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We apply a cone-theoretic fixed point theorem to study the existence of positive pe-
riodic solutions of the nonlinear system of functional difference equations x(n + 1) =
A(n)x(n) + f (n,xn).

1. Introduction

Let R denote the real numbers, Z the integers, Z− the negative integers, and Z+ the non-
negative integers. In this paper we explore the existence of positive periodic solutions of
the nonlinear nonautonomous system of difference equations

x(n+ 1)= A(n)x(n) + f
(
n,xn

)
, (1.1)

where, A(n)= diag[a1(n),a2(n), . . . ,ak(n)], aj is ω-periodic, f (n,x) : Z×Rk →Rk is con-
tinuous in x and f (n,x) is ω-periodic in n and x, whenever x is ω-periodic, ω ≥ 1 is an
integer. Let � be the set of all real ω-periodic sequences φ : Z→ Rk. Endowed with the

maximum norm ‖φ‖ = maxθ∈Z
∑k

j=1 |φj(θ)| where φ = (φ1,φ2, . . . ,φk)t, � is a Banach
space. Here t stands for the transpose. If x ∈�, then xn ∈� for any n ∈ Z is defined by
xn(θ)= x(n+ θ) for θ ∈ Z.

The existence of multiple positive periodic solutions of nonlinear functional differen-
tial equations has been studied extensively in recent years. Some appropriate references
are [1, 14]. We are particularly motivated by the work in [8] on functional differential
equations and the work of the first author in [4, 11, 12] on boundary value problems
involving functional difference equations.

When working with certain boundary value problems whether in differential or dif-
ference equations, it is customary to display the desired solution in terms of a suitable
Green’s function and then apply cone theory [2, 4, 5, 6, 7, 10, 13]. Since our equation
(1.1) is not this type of boundary value, we obtain a variation of parameters formula and
then try to find a lower and upper estimates for the kernel inside the summation. Once
those estimates are found we use Krasnoselskii’s fixed point theorem to show the existence
of a positive periodic solution. In [11], the first author studied the existence of periodic
solutions of an equation similar to (1.1) using Schauder’s second fixed point theorem.
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Throughout this paper, we denote the product of y(n) from n=a to n= b by
∏b

n=a y(n)

with the understanding that
∏b

n=a y(n)= 1 for all a > b.
In [12], the first author considered the scalar difference equation

x(n+ 1)= a(n)x(n) +h(n) f
(
x
(
n− τ(n)

))
, (1.2)

where a(n), h(n), and τ(n) are ω-periodic for ω an integer with ω≥ 1. Under the assump-
tions that a(n), f (x), and h(n) are nonnegative with 0 < a(n) < 1 for all n∈ [0,ω− 1], it
was shown that (1.2) possesses a positive periodic solution. In this paper we generalize
(1.2) to systems with infinite delay and address the existence of positive periodic solutions
of (1.1) in the case a(n) > 1.

Let R+ = [0,+∞), for each x = (x1,x2, . . . ,xn)t ∈ Rn, the norm of x is defined as |x| =∑n
j=1 |xj|. Rn

+ = {(x1,x2, . . . ,xn)t ∈ Rn : xj ≥ 0, j = 1,2, . . . ,n}. Also, we denote f = ( f1,
f2, . . . , fk)t, where t stands for transpose.

Now we list the following conditions.
(H1) a(n) �= 0 for all n∈ [0,ω− 1] with

∏ω−1
s=0 aj(s) �= 1 for j = 1,2, . . . ,k.

(H2) If 0 < a(n) < 1 for all n∈ [0,ω− 1] then, f j(n,φn)≥ 0 for all n∈ Z and φ : Z→Rn
+,

j = 1,2, . . . ,k where R+ = [0,+∞).
(H3) If a(n) > 1 for all n ∈ [0,ω− 1] then, f j(n,φn) ≤ 0 for all n ∈ Z and φ : Z→ Rn

+,
j = 1,2, . . . ,k where R+ = [0,+∞).

(H4) For any L > 0 and ε > 0, there exists δ > 0 such that [φ,ψ ∈ �, ‖φ‖ ≤ L, ‖ψ‖ ≤
L, ‖φ−ψ‖ < δ, 0≤ s≤ ω] imply

∣∣ f (s,φs)− f
(
s,ψs

)∣∣ < ε. (1.3)

2. Preliminaries

In this section we state some preliminaries in the form of definitions and lemmas that are
essential to the proofs of our main results. We start with the following definition.

Definition 2.1. Let X be a Banach space and K be a closed, nonempty subset of X . The set
K is a cone if

(i) αu+βv ∈ K for all u,v ∈ K and all α,β ≥ 0
(ii) u,−u∈ K imply u= 0.

We now state the Krasnosel’skii fixed point theorem [9].

Theorem 2.2 (Krasnosel’skii). Let � be a Banach space, and let � be a cone in �. Suppose
Ω1 and Ω2 are open subsets of � such that 0∈Ω1 ⊂Ω1 ⊂Ω2 and suppose that

T : �∩ (Ω2\Ω1
)−→� (2.1)

is a completely continuous operator such that
(i) ‖Tu‖ ≤ ‖u‖, u∈�∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u∈�∩ ∂Ω2; or

(ii) ‖Tu‖ ≥ ‖u‖, u∈�∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u∈�∩ ∂Ω2.
Then T has a fixed point in �∩ (Ω2\Ω1).
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For the next lemma we consider

xj(n+ 1)= ajxj(n) + f j
(
n,xn

)
, j = 1,2, . . . ,k. (2.2)

The proof of the next lemma can be easily deduced from [11] and hence we omit it.

Lemma 2.3. Suppose (H1) holds. Then xj(n)∈� is a solution of (2.2) if and only if

xj(n)=
n+ω−1∑
u=n

Gj(n,u) f j
(
u,xu

)
, j = 1,2, . . . ,k, (2.3)

where

Gj(n,u)=
∏n+ω−1

s=u+1 aj(s)

1−∏n+ω−1
s=n aj(s)

, u∈ [n,n+ω− 1], j = 1,2, . . . ,k. (2.4)

Set

G(n,u)= diag
[
G1(n,u),G2(n,u), . . . ,Gk(n,u)

]
. (2.5)

It is clear that G(n,u)=G(n+ω,u+ω) for all (n,u)∈ Z2. Also, if either (H2) or (H3)
holds, then (2.4) implies that

Gj(n,u) f j
(
u,φu

)≥ 0 (2.6)

for (n,u)∈ Z2 and u∈ Z, φ : Z→Rn
+. To define the desired cone, we observe that if (H2)

holds, then

∏ω−1
s=0 aj(s)

1−∏n+ω−1
s=n aj(s)

≤ ∣∣Gj(n,u)
∣∣≤

∏ω−1
s=0 a

−1
j (s)

1−∏n+ω−1
s=n aj(s)

(2.7)

for all u∈ [n,n+ω− 1]. Also, if (H3) holds then

∏ω−1
s=0 a

−1
j (s)∣∣1−∏n+ω−1

s=n aj(s)
∣∣ ≤

∣∣Gj(n,u)
∣∣≤

∏ω−1
s=0 aj(s)∣∣1−∏n+ω−1
s=n aj(s)

∣∣ (2.8)

for all u∈ [n,n+ω− 1]. For all (n,s)∈ Z2, j = 1,2, . . . ,k, we define

σ2 :=min

{(ω−1∏
s=0

aj(s)

)2

, j = 1,2, . . . ,n

}
,

σ3 :=min

{(ω−1∏
s=0

a−1
j (s)

)2

, j = 1,2, . . . ,n

}
.

(2.9)

We note that if 0 < a(n) < 1 for all n ∈ [0,ω− 1], then σ2 ∈ (0,1). Also, if a(n) > 1 for
all n ∈ [0,ω− 1], then σ3 ∈ (0,1). Conditions (H2) and (H3) will have to be handled
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separately. That is, we define two cones; namely, �2 and �3. Thus, for each y ∈� set

�2= {y ∈� : y(n)≥ 0, n∈ Z, and y(n)≥ σ2‖y‖
}

,

�3= {y ∈� : y(n)≥ 0, n∈ Z, and y(n)≥ σ3‖y‖
}
.

(2.10)

Define a mapping T : �→� by

(Tx)(n)=
n+ω−1∑
u=n

G(n,u) f
(
u,xu

)
, (2.11)

where G(n,u) is defined following (2.4). We denote

(Tx)= (T1x,T2x, . . . ,Tnx
)t
. (2.12)

It is clear that (Tx)(n+ω)= (Tx)(n).

Lemma 2.4. If (H1) and (H2) hold, then the operator T�2⊂�2. If (H1) and (H3) hold,
then T�3⊂�3.

Proof. Suppose (H1) and (H2) hold. Then for any x ∈�2 we have

(
Tjx(n)

)≥ 0, j = 1,2, . . . ,k. (2.13)

Also, for x ∈�2 by using (2.4), (2.7), and (2.11) we have that

(
Tjx

)
(n)≤

∏ω−1
s=0 a

−1
j (s)

1−∏n+ω−1
s=n aj(s)

n+ω−1∑
u=n

∣∣ f j(u,xu
)∣∣,

∥∥Tjx
∥∥= max

n∈[0,ω−1]

∣∣Tjx(n)
∣∣≤

∏ω−1
s=0 a

−1
j (s)

1−∏n+ω−1
s=n aj(s)

n+ω−1∑
u=n

∣∣ f j(u,xu
)∣∣.

(2.14)

Therefore,

(
Tjx

)
(n)=

n+ω−1∑
u=n

Gj(n,u) f j
(
u,xu

)

≥
∏ω−1

s=0 aj(s)

1−∏n+ω−1
s=n aj(s)

n+ω−1∑
u=n

∣∣ f j(u,xu
)∣∣

≥
(ω−1∏

s=0

aj(s)

)2∥∥Tjx
∥∥≥ σ2

∥∥Tjx
∥∥.

(2.15)

That is, T�2 is contained in �2. The proof of the other part follows in the same manner
by simply using (2.8), and hence we omit it. This completes the proof. �
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To simplify notation, we state the following notation:

A2 = min
1≤ j≤k

∏ω−1
s=0 aj(s)

1−∏n+ω−1
s=n aj(s)

, (2.16)

B2 = max
1≤ j≤k

∏ω−1
s=0 a

−1
j (s)

1−∏n+ω−1
s=n aj(s)

, (2.17)

A3 = min
1≤ j≤k

∏ω−1
s=0 a

−1
j (s)∣∣1−∏n+ω−1

s=n aj(s)
∣∣ , (2.18)

B3 = max
1≤ j≤k

∏ω−1
s=0 aj(s)∣∣1−∏n+ω−1
s=n aj(s)

∣∣ , (2.19)

where k is defined in the introduction.

Lemma 2.5. If (H1), (H2), and (H4) hold, then the operator T : �2→ �2 is completely
continuous. Similarly, if (H1), (H3), and (H4) hold, then the operator T : �3→�3 is com-
pletely continuous.

Proof. Suppose (H1), (H2), and (H4) hold. First show that T is continuous. By (H4), for
any L > 0 and ε > 0, there exists a δ > 0 such that [φ,ψ ∈�, ‖φ‖ ≤ L, ‖ψ‖ ≤ L, ‖φ−ψ‖ <
δ] imply

max
0≤s≤ω−1

∣∣ f (s,φs)− f
(
s,ψs

)∣∣ < ε

B2ω
, (2.20)

where B2 is given by (2.17). If x, y ∈�2 with ‖x‖ ≤ L, ‖y‖ ≤ L, and ‖x− y‖ < δ, then

∣∣(Tx)(n)− (Ty)(n)
∣∣≤ n+ω−1∑

u=n

∣∣G(n,u)
∣∣∣∣ f (u,xu

)− f
(
u, yu

)∣∣

≤ B2

ω−1∑
u=0

∣∣ f (u,xu
)− f

(
u, yu

)∣∣ < ε
(2.21)

for all n ∈ [0,ω − 1], where |G(n,u)| = max1≤ j≤n |Gj(n,u)|, j = 1,2, . . . ,k. This yields
‖(Tx)− (Ty)‖ < ε. Thus, T is continuous. Next we show that T maps bounded sub-
sets into compact subsets. Let ε = 1. By (H4), for any µ > 0 there exists δ > 0 such that
[x, y ∈�, ‖x‖ ≤ µ, ‖y‖ ≤ µ, ‖x− y‖ < δ] imply

∣∣ f (s,xs)− f
(
s, ys

)∣∣ < 1. (2.22)

We choose a positive integer N so that δ > µ/N . For x ∈ �, define xi(n) = ix(n)/N , for
i= 0,1,2, . . . ,N . For ‖x‖ ≤ µ,

∥∥xi− xi−1
∥∥=max

n∈Z

∣∣∣∣ ix(n)
N

− (i− 1)x(n)
N

∣∣∣∣
≤ ‖x‖

N
≤ µ

N
< δ.

(2.23)
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Thus, | f (s,xi)− f (s,xi−1)| < 1. As a consequence, we have

f
(
s,xs

)− f (s,0)=
N∑
i=1

(
f
(
s,xi

)− f
(
s,xi−1)), (2.24)

which implies that

∣∣ f (s,xs)∣∣≤
N∑
i=1

∣∣ f (s,xis)− f
(
s,xi−1

s

)∣∣+
∣∣ f (s,0)

∣∣
< N +

∣∣ f (s,0)
∣∣.

(2.25)

Thus, f maps bounded sets into bounded sets. It follows from the above inequality and
(2.11), that

∥∥(Tx)(n)
∥∥≤ B2

k∑
j=1

(n+T−1∑
u=n

∣∣ f j(u,xu
)∣∣)

≤ B2ω
(
N +

∣∣ f (s,0)
∣∣).

(2.26)

If we define S = {x ∈ � : ‖x‖ ≤ µ} and Q = {(Tx)(n) : x ∈ S}, then S is a subset of Rωk

which is closed and bounded and thus compact. As T is continuous in x, it maps compact
sets into compact sets. Therefore, Q = T(S) is compact. The proof for the other case is
similar by simply invoking (2.19). This completes the proof. �

3. Main results

In this section we state two theorems and two corollaries. Our theorems and corollaries
are stated in a way that unify both cases; 0 < a(n) < 1 and a(n) > 1 for all n∈ [0,ω− 1].

Theorem 3.1. Assume that (H1) holds.
(a) Suppose (H2) and (H4) hold and that there exist two positive numbers R1 and R2

with R1 < R2 such that

sup
‖φ‖=R1, φ∈�2

∣∣ f (s,xs)∣∣≤ R1

ωB2
, (3.1)

inf
‖φ‖=R2, φ∈�2

∣∣ f (s,xs)∣∣≥ R2

ωA2
, (3.2)

whereA2 and B2 are given by (2.16) and (2.17), respectively. Then, there exists x ∈�2 which
is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.

(b) Suppose (H3) and (H4) hold and that there exist two positive numbers R1 and R2

with R1 < R2 such that

sup
‖φ‖=R1, φ∈�3

∣∣ f (s,xs)∣∣≤ R1

ωB3
,

inf
‖φ‖=R2, φ∈�3

∣∣ f (s,xs)∣∣≥ R2

ωA3
,

(3.3)
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whereA3 and B3 are given by (2.18) and (2.19), respectively. Then, there exists x ∈�3 which
is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.

Proof. Suppose (H1), (H2), and (H4) hold. Let Ωξ = {x ∈ �2 | ‖x‖ < ξ}. Let x ∈ �2
which satisfies ‖x‖ = R1, in view of (3.1), we have

∣∣(Tx)(n)
∣∣≤ n+ω−1∑

u=n

∣∣G(n,u)
∣∣∣∣ f (u,xu

)∣∣

≤ B2ω
R1

ωB2
= R1.

(3.4)

That is, ‖Tx‖ ≤ ‖x‖ for x ∈�2∩ ∂ΩR1 . let x ∈�2 which satisfies ‖x‖ = R2 we have, in
view of (3.2),

∣∣(Tx)(n)
∣∣≥ A2

n+ω−1∑
u=n

∣∣ f (u,xu
)∣∣≥ A2ω

R2

ωA2
= R2. (3.5)

That is, ‖Tx‖ ≥ ‖x‖ for x ∈ �2∩ ∂ΩR2 . In view of Theorem 2.2, T has a fixed point
in �2∩ (Ω̄2 \Ω1). It follows from Lemma 2.4 that (1.1) has an ω-periodic solution x
with R1 ≤ ‖x‖ ≤ R2. The proof of (b) follows in a similar manner by simply invoking
conditions (3.3). �

As a consequence of Theorem 3.1, we state a corollary omitting its proof.

Corollary 3.2. Assume that (H1) holds.
(a) Suppose (H2) and (H4) hold and

lim
φ∈�2, ‖φ‖→0

∣∣ f (s,φs)∣∣
‖φ‖ = 0,

lim
φ∈�2, ‖φ‖→∞

∣∣ f (s,φs)∣∣
‖φ‖ =∞.

(3.6)

Then (1.1) has a positive periodic solution.
(b) Suppose (H3) and (H4) hold and

lim
φ∈�3, ‖φ‖→0

∣∣ f (s,φs)∣∣
‖φ‖ = 0,

lim
φ∈�3, ‖φ‖→∞

∣∣ f (s,φs)∣∣
‖φ‖ =∞.

(3.7)

Then (1.1) has a positive periodic solution.
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Theorem 3.3. Suppose that (H1) holds.
(a) Suppose (H2) and (H4) hold and that there exist two positive numbers R1 and R2

with R1 < R2 such that

inf
‖φ‖=R1, φ∈�2

∣∣ f (s,xs)∣∣≥ R1

ωB2
,

sup
‖φ‖=R2, φ∈�2

∣∣ f (s,xs)∣∣≤ R2

ωA2
,

(3.8)

whereA2 and B2 are given by (2.16) and (2.17), respectively. Then, there exists x ∈�2 which
is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.

(b) Suppose (H3) and (H4) hold and that there exist two positive numbers R1 and R2

with R1 < R2 such that

inf
‖φ‖=R1, φ∈�3

∣∣ f (s,xs)∣∣≥ R1

ωB3
,

sup
‖φ‖=R2, φ∈�3

∣∣ f (s,xs)∣∣≤ R2

ωA3
,

(3.9)

whereA3 and B3 are given by (2.18) and (2.19), respectively. Then, there exists x ∈�3 which
is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.

The proof is similar to the proof of Theorem 3.1 and hence we omit it. As a conse-
quence of Theorem 3.3, we have the following corollary.

Corollary 3.4. Assume that (H1) holds.
(a) Suppose (H2) and (H4) hold and

lim
φ∈�2, ‖φ‖→0

∣∣ f (s,φs)∣∣
‖φ‖ =∞,

lim
φ∈�2, ‖φ‖→∞

∣∣ f (s,φs)∣∣
‖φ‖ = 0.

(3.10)

Then (1.1) has a positive periodic solution.
(b) Suppose (H3) and (H4) hold and

lim
φ∈�3, ‖φ‖→0

∣∣ f (s,φs)∣∣
‖φ‖ =∞,

lim
φ∈�3, ‖φ‖→∞

∣∣ f (s,φs)∣∣
‖φ‖ = 0.

(3.11)

Then (1.1) has a positive periodic solution.

4. Applications to population dynamics

In this section, we apply our results from the previous section and show that some popu-
lation models admit the existence of a positive periodic solution. We start by considering
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the scalar discrete model that governs the growth of population N(n) of a single species
whose members compete among themselves for the limited amount of food that is avail-
able to sustain the population. Thus, we consider the scalar equation

N(n+ 1)= α(n)N(n)

[
1− 1

N0(n)

0∑
s=−∞

B(s)N(n+ s)

]
, n∈ Z. (4.1)

We note that (4.1) is a generalization of the known logistic model

N(n+ 1)= αN(n)
[

1− N(n)
N0

]
, (4.2)

where α is the intrinsic per capita growth rate and N0 is the total carrying capacity. For
more biological information on (4.1), we refer the reader to [3]. We remark that in (4.1),
the term

∑0
s=−∞B(s)N(n + s), is equivalent to

∑n
u=−∞B(u− s)N(u). We chose to write

(4.1) that way so that it can be put in the form of x(n+ 1)= a(n)x(n) + f (n,xn). Before
we state our results in the form of a theorem, we assume that

(P1) α(n) > 1, N0(n) > 0 for all n∈ Z with α(n), N0(n) are ω-periodic and
(P2) B(n) is nonnegative on Z− with

∑0
n=−∞B(n) <∞.

Theorem 4.1. Under assumptions (P1) and (P2), (4.1) has at least one positive ω-periodic
solution.

Proof. Let a(n)= α(n) and

f
(
n,xn

)=−x(n)α(n)
N0(n)

0∑
s=−∞

B(s)x(n+ s). (4.3)

It is clear that f (n,xn) is ω-periodic whenever x is ω-periodic and (H1) and (H3) hold
since f (n,φn) ≤ 0 for all (n,φ) ∈ Z× (Z,R+). To verify (H4), we let x, y : Z→ R+ with
‖x‖ ≤ L, ‖y‖ ≤ L for some L > 0. Then

∣∣ f (n,xn
)− f

(
n, yn

)∣∣
=
∣∣∣∣∣x(n)α(n)

N0(n)

0∑
s=−∞

B(s)x(n+ s)− y(n)α(n)
N0(n)

0∑
s=−∞

B(s)y(n+ s)

∣∣∣∣∣
≤
∣∣∣∣x(n)α(n)

N0(n)

∣∣∣∣
0∑

s=−∞
B(s)

∣∣x(n+ s)− y(n+ s)
∣∣ds

+
∣∣∣∣
(
x(n)− y(n)

)
α(n)

N0(n)

∣∣∣∣
0∑

s=−∞
B(s)

∣∣y(n+ s)
∣∣

≤ L‖α‖
N0∗

max
s∈Z−

∣∣x(n+ s)− y(n+ s)
∣∣+

∣∣x(n)− y(n)
∣∣‖α‖L

N0∗
,

(4.4)

where N0∗ =min{N0(s) : 0≤ s≤ ω− 1}. For any ε > 0, choose δ = εN0∗/(2L‖a‖). If ‖x−
y‖ < δ, then

∣∣ f (n,xn
)− f

(
n, yn

)∣∣ < L‖α‖δ/N0∗ + δ‖α‖L/N0∗ = 2L‖α‖δ/N0∗ = ε. (4.5)



378 Positive periodic solutions

This implies that (H4) holds. We now show that (3.7) hold. For φ ∈�3, we have φ(n)≥
σ3‖φ‖ for all n∈ [0,ω− 1]. This yields

∣∣ f (n,φ)
∣∣

‖φ‖ ≤ max
τ∈[0,ω−1]

α(τ)
N0(τ)

0∑
s=−∞

B(s)‖φ‖ −→ 0 (4.6)

as ‖φ‖→ 0 and

∣∣ f (n,φ)
∣∣

‖φ‖ ≥ min
τ∈[0,ω−1]

α(τ)
N0(τ)

0∑
s=−∞

B(s)σ3
2‖φ‖ −→ +∞ (4.7)

as ‖φ‖ → ∞. Thus, (3.7) are satisfied. By (b) of Corollary 3.2, (4.1) has a positive ω-
periodic solution. This completes the proof. �

Next we consider the Volterra discrete system

xi(n+ 1)= xi(n)

[
ai(n)−

k∑
j=1

bi j(n)xj(n)−
k∑
j=1

n∑
s=−∞

Cij(n,s)gi j
(
xj(s)

)]
, (4.8)

where xi(n) is the population of the ith species, ai,bi j : Z→R areω-periodic andCij(n,s) :
Z×Z→R is ω-periodic.

Theorem 4.2. Suppose that the following conditions hold for i, j = 1,2, . . . ,k.
(i) ai(n) > 1, for all n∈ [0,ω− 1], and ai(n) is ω-periodic,

(ii) bi j(n)≥ 0, Cij(n,s)≥ 0 for all (n,s)∈ Z2,
(iii) gi j :R+ →R+ is continuous in x and increasing with gi j(0)= 0,
(iv) bii(s) �= 0, for s∈ [0,ω− 1],
(v) Cij(n+ω,s+ω)= Cij(n,s) for all (n,s)∈ Z2 with maxn∈Z

∑n
s=−∞ |Cij(n,s)| < +∞.

Then (4.8) has a positive ω-periodic solution.

Proof. For x = (x1,x2, . . . ,xn)T , define

fi
(
n,xn

)=−xi(t)
k∑
j=1

bi j(n)xj(n)−
k∑
j=1

n∑
s=−∞

Cij(n,s)gi j
(
xj(s)

)
(4.9)

for i = 1,2, . . . ,k and set f = ( f1, f2, . . . , fn)t. Then by some manipulation of conditions
(i)–(v), the conditions (H1) and (H2) are satisfied. Also, it is clear that f satisfies (H4).
Define

b∗ =max
{∥∥bi j∥∥ : i, j = 1,2, . . .,k

}
,

C∗ =max

{
sup
n∈Z

n∑
j=1

n∑
s=−∞

∣∣Cij(n,s)
∣∣ : i= 1,2, . . .,k

}
,

g∗(u)=max
{
gi j(u) : i, j = 1,2, . . .,k

}
.

(4.10)
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Let x ∈�3. Since g is increasing in x, we arrive at

∣∣ fi(n,xn
)∣∣≤ ∣∣xi(n)

∣∣[b∗‖x‖+
n∑
j=1

n∑
s=−∞

∣∣Cij(n,s)
∣∣gi j(∥∥xj∥∥)

]
. (4.11)

Thus

∣∣ f (n,xn
)∣∣≤ ‖x‖[b∗‖x‖+C∗g∗

(‖x‖)], (4.12)

which implies
∣∣ f (n,xs

)∣∣
‖x‖ ≤ [b∗‖x‖+C∗g∗

(‖x‖)]−→ 0 (4.13)

as ‖x‖ → 0. For x ∈�3, xi(n)≥ σ3‖xi‖ for all n∈ Z. Also, from (ii), bi j(t), Cij(t,s) have
the same sign. Thus, using condition (iii) we have

∣∣ fi(n,xn
)∣∣= n∑

j=1

xi(n)
∣∣bi j(n)

∣∣xj(n) +
k∑
j=1

n∑
s=−∞

∣∣Cij(n,s)
∣∣gi j(xj(s))

≥ ∣∣bii(n) | xi(n)
∣∣2 ≥ σ3

2
∥∥xi∥∥2∣∣bii(n)

∣∣,

∣∣ f (n,xs
)∣∣≥ σ3

2
k∑
i=1

∥∥xi∥∥2
min
1≤i≤k

∣∣bii(n)
∣∣≥ σ3

2

k
‖x‖2 min

1≤i≤k
∣∣bii(n)

∣∣.
(4.14)

Here we have applied the inequality (
∑k

i=1‖xi‖)2 ≤ k∑k
i=1‖xi‖2. Thus,

∣∣ f (n,xs
)∣∣

‖x‖ −→ +∞ as ‖x‖ −→ +∞. (4.15)

By (b) of Corollary 3.2, (4.8) has a positive ω-periodic solution. This completes the proof.
�

Theorem 4.3. Suppose that the following conditions hold for i, j = 1,2, . . . ,k.
(i) 0 < ai(n) < 1, for all n∈ [0,ω− 1], and ai(n) is ω-periodic,

(ii) bi j(n)≤ 0, Cij(n,s)≤ 0 for all (n,s)∈ Z2,
(iii) gi j :R+ →R+ is continuous in x and increasing with gi j(0)= 0,
(iv) bii(s) �= 0, for s∈ [0,ω− 1],
(v) Cij(n+ω,s+ω)= Cij(n,s) for all (n,s)∈ Z2 with maxn∈Z

∑n
s=−∞ |Cij(n,s)| < +∞.

Then (4.8) has a positive ω-periodic solution. The proof follows from part (a) of
Corollary 3.2.

Remark 4.4. In the statements of Theorems 4.2 and 4.3 condition (iv) can be replaced by
(iv∗)

∑k
j=1

∑n
s=−∞ |Cij(n,s)| �= 0 and gii(x)→ +∞ as x→ +∞.
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