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We consider a boundary value problem for a linear difference equation with several widely
different coefficients. We study the existence and uniqueness of its solution and we give
successive asymptotic approximations for this solution, obtained by a simple iterative
method. This method improves the singular perturbation method, it offers considerable
reduction and simplicity in computation since it does not require to compute boundary
layer correction solutions.
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1. Introduction

In recent years, several methods have been developed for the study of boundary value
problems for difference equations, see, for example, [2, 3, 8]. In this paper, we consider
the (m+n) th-order difference equation:

εmam+n,k yk+n+m + ···+ ε2an+2,k yk+n+2 + εan+1,k yk+n+1

+ an,k yk+n + an−1,k yk+n−1 + ···+ a1,k yk+1 + a0,k yk = fk,

k = 0,1, . . . ,N −n−m,

(1.1)

where ε is a small parameter, (ai,k), 0 ≤ i ≤ m + n, ( fk), 0 ≤ k ≤ N − n−m, are given
discrete real functions, and N is a fixed integer. We associate to (1.1) the boundary con-
ditions

yk = αk, k = 0, . . . ,n− 1, yN−k = βk, k = 0, . . . ,m− 1, (1.2)

where αk, 0≤ k ≤ n− 1, and βk, 0≤ k ≤m− 1, are given constants.
We are concerned with the boundary value problem (Pε) described by (1.1) and

(1.2), it is a classical representation of multi-time-scale digital systems. Such systems are
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prevalent in engineering and other great applications especially digital control theory [9–
11, 14] and their perturbation analysis is gaining momentum [4–7, 13]. The presence of
small parameters increases the order of the system and exhibits time-scale phenomena.
The high dimensionality coupled with the time-scale behavior makes the system compu-
tationally stiff resulting in the use of extensive numerical routines.

Recently, the particular case m= 1, n= 1 of problem (Pε) was studied in [15]. Through
this paper, we studied the existence and uniqueness of the solution and we developed an
iterative convergent method to get successive asymptotic approximations for this solu-
tion.

The boundary problem (Pε) was also considered by Comstock and Hsiao [1] in the
homogeneous case fk = 0 for m= 1, n= 1. The time-invariant case of problem (Pε) was
considered by Naidu and Rao (see [12, Chapter 1]) and also by Krishnarayalu [7], where
small parameters are multiple. These authors developed a singular perturbation method,
a formal procedure, to give approximate solutions which consist of outer solutions and
boundary layer correction solutions. Notice that in general this method cannot be extended
for the general case of time-variant problems (see Section 3.2, Remark 3.3, for the argu-
ments).

The aim of this paper is to extend for problem (Pε) the perturbation method devel-
oped in [15]. We give sufficient conditions on the coefficients of (1.1), to ensure existence
and uniqueness of the solution of problem (Pε), and successive approximations of this
solution, obtained by a simple procedure. A proof is given of uniform convergence of the
iterative method. The most distinguished feature of this method, besides order reduction,
is the decoupling of the original boundary value problem into initial value problems,
which facilitates considerable treatment of the boundary value problem. The proposed
method consists simply of writing the problem (Pε) in a matrix form (see the proof of
Theorem 2.1 for the details), and can be easily applied to initial value problems.

Our method is proposed to improve the singular perturbation method, it offers con-
siderable reduction and simplicity in computation because it does not require to com-
pute boundary layer correction solutions. The difference between both methods lies in the
definition of boundary conditions of the degenerate system, obtained by suppressing the
perturbation parameter in the initial system (1.1)-(1.2).

The remainder of the paper is organized as follows. In Section 2, we give the main
results. We study the existence and uniqueness of the problem (Pε), we present our pro-
cedure to get approximate solutions, and we give proof of uniform convergence of the
proposed iterative method. Section 3 is mainly devoted to validate the effectiveness of
our method, compared with the singular perturbation method. We consider a right end
perturbation (small parameters are situated on the right), and we deduce the results from
Section 2. The comparison with the other formal method requires the analysis of its re-
sults. We conclude with Section 4.

2. Main result

2.1. Formal asymptotic solution. In this section, we develop a perturbation method to
obtain asymptotic approximate solutions for the whole order. This iterative method facil-
itates a considerable reduction and simplicity in computation. Like in any perturbation
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method, the solution yk(ε), 0≤ k ≤N , of problem (Pε) is assumed as a power series in ε,
we seek for a solution of the natural form

yk(ε)=
∞∑

j=0

ε j y
( j)
k , 0≤ k ≤N. (2.1)

Substituting the formal expansion (2.1) into (1.1)-(1.2), and equating the coefficients at
the same powers of ε, a set of equations is obtained. For the zeroth-order asymptotic
approximation, the resulting equations are given by

y(0)
k = αk, k = 0,1, . . . ,n− 1,

an,k y
(0)
k+n + an−1,k y

(0)
k+n−1 + ···+ a0,k y

(0)
k = fk, k = 0,1, . . . ,N −m−n,

y(0)
N−k = βk, k = 0,1, . . . ,m− 1.

(2.2)

The system described by (2.2) corresponds to the degenerate problem of (Pε), it is obtained
by suppressing the perturbation parameter in (1.1)-(2.1). Notice that (2.2) is an initial

value problem. It defines the sequence (y(0)
0 , . . . , y(0)

N−m) if and only if an,k �= 0 for 0≤ k ≤
N −n−m. The final conditions in (2.2) define the sequence (y(0)

N−m+1, . . . , y(0)
N ).

The terms y(0)
k , 0 ≤ k ≤ N − n−m, can be computed without any knowledge of the

boundary conditions yN−k = βk, 0 ≤ k ≤m− 1. By analogy with the case of differential
equations, we can say that there are m boundary layers located at the right, that is, at the
final values.

For the jth-order asymptotic approximation, j ≥ 1, we agree that

y(l)
k ≡ 0, l < 0, 0≤ k ≤N , (2.3)

to give a compact writing of the resulting equations which are given by

y
( j)
k = 0, k = 0,1, . . . ,n− 1,

an,k y
( j)
k+n + an−1,k y

( j)
k+n−1 + ···+ a0,k y

( j)
k

=−an+1,k y
( j−1)
k+n+1− an+2,k y

( j−2)
k+n+2

−···− an+m,k y
( j−m)
k+n+m, k = 0, . . . ,N −n−m,

y
( j)
N−k = 0, k = 0,1, . . . ,m− 1.

(2.4)

Notice that (2.4) is an initial value problem. It defines the sequence (y
( j)
0 , . . . , y

( j)
N−m)

if and only if an,k �= 0 for 0 ≤ k ≤ N − n−m. The final conditions in (2.4) define the

sequence (y
( j)
N−m+1, . . . , y

( j)
N ).

2.2. Existence and convergence. In this section, we present the main results of this paper.
We give sufficient conditions that guarantee, for problem (Pε), existence and uniqueness
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of the solution, and we prove the convergence of the series (2.1). The following theorem
includes these results.

Theorem 2.1. Assume that an,k �= 0 for 0≤ k ≤ N − n−m. Then there exists positive real
number ε0, if |ε| < ε0, the solution (yk(ε)) of (Pε) exists and is unique and satisfies (2.1)

uniformly for 0≤ k ≤N , where y(0)
k and y

( j)
k are the solutions of (2.2) and (2.4), respectively.

More precisely, for all n≥ 0 and all 0≤ k ≤N ,

∣∣∣∣∣yk(ε)−
n∑

j=0

ε j y
( j)
k

∣∣∣∣∣≤ C

(|ε|/ε0
)n+1

1−|ε|/ε0
, (2.5)

where C is a constant independent of n and ε.

Proof. For all k = 0,1, . . . ,N −n−m, we use the transformations

u1(k+n+ 2)= εyk+n+2,

u2(k+n+ 3)= εu1(k+n+ 3),

···
um−1(k+n+m)= εum−2(k+n+m),

(2.6)

then problem (Pε) becomes

yk = αk, k = 0,1, . . . ,n− 1,

ε
(
am+n,kum−1(k+m+n) + ···+ an+2,ku1(k+n+ 2) + an+1,k yk+n+1

)

+ an,k yk+n + an−1,k yk+n−1 + ···+ a0,k yk = fk, k = 0,1, . . . ,N −n−m,

yN−k = βk, k = 0,1, . . . ,m− 1.

(2.7)

We can now write the system (2.7) in the matrix form

Aεy =
(
A0 + εU

)
y = f , (2.8)

where

y = (y0, y1, . . . , yN ,u1, . . . ,um−1
)t

,

uj =
(
uj(n+ j + 1), . . . ,uj(N −m+ j + 1)

)t
, j = 1, . . . ,m− 1,

f = (α0,α1, . . . ,αn−1, f0, f1, . . . , fN−n−m,βm−1,βm−2, . . . ,β0,0, . . . ,0
)
,

(2.9)
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and the matrix A0 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· 0
...

. . .
...

...
...

...
...

0 ··· 1 0 ··· 0 0 ··· 0
a0,0 ··· an−1,0 an,0 ··· 0 0 ··· 0

...
. . .

...
...

. . .
...

...
...

0 ··· 0 a0,N−n−m ··· an,N−n−m 0 ··· 0
0 ··· 0 0 ··· 0 1 ··· 0
...

...
...

...
...

. . .
...

0 ··· 0 0 ··· 0 0 ··· 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.10)

whereas matrixes Aε and U can be deduced easily from (2.7), (2.8), (2.9), and (2.10). We
indifferently denote by ‖ · ‖ the infinity norm inRN+1+(m−1)×(N−n−m+1) and the associated
matrix norm. Since an,k �= 0 for 0≤ k ≤N −n−m, matrix A0 is nonsingular and we can
define the positive number

ε0 = 1∥∥UA−1
0

∥∥ . (2.11)

If |ε| < ε0, we deduce from (2.8) that

A−1
0

+∞∑

l=0

(− εUA−1
0

)l =A−1
0

(
I + εUA−1

0

)−1 =A−1
ε , (2.12)

that is, the inverse of matrix Aε is well defined for |ε| < ε0, and (2.8) has a unique solution
y(ε) given by

y(ε)=A−1
ε f . (2.13)

We denote

y(l) = A−1
0

(−UA−1
0

)l
f , l ≥ 0, (2.14)

y(l) =
(
y(l)

0 , y(l)
1 , . . . , y(l)

N ,u(l)
1 , . . . ,u(l)

m−1

)t ∈RN+1+(m−1)×(N−n−m+1), y(l)
k ∈R,

u(l)
j =

(
u(l)
j (n+ j + 1), . . . ,u(l)

j (N −m+ j + 1)
)t

, j = 1, . . . ,m− 1,
(2.15)

from (2.12), (2.13), and (2.14) we deduce that, for |ε| < ε0, the solution y(ε) of (2.8) can
be represented in the convergent series:

y(ε)=
+∞∑

l=0

εl y(l). (2.16)
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We can easily verify that the N + 1 first components of y(0) (resp., y(l), l ≥ 1), that is, y(0)
k ,

0≤ k ≤N , (resp., y(l)
k , 0≤ k ≤N , l ≥ 1) satisfy problem (2.2) (resp., problem (2.4)).

To prove estimate (2.5), we compute the remainder of series (2.12),

∥∥∥∥∥A
−1
ε −A−1

0

n∑

l=0

(− εUA−1
0

)l
∥∥∥∥∥≤

∥∥A−1
0

∥∥
+∞∑

l=n+1

∥∥εUA−1
0

∥∥l

=
∥∥A−1

0

∥∥∥∥εUA−1
0

∥∥n+1

1−∥∥εUA−1
0

∥∥ ≤ ∥∥A−1
0

∥∥
(|ε|/ε0

)n+1

1−|ε|/ε0
.

(2.17)

We denote by C the real positive number

C = ∥∥A−1
0

∥∥‖ f ‖, (2.18)

we deduce from (2.13), (2.17), and (2.18) that

∥∥∥∥∥y(ε)−
n∑

j=0

ε j y( j)

∥∥∥∥∥≤ C

(|ε|/ε0
)n+1

1−|ε|/ε0
, (2.19)

with the chosen norm, we obtain (2.5). �

3. Comparison with singular perturbation method

In this section, we consider a right end perturbation [12]. We are concerned with the
boundary value problem

yk = αk, k = 0, . . . ,m− 1,

am+n,k yk+m+n + ···+ am+1,k yk+m+1 + am,k yk+m

+ εam−1,k yk+m−1 + ···+ εm−1a1,k yk+1 + εma0,k yk

= fk, k = 0,1, . . . ,N −n−m,

yN−k = βk, k = 0, . . . ,n− 1.

(3.1)

The stationary case of problem (3.1) was considered in [12]. The singular perturbation
method was developed to get asymptotic expansions for the solution.

In order to validate the effectiveness of our method, we compare the results given by
both methods. First, we give our results which are easy to deduce from Section 2, then we
analyze the formal expansions obtained in [12].

3.1. Perturbation method. Using the transformation

zk = yN−k, 0≤ k ≤N , (3.2)

problem (3.1) is brought in the form (1.1)-(1.2) and we can already state the results.
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Let y(0)
k , 0≤ k ≤N , be the solution of the problem

y(0)
k = αk, k = 0,1, . . . ,m− 1,

am+n,k y
(0)
k+m+n + ···+ am+1,k y

(0)
k+m+1 + am,k y

(0)
k+m

= fk, k = 0,1, . . . ,N −m−n,

y(0)
N−k = βk, k = 0,1, . . . ,n− 1.

(3.3)

The sequence (y(0)
0 , . . . , y(0)

N−m) in (3.3) can be computed using the final values y(0)
m , . . . , y(0)

N

if and only if am,k �= 0 for 0 ≤ k ≤ N − n−m. The values y(0)
0 , . . . , y(0)

m−1 are fixed. The m
boundary layers are located at the left, at the initial values.

Once the coefficients y(0)
k , 0≤ k ≤N , are fixed from (3.3), we can define the following

problems recursively for j ≥ 1.

Let y
( j)
k , 0≤ k ≤N , j ≥ 1, be the solution of the problem

y
( j)
k = 0, k = 0,1, . . . ,m− 1,

am+n,k y
( j)
k+m+n + ···+ am+1,k y

( j)
k+m+1 + am,k y

( j)
k

=−am−1,k y
( j−1)
k − am−2,k y

( j−2)
k −···

− a0,k y
( j−m)
k , k = 0,1, . . . ,N −m−n,

y
( j)
N−k = 0, k = 0,1, . . . ,n− 1.

(3.4)

The sequence (y
( j)
0 , . . . , y

( j)
N−m) can be computed using the final values y

( j)
N−n+1, . . . , y

( j)
N in

(3.4) if and only if am,k �= 0 for 0≤ k ≤N −n−m. The values y
( j)
0 , . . . , y

( j)
m−1 are fixed.

Corollary 3.1. Assume that am,k �= 0 for 0 ≤ k ≤ N − n−m. Then there exists positive
real number ε0, if |ε| < ε0, the solution (yk(ε)) of (3.1) exists and is unique, and satisfies

yk(ε)=
∞∑

j=0

ε j y
( j)
k , 0≤ k ≤N , (3.5)

uniformly for 0≤ k ≤N , where y(0)
k and y

( j)
k are the solutions of (2.2) and (2.4), respectively.

More precisely, for all n≥ 0 and all 0≤ k ≤N ,

∣∣∣∣∣yk(ε)−
n∑

j=0

ε j y
( j)
k

∣∣∣∣∣≤ C

(|ε|/ε0
)n+1

1−|ε|/ε0
, (3.6)

where C is a constant independent of n and ε.

Proof. A direct consequence of (3.2) and Theorem 2.1. �
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3.2. Singular perturbation method. The following problem:

yk = αk, k = 0, . . . ,m− 1,

yk+m+n + ···+ amyk+m + εam−1yk+m−1 + ···+ εma0yk

= fk, k = 0,1, . . . ,N −n−m,

yN−k = βk, k = 0, . . . ,n− 1,

(3.7)

was considered in [12], it corresponds to the stationary case of problem (3.1). By analogy
with the case of ordinary differential equations, the authors developed a singular pertur-
bation method. They wrote the solution yk(ε), 0≤ k ≤N , of (3.7) in the form

yk(ε)=
∞∑

j=0

ε j y
( j)
t,k + εk

∞∑

j=0

ε jw
( j)
0,k + ···+ εk−m+1

∞∑

j=0

ε jw
( j)
m−1,k, 0≤ k ≤N , (3.8)

where
∑∞

j=0 ε
j y

( j)
t,k is the outer series and

∑∞
j=0 ε

jw
( j)
s,k , s= 0, . . . ,m− 1, is the correction series

introduced to recover the m boundary layers located in the initial conditions.

The coefficients y(0)
t,k are the solutions of the final value problem (3.9)-(3.10),

am+ny
(0)
t,k+m+n + am+n−1y

(0)
t,k+m+n−1 + ···+ amy

(0)
t,k+m

= fk, k =N −n−m,N −n−m− 1, . . . ,
(3.9)

y(0)
t,N = β0, y(0)

t,N−1 = β1, . . . , y(0)
t,N−n+1 = βn−1. (3.10)

The coefficients w(0)
s,k , s = 0,1, . . . ,m− 1, are the solutions of the initial value problem

(3.11)-(3.12),

amw
(0)
s,k+m + am−1w

(0)
s,k+m−1 + ···+ a0w

(0)
s,k = 0, k = 0,1, . . . , (3.11)

w(0)
s,s = αs− y(0)

t,s , w(0)
s,k = 0 if k �= s, s= 0,1, . . . ,m− 1. (3.12)

To give a single writing for the problems which define the coefficients y
( j)
t,k , w

( j)
s,k , j ≥ 1,

0≤ s≤m− 1, we agree that for all k, 0≤ s≤m− 1, j < 0,

y
( j)
t,k ≡ 0, w

( j)
s,k ≡ 0. (3.13)

The coefficients y
( j)
t,k are the solutions of the final value problem (3.14)-(3.15),

am+ny
( j)
t,k+m+n + am+n−1y

( j)
t,k+m+n−1 + ···+ amy

( j)
t,k+m

=−am−1y
( j−1)
t,k+m−1− am−2y

( j−2)
t,k+m−2−···

− a0y
( j−m)
t,k , k =N −n−m,N −n−m− 1, . . . ,

(3.14)

y
( j)
t,N = y

( j)
t,N−1 = ··· = y

( j)
t,N−n+1 = 0. (3.15)



Tahia Zerizer 9

The coefficients w
( j)
s,k , 0≤ s≤m− 1, j ≥ 1, are the solutions of the initial value problem

(3.16)-(3.17),

amw
( j)
s,k+m + am−1w

( j)
s,k+m−1 + ···+ a0w

( j)
s,k

=−am+1w
( j−1)
s,k+m+1− am+2w

( j−2)
s,k+m+2−···

− am+nw
( j−n)
s,k+m+n, k = 0,1, . . . ,

(3.16)

w
( j)
s,s =−y( j)

t,s , w
( j)
s,k = 0 if k �= s, 0≤ s≤m− 1. (3.17)

This formal procedure was not justified. The expansion (3.8) is not asymptotic when the
order is equal to N −n−m+ 2, see the following proposition.

Proposition 3.2. The series (3.19) is not an asymptotic expansion of the solution yk(ε) of
order N −n−m+ 2.

Proof. Since ỹ(0)
N−n+1 = βn−1 and y

( j)
t,N−n+1 = 0 for j ≥ 1, from (3.8) we get

yN−n+1(ε)= βn−1 + εN−n−m+2w(0)
m−1,N−n+1 + ··· . (3.18)

Since in general w(0)
m−1,N−n+1 �= 0, (3.8) is not an asymptotic expansion of yN−n+1(ε)= βn−1

of order N −n−m+ 2. �

Remark 3.3. To get the correction terms w
( j)
s,k , 0 ≤ s ≤ m− 1, j ≥ 0, we must compute

the values y(0)
t,0 , y(0)

t,1 , . . . , y(0)
t,m−1 and y

( j)
t,0 , y

( j)
t,1 , . . . , y

( j)
t,m−1. This computation requires to solve

the difference equations (3.9) and (3.14) for k =−1,−2, . . . ,−m. In general, for the time-
variant case, we do not have at our disposal the values am,−l,am+1,−l, . . . ,am+n−1,−l, f−l, l =
1,2, . . . ,m which allow us to compute the coefficients y(0)

t,s and y
( j)
t,s , j ≥ 1. Consequently,

we cannot define the problems (3.11)-(3.12) and (3.16)-(3.17).

3.2.1. There is no need of correction series. In this section, we compare the expansion (3.8)
and our expansion given in Section 3.1, for the time-invariant case. From (3.8) we see
that

yk(ε)=
+∞∑

j=0

ε j ỹ
( j)
k , 0≤ k ≤N , (3.19)

where

ỹ
( j)
k = y

( j)
t,k +w

( j−k)
0,k +w

( j−k+1)
1,k + ···+w

( j−k+m−1)
m−1,k , 0≤ k ≤N , j ≥ 0. (3.20)

Proposition 3.4. The coefficients of series (3.19) satisfy

ỹ(0)
s = αs, 0≤ s≤m− 1, ỹ(0)

k = βN−k, N −n+ 1≤ k ≤N ,

ỹ
( j)
s = 0, 0≤ s≤m− 1, ỹ

( j)
k = 0, N −n+ 1≤ k ≤N , 1≤ j ≤N −n−m+ 1.

(3.21)
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Proof. From (3.12) and (3.20), we deduce

ỹ(0)
s = y(0)

t,s +w(−s)
0,s +w(−s+1)

1,s + ···+w(−s+m−1)
m−1,s = y(0)

t,s +w(0)
s,s = αs, s= 0,1, . . . ,m− 1.

(3.22)

Equations (3.10) and (3.20) give

ỹ(0)
k = y(0)

t,k ≡ βN−k, k =N −n+ 1,N −n+ 2, . . . ,N. (3.23)

In addition, (3.17) and (3.20) give

ỹ
( j)
s = y

( j)
t,s +w

( j−s)
0,s +w

( j−s+1)
1,s + ···+w

( j−s+m−1)
m−1,s = y

( j)
t,s +w

( j)
s,s ≡ 0, s= 0,1, . . . ,m− 1.

(3.24)

Since 1≤ j ≤N + 1−n−m, for all N −n+ 1≤ k ≤N , we have

j− k < j− k+ 1 < ··· < j− k+m− 1 < 0, (3.25)

then, from (3.15) and (3.20), we deduce

ỹ
( j)
k = y

( j)
t,k ≡ 0, N −n+ 1≤ k ≤N , 1≤ j ≤N + 1−n−m. (3.26)

�

Proposition 3.5. The coefficients of order 0 in (3.19) satisfy the equation

ỹ(0)
k+m+n + am+n−1 ỹ

(0)
k+m+n−1 ···+ am ỹ

(0)
k+m = fk, k = 0,1, . . . ,N −n−m. (3.27)

The coefficients of order j, 1≤ j ≤N −n−m+ 1, in (3.19) satisfy the equation

ỹ
( j)
k+m+n + am+n−1 ỹ

( j)
k+m+n−1+···+ am ỹ

( j)
k+m

=−am−1 ỹ
( j−1)
k+m−1− am−2 ỹ

( j−2)
k+m−2−···

− a0 ỹ
( j−m)
k , k = 0,1, . . . ,N −n−m.

(3.28)

Proof. From (3.20), we get ỹ
( j)
k = y

( j)
t,k +w

( j−k)
0,k +w

( j−k+1)
1,k + ···+w

( j−k+m−1)
m−1,k , that is,

ỹ(0)
k+m+l = y(0)

t,k+m+l, ∀l ≥ 0, k ≥ 0. (3.29)

Then (3.9) is equivalent to the difference equation (3.27). We show now that the coeffi-

cients ỹ
( j)
k , k = 0, . . . ,N , satisfy the difference equation given in (3.28).

First, notice that with the convention (3.13), we get a unique writing for (3.11) and
(3.16), thus we does not have to consider several cases. If we replace the variable j by
j + s− k−m in (3.16) that we multiply by −1, we obtain

w
( j+s−k−n−m)
s,k+n+m + an+m−1w

( j+s−k−n−m+1)
s,k+n+m−1 + ···+ amw

( j+s−k−m)
s,k+m

=−am−1w
( j+s−k−m)
s,k+m−1 −···− a0w

( j+s−k−m)
s,k , k = 0,1, . . . .

(3.30)



Tahia Zerizer 11

Let us write (3.30) for various values of s, s= 0,1, . . . ,m− 1, the sum of these m equations
and (3.14) gives the following difference equation:

am+n

(
y

( j)

t,k+m+n +w
( j−k−m−n)
0,k+m+n +···+w

( j−k−n−1)
m−1,k+m+n

)

+ am+n−1

(
y

( j)
t,k+m+n−1 +w

( j−k−m−n+1)
0,k+m+n−1 + ···+w

( j−k−n)
m−1,k+m+n−1

)

+ ···+ am
(
y

( j)
t,k+m +w

( j−k−m)
0,k+m + ···+w

( j−k−1)
m−1,k+m

)

=−am−1

(
y

( j−1)
t,k+m−1 +w

( j−k−m)
0,k+m−1 + ···+w

( j−k−1)
m−1,k+m−1

)

−···− a0

(
y

( j−m)
t,k +w

( j−k−m)
0,k + ···+w

( j−k−1)
m−1,k

)
, k = 0,1,2, . . . .

(3.31)

From (3.20), we make sure that (3.31) is nothing other than the difference equation
(3.28). �

Conclusion 3.6. Propositions 3.4 and 3.5 show that when j ≤ N + 1− n−m, the coeffi-
cients of expansion (3.8) satisfy the same problems given by our method in Section 3.1.
By the uniqueness of the solutions of problems (3.3) and (3.4), we conclude that we have
the same expansions of order N + 1−n−m.

4. Conclusion

In this paper, we extended the perturbation method developed in [15], for a linear time-
variant classical digital control system with several widely different coefficients. We con-
sidered a class of boundary value problems and we achieved two objectives. First, we
gave sufficient conditions to ensure the existence and uniqueness of the solution of the
boundary problem. Second, we gave an iterative method to get successive asymptotic ap-
proximations. This method is simple, straightforward, and convergent. It improves the
singular perturbation method, indeed it offers considerable reduction and simplicity in
computation since it does not require to compute boundary layer correction solutions. This
method can be easily extended for initial value problems.
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