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1. Introduction

One of the characteristics of discrete Painlevé equations is that they may possess more
than one canonical form. Indeed we often encounter equations which are written as a
system involving several dependent variables. Since by definition the discrete Painlevé
equations are second-order mappings, these multicomponent systems include equations
which are local. It is then straightforward, if some equation is linear in one of the vari-
ables, to solve for this variable and eliminate it from the final system. One thus obtains
two perfectly equivalent forms which may have totally different aspects.

This feature is in contrast with the continuous Painlevé case where the latitude left by
the transformations which preserve the Painlevé property is minimal. The fact that there
exist just 6 continuous Painlevé equations at second order while the number of possible
second-order discrete Painlevé equations is in principle infinite may play a role. The pos-
sible existence of an unlimited number of discrete Painlevé equations has been explicitly
pointed out in [2]. In that paper we have, in fact, presented a novel definition for the dis-
crete Painlevé equations. The traditional definition of a discrete Painlevé equation is that
of an integrable, nonautonomous, second-order mapping, the continuous limit of which
is a continuous Painlevé equation. This definition turned out to be severely limitative
since it binds the discrete systems to the continuous ones through the continuous limit.
However, as was shown repeatedly, the discrete systems are more fundamental than their
continuous counterparts, and in the case of discrete Painlevé equations much richer, as
far as the degrees of freedom are concerned. We were thus naturally led in [2] to propose
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a novel definition of discrete Painlevé equations, which is now a discrete system defined
by a periodic repetition of a given nonclosed pattern on the weight lattice of the affine

Weyl group E(1)
8 or one of its degenerations.

This proliferation of discrete Painlevé equations raises the question of the indepen-
dence of the various forms. Indeed, while one can, in principle, construct an unlimited
number of such systems, there exists no a priori guarantee that they are all different. This
is something to be assessed for each case at hand. In this paper we will concentrate on two
recently discovered discrete Painlevé equations and show that they are one and the same
equation. Moreover we will provide a novel derivation of this q-discrete system based on
the geometrical approach we have developed in [10].

2. The two discrete Painlevé systems

In a recent paper, Kajiwara et al. [6] have introduced the following system:

f̄0 = a0a1 f1
1 + a2 f2 + a2a3 f2 f3 + a2a3a0 f2 f3 f0
1 + a0 f0 + a0a1 f0 f1 + a0a1a2 f0 f1 f2

,

f̄1 = a1a2 f2
1 + a3 f3 + a3a0 f3 f0 + a3a0a1 f3 f0 f1
1 + a1 f1 + a1a2 f1 f2 + a1a2a3 f1 f2 f3

,

f̄2 = a2a3 f3
1 + a0 f0 + a0a1 f0 f1 + a0a1a2 f0 f1 f2
1 + a2 f2 + a2a3 f2 f3 + a2a3a0 f2 f3 f0

,

f̄3 = a3a0 f0
1 + a1 f1 + a1a2 f1 f2 + a1a2a3 f1 f2 f3
1 + a3 f3 + a3a0 f3 f0 + a3a0a1 f3 f0 f1

,

(2.1)

with

a0a1a2a3 = λ, (2.2)

and the “bar” indicates the evolution along the independent discrete variable. The latter
was introduced by taking

f0 f2 = f1 f3 = γz, (2.3)

whereupon one finds that z is of the form λn and thus the system is a q-discrete equation.
The inverse evolution of (2.1) is given by

f
0
= f3

a0a1

a2a1a0 + a1a0 f2 + a0 f2 f1 + f2 f1 f0
a0a3a2 + a3a2 f0 + a2 f0 f3 + f0 f2 f3

,

f
1
= f0

a1a2

a3a2a1 + a2a1 f3 + a1 f3 f2 + f3 f2 f1
a1a0a3 + a0a3 f1 + a3 f1 f0 + f1 f0 f3

,

f
2
= f1

a2a3

a0a3a2 + a3a2 f0 + a2 f0 f3 + f0 f2 f3
a2a1a0 + a1a0 f2 + a0 f2 f1 + f2 f1 f0

,

f
3
= f0

a3a0

a1a0a3 + a0a3 f1 + a3 f1 f0 + f1 f0 f3
a3a2a1 + a2a1 f3 + a1 f3 f2 + f3 f2 f1

.

(2.4)
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This system was studied in detail by Masuda [7] who has shown that its continuous limit
is the Painlevé V equation.

From (2.1) we find that the dependent variables satisfy the relations

f̄0 f̄2 = λ f1 f3, f̄1 f̄3 = λ f0 f2. (2.5)

However the constraint f0 f2 = f1 f3 is unwarranted. One can perfectly relinquish it and
obtain a valid discrete Painlevé equation. Thus it is possible to assume

f0 f2 = γz, f1 f3 = δz, f̄0 f̄2 = δz̄, f̄1 f̄3 = γz̄, (2.6)

where z̄ = λz, whereupon the equation acquires one more degree of freedom. This ex-
tension was introduced by one of us (T. Takenawa) in [13] where it was shown that the
geometry of the evolution of this extended equation, together with its Schlesinger trans-

formations, can be described by the affine Weyl group D(1)
5 . By using the freedom of the

origin of z, we can define z =
√
γδλn and find, finally,

f0 f2 = kz, f1 f3 = z

k
, (2.7)

where k =
√
γ/δ. Of course from (2.5) we find that f̄0 f̄2 = z̄/k and similarly f̄1 f̄3 = kz̄.

In another recent paper [11] two of the present authors (A. Ramani and B. Grammati-
cos), in collaboration with Willox et al., have examined the limits of the q-PVI equation
[1]

(
xnxn+1− znzn+1

)
(
xnxn−1− znzn−1

)
(
xnxn+1− 1

)
(
xnxn−1− 1

) =
(
xn− azn

)(
xn− zn/a

)(
xn− bzn

)(
xn− zn/b

)
(
xn− c

)(
xn− 1/c

)(
xn−d

)(
xn− 1/d

) , (2.8)

where zn = z0λn and a, b, c, d are the parameters of the equation. By letting a→∞ and
c→∞ simultaneously, we found the equation

(
xnxn+1− znzn+1

)(
xnxn−1− znzn−1

)
(
xnxn+1− 1

)(
xnxn−1− 1

) = f zn

(
xn− bzn

)(
xn− zn/b

)
(
xn−d

)(
xn− 1/d

) , (2.9)

where f stands for the ratio a/c. As we have shown the equation has PV as a continuous
limit. Again, the form (2.9) does not encapsulate the full freedom of the equation and an
extension is possible. This can be obtained either by starting from (2.9) and extending
it with the help of some discrete integrability criterion [3], [4] or by starting from the
“asymmetric” form of (2.8) which incorporates the maximal number of parameters. To
make a long story short the extended form of (2.9) turns out to be

(
xnxn+1− znzn+1

)(
xnxn−1− znzn−1

)
(
xnxn+1− 1

)(
xnxn−1− 1

) = f zn
θn

(
xn− θnbzn

)(
xn− θnzn/b

)
(
xn−d

)(
xn− 1/d

) (2.10)

with logθn = α(−1)n. As we have pointed out in [11], the geometry of the transformations

of this equation is related to the affine Weyl group D(1)
5 , just as in the case of (2.1).
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This result is not a coincidence. As we will show, the two equations are identical. In
order to show this we introduce the variables x ≡ f0, y ≡ f1 and use the relations f2 =
kz/x, f3 = z/(ky). The evolution equations for x can now be written as

xnxn+1 = znzn+1
(
a0xn + 1

)
+ ynkzn+1/a3 + a0a1xnyn

1 + a0xn + kynzn+1/a3 + a0a1xnyn
,

xnxn−1 = kynznzn−1
(
x+ a0

)
+ xnzn/a3 + kznzn−1a0a1

kyn
(
xn + a0

)
+ xnzn/a3 + kznzn−1a0a1

.

(2.11)

Next we eliminate y between the two equations and reorganise the result. We find

(
xnxn+1− znzn+1

)(
xnxn−1− znzn−1

)
(
xnxn+1− 1

)(
xnxn−1− 1

) = a1zn
ka3

(
xn + kzna2

)(
xn + kzn/a2

)
(
xn + a0

)(
xn + 1/a0

) (2.12)

which is exactly (2.10) with θn = k. This specific choice is due to the fact that we have
written the equation around xn. Had we written the equation around xn±1, we would
have found (2.10) with θn±1 = 1/k. Thus (2.1) is perfectly equivalent to (2.10).

3. A derivation using discrete Miura transformations

In [6] the derivation of (2.1) was based on the analysis of discrete dynamical systems
associated to extended affine Weyl groups of type A(1)

m ×A(1)
n . The derivation of (2.7), on

the other hand, as mentioned above, was based on the limits of equations related to the
E(1)

7 affine Weyl group. However as explained in [11, 13], (2.1) and (2.7) can be connected

to the affine Weyl group D(1)
5 . It is thus natural to present a derivation of these systems

(and here we choose (2.9) for simplicity reasons) based on the Miura transformations

obtained from the geometry of D(1)
5 .

In [10] we have studied in detail the geometry of the “asymmetric” q-PIII [9], which
was shown by Jimbo and Sakai [5] to be a discrete form of PVI, and we have found that it is

described by the affine Weyl group D(1)
5 . This equation was the first for which the property

of self-duality was established. What we mean by self-duality is that the same equation
describes the evolution along the independent variable or among any of the parameters
of the equation (the latter evolution being mediated by the Schlesinger transformations).
In this sense all the parameters, including the independent variable, play the same role.
The form of the “asymmetric” q-PIII we are going to use in what follows is

ŷ y
ˆ
=

(
x+ ap/q

)(
x+ 1/(apq)

)
(
1 + xa/(pq)

)(
1 + xp/(aq)

) , (3.1a)

x ̂̂x =
(
ŷ + r/q̂

)(
ŷ + 1/(rq̂)

)
(
1 + ŷ/(sq̂)

)(
1 + sŷ/q̂

) , (3.1b)

where the “hat” symbol is used in order to indicate evolution along the q direction, that
is, q̂ = λq. The form of (3.1) is chosen so as to indicate that the x variable exists only
on “even” lattice sites while the y variable exists only on “odd” sites with respect to the
evolution of q.
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Next we consider an evolution along the p variable and use the “tilde” symbol for it,
that is, p̃ = λp, while in the derivation that follows the parameters a, r, and s remain
constant. A new dependent variable w is introduced through the Miura transformations

w
˜
ŷ = ax+ 1/(pq)

1 + ax/(pq)
= y

ˆ
w̃, (3.2)

ŷ ̂̃̂w = â̂x+ 1/
(
p ̂̂q)

1 + â̂x/(p ̂̂q) . (3.3)

We now solve (3.2) and (3.3) for x and ̂̂x and use (3.1b) in order to obtain an equation

involving just ŷ, w
˜

, and ̂̃̂w:

(
w
˜
ŷ− 1/(pq)

w
˜
ŷ/(pq)− 1

)⎛
⎝ ŷ ̂̃̂w− 1/(p ̂̂q)

ŷ ̂̃̂w/(p ̂̂q)− 1

⎞
⎠= 1

a2

( ŷ + r/q̂)
(
ŷ + 1/(rq̂)

)
(
1 + ŷ/(sq̂)

)
(1 + sŷ/q̂)

. (3.4)

In order to bring (3.4) under canonical form we introduce formally Y = y/q and W =
w/p. By this generic notation we mean that one has to use the local value of p or q. We
remind at this point that p is invariant under the “hat” evolution and similarly q does not
change when we follow the “tilde” evolution. We find thus

⎛
⎝W
˜
Ŷ − 1/

(
p2q2

)

W
˜
Ŷ − 1

⎞
⎠
⎛
⎜⎝ Ŷ

̂̃̂
W − 1/

(
p2 ̂̂q2)

Ŷ
̂̃̂
W − 1

⎞
⎟⎠= 1

a2p2

(
Ŷ + r/q̂2

)(
Ŷ + 1/

(
rq̂2

))

(1 + Ŷ /s)(1 + sŶ)
. (3.5)

As can be assessed by inspection, (3.5) describes an evolution along an “oblique” direction
where a single step is a combination of two steps, one in each of the “hat” and “tilde”
directions. We are thus led into introducing formally the new independent variable

Z = 1
pq

, (3.6)

whereupon the quantity 1/(p2q2) on the left-hand side of (3.5) can be consistently rewrit-

ten as ẐZ
˜

. Similarly we have 1/(p2 ̂̂q2)= Ẑ
̂̃̂
Z. Moreover introducing the auxiliary quantity

g = p/q̂ we can give finally (3.5) into a form which, with the appropriate interpretation,
is identical to (2.12):

⎛
⎝W
˜
Ŷ − ẐZ

˜
W
˜
Ŷ − 1

⎞
⎠
⎛
⎜⎝ Ŷ

̂̃̂
W − Ẑ

̂̃̂
Z

Ŷ
̂̃̂
W − 1

⎞
⎟⎠= Ẑ

a2g

(Ŷ + rgẐ)(Ŷ + gẐ/r)

(1 + Ŷ /s)(1 + sŶ)
. (3.7)

We proceed now, along similar lines, to derive the second equation of the system. First we
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write the dual equations of (3.1):

w̃w
˜
=

(
x+ 1/(apq)

)
(x+ aq/p)(

1 + xa/(pq)
)(

1 + qx/(ap)
) , (3.8a)

xx
˜̃
=
(
w
˜

+ r/p
˜
)(
w
˜

+ 1/(r p
˜

)
)

(
1 + sw

˜
/p
˜
)(

1 +w
˜
/
(
sp
˜
)) . (3.8b)

Next we solve for x from the leftmost equality of (3.2) and downshifting the rightmost
equality of (3.2) twice along the tilde direction we solve it for x

˜̃
. Using (3.8b) we can now

obtain an equation involving just w
˜

, ŷ, and y
̂̃̃

. We find

(w
˜
ŷ− 1/(pq)

w
˜
ŷ/(pq)− 1

)
⎛
⎜⎜⎜⎝

y
̂̃̃
w
˜
− 1/

(
qp
˜̃

)

y
̂̃̃
w
˜
/
(
qp
˜̃

)
− 1

⎞
⎟⎟⎟⎠=

1
a2

(w
˜

+ r/p
˜

)
(
w
˜

+ 1/(r p
˜

)
)

(
1 +w

˜
/(sp
˜

)
)(

1 + sw
˜
/p
˜
) . (3.9)

Again in order to bring the equation to canonical form we use the variables Y and W .
Without entering into all the tedious but straightforward manipulations, we give the form
of the final equation

(W
˜
Ŷ − ẐZ

˜
W
˜
Ŷ − 1

)
⎛
⎜⎝
W
˜
Y
̂̃̃
−Z
˜
Z
̂̃̃

W
˜
Y
̂̃̃
− 1

⎞
⎟⎠= gZ

ã2

(W
˜

+ rZ
˜
/g)
(
W
˜

+Z
˜
/(rg)

)

(1 +W
˜
/s)(1 + sW

˜
)

. (3.10)

This equation complements (3.7). We must point out here that the parameter g has
shifted position, with respect to (3.7), from numerator to denominator and vice versa,
in perfect agreement with (2.10), where logθn = α(−1)n.

4. Relation to the Weyl group

In this section, we present explicit relations of these discrete Painlevé equations to the
extended Weyl group of type D(1)

5 , and discuss their space of initial conditions in the
spirit of the Okamoto-Sakai approach [8, 12]. Let us define the transformations wi (i =
0,1, . . . ,5), σ01, and π on the space (x, y; a, p,q,r,s,λ) ∈ C2× (the parameter space) as
follows: w0 maps (x, y; a, p,q,r,s,λ) to

(
x, y;

1
p

,
1
a

,q,r,s,λ
)

, (4.1)

w1 maps it to

(x, y; p,a,q,r,s,λ), (4.2)

w2 maps it to
(
x,
ay(x+ pq/a)
q(x+ ap/q)

; q, p,a,r,s,λ

)
, (4.3)



B. Grammaticos et al. 7

w3 maps it to

(
λ
√
r/s x(y + qs/λ)
q(y + rλ/q)

, y; a, p,λ
√
r

s
,
q
√
rs

λ
,
λ
√
rs

q
,λ

)
, (4.4)

w4 maps it to

(
x, y; a, p,q,

1
r

,s,λ
)

, (4.5)

w5 maps it to

(
x, y; a, p,q,r,

1
s

,λ
)

, (4.6)

σ01 maps it to

(
x,

1
y

;
1
a

, p,
1
q

,
1
r

,
1
s

,
1
λ

)
, (4.7)

π maps it to

(
y,x;

√
r

s
,
√
rs,

q

λ
,ap,

p

a
,

1
λ

)
. (4.8)

From Sakai’s theory on the relation to rational surfaces, the transformations we intro-
duced here act on the root basis (α0,α1,α2,α3,α4,α5) as

wi
(
αj
)= αj +

(
αi,αj

)
αi, (4.9)

where the bilinear form (αi,αj) is given by the Cartan matrix of negative sign of type D(1)
5 ;

σ01 :
(
α0,α1,α2,α3,α4,α5

) �−→ (
α1,α0,α2,α3,α4,α5

)
,

π :
(
α0,α1,α2,α3,α4,α5

) �−→ (
α4,α5,α3,α2,α0,α1

)
.

(4.10)

They generate the extended affine Weyl group of type D(1)
5 .

Below we give the list of mappings and their actions on the parameter space and on
the root basis. The dependent variables that appear below correspond to the following
diagram:

...
...

··· ˜̃y
ˆ

˜̃x ̂̃̃
y

̂̃̂
x̃ ···

w̃ ̂̃̂w
··· y

ˆ
x ŷ ̂̂x ···
w
˜

̂̂w
˜...
...

(4.11)
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(i) The map w (3.1a) : (x, y
ˆ

) �→ (x, ŷ) defined by (3.1a) is described by the generators
as

w(3.1a)=w5 ◦w4 ◦w1 ◦w0 ◦w2 ◦w1 ◦w0 ◦ σ01 ◦w2 :

(x, y
ˆ

;a, p,q,r,s,λ) �−→
(
x,

(x+ ap/q)
(
x+ 1/(apq)

)

y
ˆ

(
1 + xa/(pq)

)(
1 + xp/(aq)

) ;a, p,q,r,s,
1
λ

)
,

�α �−→ (−α0,−α1,−α2,α0 +α1 + 2α2 +α3 +α4 +α5,−α4,−α5
)

(4.12)

(1) w (3.1b) : (x, ŷ) �→ (̂̂x, ŷ),

w(3.1b)=w0 ◦w1 ◦w4 ◦w5 ◦w3 ◦w4 ◦w5 ◦π ◦ σ01 ◦π ◦w3 :
(
x, y; a, p,q,r,s,

1
λ

)
�−→

( (
ŷ + r/(qλ)

)(
ŷ + 1/(qrλ)

)

x
(
1 + ŷ/(qsλ)

)(
1 + ŷs/(qλ)

) , ŷ; a, p,qλ2,r,s,λ
)

,

�α �−→ (−α0,−α1,α0 +α1 +α2 + 2α3 +α4 +α5,−α3,−α4,−α5
)
.

(4.13)

(ii) Miura transformation w (3.2) : (x, ŷ) �→ (x,w
˜

),

w(3.2)=w5 ◦w4 ◦ σ01 ◦w0 ◦w1 ◦w2 ◦w0 :

(x, ŷ; a, p,q,r,s,1/λ) �−→
(
x,

ax+ 1/(pq)
ŷ
(
1 + ax/(pq)

) ;q,a, p,r,s,λ
)

,

�α �−→ (−α0−α2,α1 +α2,−α1,α0 +α1 +α2 +α3 +α4 +α5,−α4,−α5
)
.

(4.14)

(iii) The other Miura w (3.3) : (̂̂x, ŷ) �→ (̂̂x, ̂̃̂w) is the same as w (3.2),

w(3.3)=w5 ◦w4 ◦ σ01 ◦w0 ◦w1 ◦w2 ◦w0 :

(̂̂x, ŷ; a, p,qλ2,r,s,λ
) �−→

(
̂̂x,

â̂x+ 1/
(
pqλ2

)

ŷ
(
1 + â̂x/(pqλ2

)) ; qλ2,a, p,r,s,λ

)
.

(4.15)

The action on the root basis is the same as that of w (3.2).
(2) w (3.8a) : (x,w

˜
) �→ (x,w̃) is the same as w (3.1a),

w5 ◦w4 ◦w1 ◦w0 ◦w2 ◦w1 ◦w0 ◦ σ01 ◦w2 :

(x,w
˜

; q,a, p,r,s,λ) �−→
(
x,

(x+ aq/p)
(
x+ 1/(apq)

)

w
˜
(
1 + xq/(ap)

)(
1 + xa/(pq)

) ; q,a, p,r,s,
1
λ

)
.

(4.16)

The action on the root basis is the same as that of w (3.1a).
(3) w (3.8b) : (x

˜̃
,w
˜

) �→ (x,w
˜

) is the same as w (3.1b),

w0 ◦w1 ◦w4 ◦w5 ◦w3 ◦w4 ◦w5 ◦π ◦ σ01 ◦π ◦w3 :

(
x
˜̃

,w
˜

; q,a,
p

λ2
,r,s,λ

)
�−→

⎛
⎝ (w

˜
+ rλ/p)

(
w
˜

+ λ/(pr)
)

x
˜̃
(
1 +w

˜
λ/(ps)

)
(1 +w

˜
sλ/p)

,w
˜

; q,a, p,r,s,λ

⎞
⎠ .

(4.17)

The action on the root basis is the same as that of w (3.1b).
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(4) w (3.1b)◦w(3.1a)=w(3.8b)◦w(3.8a) acts on the root basis as

�α �−→ (
α0,α1,α2− δ,α3 + δ,α4,α5

)
, (4.18)

where δ = α0 +α1 + 2α2 + 2α3 +α4 +α5 is the null vector orthogonal to any basis; thus this
mapping is a translation of the Weyl group.

(iv) The mapping w(3.2)−1 ◦w(3.8b) ◦w(3.8a) ◦w(3.2) : (x, ŷ) �→ (˜̃x,
̂̃̃
y) acts on the

root basis as

�α �−→ (
α0 + δ,α1− δ,α2,α3,α4,α5

)
, (4.19)

thus, this sequence defines a translation of the Weyl group in another direction.

Next, we consider the “diagonal mappings” w(3.7) : ( ŷ,w
˜

) �→ ( ŷ, ̂̃̂w) and w (3.10) :
((y
̂̃̃

,w
˜

) �→ ( ŷ,w
˜

)) from the Weyl group theoretical point of view. However, these map-

pings do not belong to the same representation of the Weyl group. The above mappings
w (3.1a), and so forth can be lifted to the automorphism of a family of rational surfaces,
which are obtained from p1(C)×p(C)	 (x, y) by 2 times blowing-up on each line x = 0,
x =∞, y = 0, or y =∞. These rational surfaces are called “space of initial conditions” in
the sense of Okamoto-Sakai [8, 12]. For example, w (3.1a) can be lifted to an isomor-
phism from a rational surface obtained by blowups at

(x, y
ˆ

)=
(
− ap

q
,0
)

,
(
− 1
apq

,0
)

,
(
− pq

a
,∞
)

,
(
− aq

p
,∞
)

,

(
0,− rλ

q

)
,
(

0,− λ

qr

)
,
(
∞,− sq

λ

)
,
(

0,− q

sλ

) (4.20)

to a rational surface obtained by blowups at

(x, ŷ)=
(
− ap

q
,0

)
,

(
− 1
apq

,0

)
,

(
− pq

a
,∞
)

,

(
− aq

p
,∞
)

,

(
0,− r

qλ

)
,
(

0,− 1
qrλ

)
,
(
∞,−qsλ

)
,
(

0,−qλ

s

)
.

(4.21)

All elements of the above Weyl group preserve these parametrization, but the space of
initial conditions for w (3.7) and w (3.10) has different parametrization. Actually, w (3.7):

( ŷ,w
˜

) �→ ( ŷ, ̂̃̂w) is lifted to the isomorphism from a rational surface obtained by blowups
at

( ŷ,w
˜

)= (∞,0),(0,∞),

(
− λ

qr
,− rλ

p

)
,

(
− r

qλ
,− λ

pr

)
,

(
− qλ

s
,− ps

λ

)
,
(
− qsλ,− p

sλ

)
,

(
1
ŷ

, ŷw
˜

)
=
(

0,
p
(
1− a2q2

)

q
(
p2− a2

)
)

,

(
ŷ,

1
ŷw
˜

)
=
(

0,
p
(
q2− a2

)

q
(
1− a2p2

)
)

(4.22)
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to a rational surface obtained by blowups at

(
ŷ, ̂̃̂w

)
=(∞,0),(0,∞),

(
− r

qλ
,− 1

prλ

)
,

(
− 1
qrλ

,− r

pλ

)
,

(
−qsλ,−pλ

s

)
,

(
− qλ

s
,−psλ

)
,

(
1
ŷ

, ŷ ̂̃̂w
)
=
(

0,
p
(
1− a2q2λ4

)

qλ2
(
p2− a2

)
)

,

(
ŷ,

1

ŷ ̂̃̂w

)
=
(

0,
p
(
q2λ4− a2

)

qλ2
(
1− a2p2

)
)
.

(4.23)

These two different parametrizations are connected by Miura transformations, for exam-
ple, a mapping wd (3.2) : ( ŷ,w

˜
) �→ (x, ŷ), which is not an element of the Weyl group. In

order to avoid these complications, it is sufficient to consider parallelograms instead of
diagonal lines, that is, for example, the mapping w (3.2)−1 ◦w(3.8b) ◦w(3.3) ◦w(3.1b) :

(x, ŷ) �→ (
̂̃̂
x̃,
̂̂̂
˜̃y) is equivalent to the mapping w(3.10) ◦w(3.7) : ( ŷ,w

˜
) �→ (

̂̂̂
˜̃y, ̂̃̂w) through

Miura transformations wd(3.2), and so forth and it acts on the root basis as

�α �−→ (
α0 + δ,α1− δ,α2 + δ,α3− δ,α4,α5

)
. (4.24)

This difference can be explained at the level of the diagram (4.11) by the fact that only
vertically or horizontally adjoined pairs of dependent variables are mapped to each other

by our D(1)
5 Weyl group.

5. Conclusions

In this paper we have examined two different q-discrete Painlevé equations. The first one
was derived by Kajiwara et al. [6] in the form of a system of four depenent variables
subject to two constraints. Under this form, the equation was shown by Masuda [7] to be
a q-discrete analogue of PV. The constraints were shown [13] to be too restrictive and the
equation was extended accordingly. The second system was obtained [11] from a special
limit of q-PVI. In the present paper we have shown that, despite their radically different
forms, the two systems are in fact the same mapping. The geometry of both equations
(since it was not known that they coincided) was given in [11, 13] as being that of the

affine Weyl group D(1)
5 , but no explicit construction was offered. In the present paper we

have provided the missing link and have explicitly derived the equation at hand from the

elementary Miura transformations of D(1)
5 . Further, we have clarified these relations from

the point of view of Weyl group theory and of rational surfaces.
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