (H3), we have

∥
∥A1n

∥
∥= max

t∈[σ(t1),σn−1(tn)]

∫ tn

t1
Gn(t,s)r(s) f

(
s,xσ(s)

)
Δs

> mn
Mn

m2
n

(
tn− t1

)
∫ tn

t1
xσ(s)Δs

≥ Mn

mn
(
tn− t1

)
mn

Mn
‖x‖

∫ tn

t1
Δs= ‖x‖.

(3.4)

If x ∈ ∂�R1 , R1 ≥Mn/mnR, we have

min
t∈[σ(t1),σn−1(tn)]

x(t)≥ mn

Mn
‖x‖ = mn

Mn
R1 ≥ R. (3.5)

Hence x(s) ≥ R for all s ∈ [t1,ρ(tn)]. Therefore using condition (H3) again, we arrive at
the same conclusion.

Now, from (H4), if ‖x‖ = p,

∥
∥A1n

∥
∥= max

t∈[σ(t1),σn−1(tn)]

∫ tn

t1
Gn(t,s)r(s) f

(
s,xσ(s)

)
Δs

≤
∫ tn

t1
Mn f

(
s,xσ(s)

)
Δs < ‖x‖.

(3.6)

Since we can choose k > 0 small enough and R1 sufficiently large so that k < p < R1, we
assure the existence of two solutions: x1 ∈�p \ int(�k) and x2 ∈�R1 \ int(�p). �

Example 3.2. We illustrate Theorem 3.1 with specific time scale

T= Tc =
{
cm : m∈ Z}∪{0}, (3.7)

where c > 1 and the following specific parameter values for n = 3. Let c = 11/10, t1 = 1,
t2 = (11/10)3, and t3 = (11/10)4. Bohner and Peterson [6] show that

hj(t,s)=
j−1∏

ν=0

t− cνs
∑ν

μ=0 c
μ (3.8)
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for all s, t ∈ T. Using this formula, we have

G3(t,s)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∈
[

1,
(

11
10

)2]
:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t− 1)
(

11
10

s− 1
)

if t ≤ 11
10

s,

(t− 1)
(

11
10

s− 1
)

+
10
21

(
t− 11

10
s
)(

t− 121
100

s
)

if t ≥ 11
10

s,

s∈
[(

11
10

)2

,
(

11
10

)3]
:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

331
1000

(t− 1) if t ≤ 11
10

s,

331
1000

(t− 1) +
10
21

(
t− 11

10
s
)(

t− 121
100

s
)

if t ≥ 11
10

s.

(3.9)

If r(s)= s, then m3=minG(t,s)r(s)=10−2, M3=maxG(t,s)r(s)=3870659646821 · 10−13

for t ∈ [11/10,(11/10)6],s∈ [1,(11/10)3].
Let k = 1/18000, p = 1/5, R= 2/5, let

f (t,x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.104k sin
tπ

6
if x ∈ [0,k],

L(x)sin
tπ

6
if x ∈ [k, p],

K(x)sin
tπ

6
if x ∈ [p,R],

2.104 k+ 1
R

x sin
tπ

6
if x ∈ [R,+∞),

(3.10)

where

L(x)= 1 +
p− x

p− k

[
2.104k− 1

]
,

K(x)= 1 +
p− x

p−R

[
2.104(k+ 1)− 1

]
.

(3.11)

Note that f is continuous and nonnegative valued for x ≥ 0.
For t ∈ [1,(11/10)3] and x ∈ [0,k]

⋃
[R,∞), f (t,x) > (8340,14144, . . .)x. Indeed; for

x∈ [0,k], f (t,x)=2.104k sin(tπ/6)≥104k > (8340,14144, . . .)x, for x ∈ [R,∞), f (t,x) =
2.104((k + 1)/R)x sin(tπ/6) ≥ 104((k + 1)/R)x = (900050/36)x > (8340,14144, . . .)x. So
(H3) is verified.

For x ∈ [0,k], f (t,x)= 2.104k sin(tπ/6) < 2.104k < p/0,17963731420896261.
For x ∈ [k, p], f (t,x)=1 +((p− x)/(p− k))[2.104k− 1]sin(tπ/6)≤ 2.104k sin(tπ/6) <

2.104k < p/0,17963731420896261. Hence it verifies the (H4).
We conclude from Theorem 3.1 that for these parameter values, (3.1) for n= 3 has at

least two positive solutions, x1 and x2 such that 0 < ‖x1‖ < 1/5 < ‖x2‖.
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4. Eigenvalue problem

Define the nonnegative extended real numbers f0, f 0, f∞, and f ∞ by

f0 := liminf
x→0+

min
t∈[t1,ρ(tn)]

f (t,x)
x

, f 0 := limsup
x→0+

max
t∈[t1,ρ(tn)]

f (t,x)
x

,

f∞ := liminf
x→∞ min

t∈[t1,ρ(tn)]

f (t,x)
x

, f ∞ := limsup
x→∞

max
t∈[t1,ρ(tn)]

f (t,x)
x

,
(4.1)

respectively.
These numbers can be regarded as generalized super or sublinear conditions on the

function f (t,x) at x = 0 and x =∞. Thus, if f0 = f 0 = 0(+∞), then f (t,x) is superlinear
(sublinear) at x = 0 and if f∞ = f ∞ = 0(+∞), then f (t,x) is sublinear (superlinear) at
x = +∞.

First, we obtain an existence result for λ belonging to a given interval.

Theorem 4.1. If (H1)-(H2) hold and either
(a) Mn/(mnA2n f0 ) < λ < 1/(A1n f

∞), or
(b) Mn/(mnA2n f∞) < λ < 1/(A1n f

0)
is satisfied, where Mn, mn, A1n , and A2n are given as in (2.14) and (2.15), then the eigenvalue
problem (1.1)-(1.2) has at least one positive solution.

Proof. Assume (a) holds. First we consider f0 <∞. Since

Mn

mnA2n f0
< λ, (4.2)

there is an ε > 0 so that

λ
(
f0− ε

)mn

Mn
A2n ≥ 1. (4.3)

Using the definition of f0, there is an r1 > 0, sufficiently small, so that

f0− ε < min
t∈[t1,ρ(tn)]

f (t,x)
x

(4.4)

for 0 < x ≤ r1.
It follows that f (t,x) > ( f0− ε)x for 0 < x ≤ r1, t ∈ [t1,ρ(tn)].
Assume that x ∈ ∂�r1 , then

Ψnλx(t)= λ
∫ tn

t1
Gn(t,s)r(s) f

(
s,xσ(s)

)
Δs

> λ
(
f0− ε

)
∫ tn

t1
Gn(t,s)r(s)xσ(s)Δs

≥ λ
(
f0− ε

)mn

Mn
‖x‖A2n ≥ ‖x‖.

(4.5)
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Next, we consider the case f0 =∞. Choose K > 0 sufficiently large so that

λK
mn

Mn
A2n ≥ 1 (4.6)

for any t ∈ [t1,σn−1(tn)].
So there exists r1 > 0 so that f (t,x) > Kx for 0 < x ≤ r1.
Assume that x ∈ ∂�r1 , then

Ψnλx(t) > λK
∫ tn

t1
Gn(t,s)r(s)xσ(s)Δs≥ λK

mn

Mn
‖x‖A2n ≥ ‖x‖. (4.7)

Finally, we use the assumption

λ <
1

A1n f ∞
. (4.8)

Pick an ε1 > 0 so that

λ
(
f ∞ + ε1

)
A1n ≤ 1. (4.9)

Using the definition of f ∞, there is an r > r1 sufficiently large, so that

max
t∈[t1,ρ(tn)]

f (t,x)
x

< f ∞ + ε1, (4.10)

for x ≥ r.
It follows that f (t,x) < ( f ∞ + ε1)x for x ≥ r.
We now show that there is an r2 ≥ r such that if x ∈ ∂�r2 , then ‖Ψnλx‖ < ‖x‖.
Pick r2 ≥ rMn/mn > r1. Now assume x ∈ ∂�r2 and consider

Ψnλx(t) < λ
(
f ∞ + ε1

)
∫ tn

t1
Gn(t,s)r(s)xσ(s)Δs≤ λ( f ∞ + ε1)A1n‖x‖ ≤ ‖x‖. (4.11)

Therefore, by Lemma 2.4, Ψnλ has a fixed point x with r1 < ‖x‖ < r2. This shows that
condition (a) yields the existence of a positive solution of the eigenvalue problem (1.1)-
(1.2). This completes the proof of the theorem. �

The proof of part (b) is similar.
Our next results give criteria for the existence of one, more than one, or no positive

solutions of the eigenvalue problem (1.1)-(1.2) in terms of the superlinear or sublinear
behavior of f (t,x). For the next three theorems, in addition to the assumptions (H1) and
(H2) we assume.

(H5) f (t,x) > 0 on [t1,ρ(tn)]×R+.

Theorem 4.2. If hypotheses (H1), (H2), and (H5) are satisfied, then the following assertions
hold.

(a) If f0 =∞ or f∞ =∞, then there is a λ0 > 0 such that for all 0 < λ≤ λ0 the eigenvalue
problem (1.1)-(1.2) has a positive solution.
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(b) If f 0 = 0 or f ∞ = 0, then there is a λ0 > 0 such that for all λ ≥ λ0 the eigenvalue
problem (1.1)-(1.2) has a positive solution.

Proof of part (a). Let r > 0 be given. From conditions (H2) and (H5) we can define

L :=max
{
f (t,x) : (t,x)∈ [t1,ρ

(
tn
)]× [0,r]

}
> 0. (4.12)

Then if x ∈ ∂�r , it follows that

Ψnλx(t)≤ λL
∫ tn

t1
Gn(t,s)r(s)Δs≤ λLA1n . (4.13)

It follows that we can pick λ0 > 0 sufficiently small so that for all 0 < λ≤ λ0,

∥
∥Ψnλx

∥
∥≤ ‖x‖ (4.14)

for all x ∈ ∂�r .
Fix λ≤ λ0. Choose T > 0 sufficiently large so that

λ
mn

Mn
TA2n ≥ 1. (4.15)

Since f0 =∞, there exists s < r such that

min
t∈[t1,ρ(tn)]

f (t,x)
x

> T (4.16)

for 0 < x ≤ s. Hence, we have that

f (t,x) > Tx for t ∈ [t1,ρ
(
tn
)]

, 0 < x ≤ s. (4.17)

Now, let x ∈ ∂�s. In this case,

Ψnλx(t) > λT
∫ tn

t1
Gn(t,s)r(s)xσ(s)Δs≥ λT

mn

Mn
‖x‖A2n ≥ ‖x‖ (4.18)

for t ∈ [σ(t1),σn−1(tn)]. Hence we have shown that if x ∈ ∂�s, then ‖Ψnλx‖ ≥ ‖x‖.
It follows from Lemma 2.4 that the operator Ψnλ has a fixed point.
When f∞ =∞, there is a w > r such that

min
t∈[t1,ρ(tn)]

f (t,x)
x

> T (4.19)

for x ≥ ω.
It follows that f (t,x) > Tx for t ∈ [t1,ρ(tn)], x ≥ ω.
Let ω0 := ωMn/mn. Next if x ∈ ∂�ω0 , then we show that ‖Ψnλx‖ > ‖x‖. In fact,

Ψnλx(t) > λT
∫ tn

t1
Gn(t,s)r(s)xσ(s)Δs≥ λT

mn

Mn
‖x‖A2n ≥ ‖x‖ (4.20)

for t ∈ [t1,σn−1(tn)]. This completes the proof of part (a). �
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Part (b) holds in an analogous way.
Similar to the proof of Theorem 4.2, we get the next result.

Theorem 4.3. Under the hypotheses of Theorem 4.2, the following assertions hold.
(a) If f0 = f∞ = ∞, then there is a λ0 > 0 such that for all 0 < λ ≤ λ0, the eigenvalue

problem (1.1)-(1.2) has two positive solutions.
(b) If f 0 = f ∞ = 0, then there is a λ0 > 0 such that for all λ≥ λ0, the eigenvalue problem

(1.1)-(1.2) has two positive solutions.

Now, we give a nonexistence result as follows.

Theorem 4.4. Under the hypotheses of Theorem 4.2, the following assertions hold.
(a) If there is a constant c > 0 such that f (t,x)≥ cx for x ≥ 0, then there is a λ0 > 0 such

that the eigenvalue problem (1.1)-(1.2) has no positive solutions for λ≥ λ0.
(b) If there is a constant c > 0 such that f (t,x)≤ cx for x ≥ 0, then there is a λ0 > 0 such

that the eigenvalue problem (1.1)-(1.2) has no positive solutions for 0 < λ≤ λ0.

Proof of part (b). Assume there is constant c > 0 such that f (t,x)≤ cx for x ≥ 0. Assume
x(t) is a positive solution of the eigenvalue problem (1.1)-(1.2). We will show that for λ
sufficiently small and positive that this leads to a contradiction. Since Ψnλx(t)= x(t) for
t ∈ [t1,σn−1(tn)],

x(t)= λ
∫ tn

t1
Gn(t,s)r(s) f

(
s,xσ(s)

)
Δs≤ cλ

∫ tn

t1
Gn(t,s)r(s)xσ(s)Δs

≤ cλ‖x‖
∫ tn

t1
Gn(t,s)r(s)Δs≤ cλA1n‖x‖

(4.21)

for t ∈ [t1,σn−1(tn)]. Pick λ0 sufficiently small so that for 0 < λ≤ λ0,

cλA1n < 1, (4.22)

then we have x(t) < ‖x‖ for t ∈ [t1,σn−1(tn)] which is a contradiction.
The proof of part (a) is similar. �
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